
FLOWS IN UNDIRECTED UNIT CAPACITY NETWORKS∗

ANDREW V. GOLDBERG† AND SATISH RAO†

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 1, pp. 1–5

Abstract. We describe an O(min(m,n3/2)m1/2)-time algorithm for finding maximum flows in
undirected networks with unit capacities and no parallel edges. This improves upon the previous
bound of Karzanov and Even and Tarjan when m = ω(n3/2), and upon a randomized bound of
Karger when v = Ω(n7/4/m1/2).

Key words. algorithms, combinatorial optimization, maximum flow, undirected graphs, spar-
cification

AMS subject classifications. F.2.2, G.2.2

PII. S089548019733103X

1. Introduction. In this paper we consider the undirected maximum flow prob-
lem in a network with unit capacities and no parallel edges. Until recently, the fastest
known way to solve this problem was using a reduction to the directed problem with
unit capacities and no parallel arcs. Karzanov [8] and Even and Tarjan [2] have
shown that Dinitz’s blocking flow algorithm [1], applied to the directed problem, runs
in O(min(m1/2, n2/3)m) time. (Here n and m are the number of input vertices and
edges, respectively.)

Recently, Karger [6] developed two randomized algorithms for the undirected
problem, with running times of O∗(m5/6n1/3v2/3) and O∗(m2/3n1/3v). (Here v is the
maximum flow value.)

We develop an O(min(m,n3/2)m1/2)-time algorithm for the problem. This im-
proves the previous deterministic bound for m = ω(n3/2) and Karger’s previous ran-
domized bound for v = Ω(n7/4/m1/2). We note that recently, using methods in this
paper and improved sampling techniques, Karger [7] developed a randomized algo-
rithm that has O∗(

√
mnv) running time.

Our improvements are based on the sparsification technique of Nagamochi and
Ibaraki [9]. Their technique applies to undirected (e.g., symmetric) graphs. We use
their technique in the context of residual graphs of flows in undirected graphs, which
are not symmetric.

We note that the Nagamochi and Ibaraki sparsification technique has previously
been used to improve performance of maximum flow algorithms for undirected unit
capacity networks when v is small. In combination with the augmenting path algo-
rithm [3], this technique gives an O(nv2) time bound. In combination with Karger’s
second algorithm, this technique gives an O∗(nv5/3) expected time bound. See, for
example, [4].

2. Preliminaries. For this paper, we consider computing a maximum flow in
an undirected graph G = (V,E) with two distinguished vertices s and t. We consider
only zero-one–valued flows. Let |V | = n and |E| = m. To define undirected flow, we

∗Received by the editors November 21, 1997; accepted for publication (in revised form) April
21, 1998; published electronically January 29, 1999. A preliminary version of this paper appeared
in Proc. 38th IEEE Symposium on Foundations of Computer Science, Miami Beach, FL, IEEE
Computer Society Press, Los Alamitos, CA, 1997, pp. 32–34.

http://www.siam.org/journals/sidma/12-1/33103.html
†NEC Research Institute, 4 Independence Way, Princeton, NJ 08540 (avg@research.nj.nec.com,

satish@research.nj.nec.com).

1

2 ANDREW GOLDBERG AND SATISH RAO

consider the symmetric directed graph defined by G: G′ = (V,E′) such that (i, j) ∈ E′
if and only if {i, j} ∈ E. A directed flow in G′ is a zero-one function f ′ on E′ obeying
conservation constraints ∑

(i,j)∈E′
f ′(i, j) =

∑
(j,k)∈E′

f ′(j, k)

for all j 6= s, t. The value of a directed flow f ′ is defined by |f ′| = ∑(i,t)∈E′ f
′(i, t)−∑

(t,k)∈E′ f
′(t, k).

A directed flow f ′ is proper if for all (i, j) ∈ E′, f ′(i, j) + f ′(j, i) ≤ 1, f ′(i, s) =
0 for all (i, s) ∈ E′, and f ′(t, k) = 0 for all (t, k) ∈ E′. A proper flow f ′ in G′ induces
an (undirected) flow in G in a natural way: f({i, j}) = f ′(i, j) + f ′(j, i). Without
ambiguity, we shall abbreviate f({i, j}) to f(i, j). A zero-one function f on E is
a flow if f is induced by some proper flow f ′ in G′. The value of f is defined by
|f | = |{{i, t} ∈ E : f(i, t) = 1}|. Our algorithms maintain a flow f in G implicitly by
maintaining a proper flow f ′ in G′.

An s-t cut is a partitioning of vertices (S, V − S) such that s ∈ S and t ∈ V − S.
A capacity of an s-t cut (S, V − S) is given by |{(i, j) ∈ E′ : i ∈ S, j 6∈ S}|. An arc
(i, j) ∈ E′ is residual if f(i, j) = 0. A residual capacity of an s-t cut in G′ under f ′ is
given by |{(i, j) ∈ E′ : i ∈ S, j 6∈ S, f ′(i, j) = 0}| ∪ |{(j, i) ∈ E′ : i ∈ S, j 6∈ S, f(i, j) =
1}|. A residual flow value is the difference between the maximum and the current
flow values.

Suppose an undirected flow f is induced by a proper flow f ′. We denote the
length of the shortest residual path from s to t in G′ by Df .

We define the auxiliary graph of a proper flow f ′ as the subset of arcs in G′ that
lie on any shortest s-t path in G′. Note that this graph is acyclic, since for each edge
(u, v) in the graph u must be strictly farther from t than v is.

A directed flow g′ in a graph H ′ is blocking if every s-t path in H ′ contains an
arc a with g′(a) = 1. In the unit capacity case, a blocking flow in an acyclic graph
H ′ can be found in O(m) time.

Dinitz’s algorithm [1] for finding maximum flows in undirected graphs repeatedly
augments the current flow by a blocking flow in the graph induced by the residual arcs
on shortest paths from s to t. Based on the following two lemmas, Karzanov [8] and
Even and Tarjan [2] have shown that Dinitz’s algorithm terminates in min(n2/3,m1/2)
iterations. Note that these lemmas hold for both directed and undirected flows.

Lemma 2.1. Given a network G with no parallel edges and a flow f , the residual
flow is at most (2n/Df)2 [2, 8].

Lemma 2.2. Given a network G and a flow f , the residual flow is at most m/Df

[2, 8].

3. Network sparsification. We extend the sparsification technique of Nag-
amochi and Ibaraki [9] to residual graphs as follows. Given a graph G = (V,E) and a
flow f , we define E0

f to be the subset of edges with zero flow and define E1
f = E−E0

f .

The following procedure removes some edges in E0
f from E.

Sparsify(v,G, f)
1. Find E1, E2, . . . , Ev, where Ei is a maximal spanning forest in (V,E0

f −
∪j<iEj).

2. Output (V,E1
f + ∪j≤vEj).

The following lemma follows from [9].
Lemma 3.1. There is an O(m) implementation of Sparsify.

UNDIRECTED UNIT FLOWS 3

Sparsify is defined so that the following lemma holds. The proof of the lemma
is analogous to the proof of Lemma 2.1 in [10].

Lemma 3.2. The residual flow in the network output by Sparsify(v,G, f) is at
least min(v, r), where r is the residual flow value in Gf .

Proof. Let Gi = (V,Ef −E0
f + ∪j≤iEi). We prove that the maximum s-t flow in

Gi is at least min(i, r).

The claim is clearly true for G0. We assume it to be true for Gi: the residual flow
in Gi with respect to f is at least min(i, r). Assume that the residual flow in Gi+1

with respect to f is less than min(i+ 1, r). Since Gi is contained in Gi+1, this means
that the residual flow with respect to f is equal to i and that r ≥ i+ 1.

By the maximum flow–minimum cut theorem, there is an s-t cut, (S, S), with
residual capacity i in Gi+1 with respect to f . Moreover, the residual capacity of the
cut in Gi with respect to f is also i. Thus, there is no edge in Ei+1 that crosses the
cut.

On the other hand, the capacity of the cut is at least i+1 in Gf . Thus, there is an
undirected edge that is not in Gi that is in Gf that crosses the cut. This contradicts
the assumption that Ei+1 is a maximal spanning forest of (V,E0

f − ∪j<i+1Ej).

The residual flow in Gi+1 with respect to f must therefore be at least min
(i+ 1, r).

4. The algorithm. Now we are ready to describe our main algorithm. The
algorithm works with sparser and sparser graphs. We denote the current graph by
G = (V,E) and |E| by m.

The algorithm is based on the SparsifyAndBlock step. This step applies the
procedure Sparsify((2n/Df)2, G, f) to obtain a new current graph G and augments
f by a blocking flow in the auxiliary graph of Gf . The SparsifyAndBlock step
takes O(m) time. Initially, G = G and f is the zero flow. The algorithm repeatedly
applies the SparsifyAndBlock step until f is a maximum flow in G.

First we show that the algorithm is correct.

Lemma 4.1. The algorithm terminates with a maximum flow in G.

Proof. The algorithm terminates because each iteration increases the value of f ,
and the fact that the algorithm finds a maximum flow follows from Lemmas 2.1 and
3.2.

Next we analyze the algorithm. Note that the algorithm’s bounds are at least as
good as those for the blocking flow algorithm because the work of Sparsify is linear
per blocking flow computation. Because of the sparsification, our algorithm works
with smaller graphs and may be faster.

Remark. During initial iterations when Df is small and n(2n/Df)2 ≥ m, Spar-
sify does not delete any edges and may be omitted. Toward the end, when Df is
large and |E1

f | ≥ n(2n/Df)2, Sparsify does not significantly reduce the number of
edges and may be omitted as well.

Lemma 4.2. At any point during the algorithm, |E1
f | ≤ 8n3/2.

Proof. The size of E1
f is upper-bounded by the total length of augmenting paths

in a blocking flow algorithm. We proceed by showing, as in [2], that this bound is as
stated in the lemma.

The algorithm performs at most (n/d)2 augmentations when 2d ≤ Df < 4d. Note
that the algorithm always augments flow on shortest paths. Thus, the total length
of the augmenting paths after the length of the augmentations is at least 2d0 and is
bounded by

∑
i≥0(4n2/(2id0)).

4 ANDREW GOLDBERG AND SATISH RAO

Since the total s-t flow in a graph with no parallel edges is at most n, the total
length of the augmenting paths is at most 2nd0 +

∑
i≥0(4n2/(2id0)) = 2nd0 +8n2/d0.

Choosing d0 = 2n1/2 proves the lemma.
Notice that this lemma implies that m ≤ 8n3/2 + n(2n/Df)2 throughout the

algorithm.
Theorem 4.3. The algorithm runs in time O(min(m,n3/2)m1/2).
Proof. If m = O(n3/2), then by [2, 8], the running time is O(m3/2), which is

O(n3/2m1/2) for these values of m. For the rest of the proof we assume m = Ω(n3/2).
During the initial iterations of the algorithm, when n(2n/Df)2 > m, the spar-

sification has no effect and each iteration takes O(m) time. During these iterations,
Df < 2n3/2/m1/2. Since Df increases at each iteration, these iterations take a total
of O(n3/2m1/2) time.

During the final iterations of the algorithm, when n(2n/Df)2 ≤ 4n3/2, we have
m = O(n3/2) by Lemma 4.2 and, by [2, 8], these iterations take O(n9/4) time. This
is O(n3/2m1/2) for m = Ω(n3/2).

Finally, we account for the remaining iterations where
√

2n3/2/m1/2 < Df ≤ n3/4.
Each iteration takes O(m) time. If during an iteration Df = i, then

m ≤ n(2n/i)2 + 8n3/2 ≤ 2n

(
2n

i

)2

.

Let D0 = 2n3/2/m1/2. The total work during these iterations is at most

∞∑
i=D0

2n(2n/i)2 = 8n3
∞∑

i=D0

1

i2
.

We bound the sum as follows:

∞∑
i=D0

1

i2
≤ 1

D2
0

∞∑
i=D0

1

bi/D0c2 ≤
1

D0

∞∑
i=1

1

i2
≤ 1

D0

π2

6
.

Therefore, the work is O(n3/2m1/2).

5. Concluding remarks. We have shown how to use the sparsification tech-
nique of Nagamochi and Ibaraki to speed up the blocking flow method on dense
networks with unit capacities and no parallel edges. Because the sparsification is
quite efficient, our approach may be practical, especially if the push-relabel algorithm
of [5] is used instead of the blocking flow method. It would be interesting to verify
the practicality experimentally.

Acknowledgment. We would like to thank Mikkel Thorup for comments on a
draft of this paper.

REFERENCES

[1] E. A. Dinic, Algorithm for solution of a problem of maximum flow in networks with power
estimation, Soviet Math. Dokl., 11 (1970), pp. 1277–1280.

[2] S. Even and R. E. Tarjan, Network flow and testing graph connectivity, SIAM J. Comput.,
4 (1975), pp. 507–518.

[3] L. R. Ford, Jr. and D. R. Fulkerson, Flows in Networks, Princeton University Press, Prince-
ton, NJ, 1962.

UNDIRECTED UNIT FLOWS 5

[4] H. N. Gabow, A matroid approach to finding edge connectivity and packing arborescences, J.
Comput. System Sci., 50 (1995), pp. 259–273.

[5] A. V. Goldberg and R. Kennedy, Global price updates help, SIAM J. Discrete Math., 10
(1997), pp. 551–572.

[6] D. R. Karger, Using random sampling to find maximum flows in uncapacitated undirected
graphs, in Proc. 29th Annual ACM Symposium on Theory of Computing, ACM, New York,
1997, pp. 240–249.

[7] D. R. Karger, Better random sampling algorithms for flows in undirected graphs, in Proc. 9th
ACM-SIAM Symposium on Discrete Algorithms, Howard Karloff, ed., SIAM, Philadelphia,
PA, 1998, pp. 490–499.

[8] A. V. Karzanov, On finding maximum flows in networks with special structure and some
applications, in Matematicheskie Voprosy Upravleniya Proizvodstvom 5, Moscow State
University Press, Moscow, 1973, pp. 66–70 (in Russian).

[9] H. Nagamochi and T. Ibaraki, A linear-time algorithm for finding a sparse k-connected
spanning subgraph of a k-connected graph, Algorithmica, 7 (1992), pp. 583–596.

[10] H. Nagamochi and T. Ibaraki, Computing edge-connectivity in multigraphs and capacitated
graphs, SIAM J. Discrete Math., 5 (1992), pp. 54–66.

A LINEAR TIME ALGORITHM FOR EMBEDDING GRAPHS IN AN
ARBITRARY SURFACE∗

BOJAN MOHAR†

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 1, pp. 6–26

Abstract. For an arbitrary fixed surface S, a linear time algorithm is presented that for a given
graph G either finds an embedding of G in S or identifies a subgraph of G that is homeomorphic to
a minimal forbidden subgraph for embeddability in S. A side result of the proof of the algorithm
is that minimal forbidden subgraphs for embeddability in S cannot be arbitrarily large. This yields
a constructive proof of the result of Robertson and Seymour that for each closed surface there are
only finitely many minimal forbidden subgraphs. The results and methods of this paper can be used
to solve more general embedding extension problems.

Key words. surface embedding, obstruction, algorithm, graph embedding, forbidden subgraph,
forbidden minor

AMS subject classifications. 05C10, 05C85, 68Q20, 68R10

PII. S089548019529248X

1. Introduction. The problem of constructing embeddings of graphs in sur-
faces is of practical and theoretical interest. The practical issues arise, for example,
in problems concerning VLSI and also in several other applications since graphs em-
bedded in low genus surfaces can be handled more easily. Theoretical interest comes
from the importance of the genus parameter of graphs and from the fact that graphs
of bounded genus naturally generalize the family of planar graphs and share many
important properties with them.

There are linear time algorithms that for a given graph determine whether the
graph can be embedded in the 2-sphere (or in the plane). The first such algorithm
was obtained by Hopcroft and Tarjan [16] in 1974. There are several other linear
time planarity algorithms (Booth and Lueker [6], de Fraysseix and Rosenstiehl [11],
Williamson [36, 37]). Extensions of these algorithms return an embedding (rotation
system) whenever a graph is found to be planar [7] or exhibit a forbidden Kuratowski
subgraph homeomorphic to K5 or K3,3 if the graph is nonplanar [36, 37] (see also
[21]). Recently, linear time algorithms have been devised for embedding graphs in the
projective plane (Mohar [22]) and in the torus (Juvan, Marinček, and Mohar [19]).

It is known that the general problem of determining the genus [34] or the nonori-
entable genus [35] of graphs is NP-hard. However, for every fixed surface there is
a polynomial time algorithm which checks if a given graph can be embedded in the
surface. Such algorithms were found first by Filotti, Miller, and Reif [10]. For a fixed
orientable surface S of genus g they discovered an algorithm with time complexity
O(nαg+β) (α, β are constants), which tests if a given graph of order n can be embed-
ded in S. Unfortunately, the degree of the polynomial time complexity is very large,
even in the simplest case when S is the torus. A theoretical estimate on the running
time in case of the torus is only O(n188). Recently, Djidjev and Reif [9] announced
improvement of the algorithm in [10] by presenting a polynomial time algorithm for

∗Received by the editors September 27, 1995; accepted for publication (in revised form) June 4,
1998; published electronically January 29, 1999. This research was supported in part by the Ministry
of Science and Technology of Slovenia, Research Project P1–0210–101–94.

http://www.siam.org/journals/sidma/12-1/29248.html
†Department of Mathematics, University of Ljubljana, Jadranska 19, 1111 Ljubljana, Slovenia

(bojan.mohar@uni-lj.si).

6

EMBEDDING GRAPHS IN AN ARBITRARY SURFACE 7

each fixed orientable surface, where the degree of the polynomial is fixed. The basic
technique used in [10] and in [9] of embedding a subgraph, attempting to extend this
partial embedding, and recursively working with discovered forbidden subgraphs for
smaller genus surfaces is also used in our algorithm.

For every fixed surface S, an O(n3) algorithm for testing embeddability in S can
be devised using graph minors [27, 31]. Robertson and Seymour recently improved
their O(n3) algorithms to O(n2 log n) [28, 29, 30]. An extension which also constructs
an embedding is described by Archdeacon in [2]. The running time is estimated
to be O(n10) but with a little additional care it could be decreased to O(n6). A
disadvantage of these algorithms is that they use the lists of forbidden minors which
are not known for surfaces different from the 2-sphere and the projective plane. Even
for the projective plane whose forbidden minors are known [1, 13], the algorithms
based on checking for the presence of forbidden minors are rather time consuming
since their running time estimates involve enormous constants.

In this paper we describe a linear time algorithm which finds an embedding of a
given graphG into a surface S if such an embedding exists. Here S is an arbitrary fixed
surface. In the case when G cannot be embedded in S, the algorithm returns a sub-
graph H of G that cannot be embedded in S, but every proper subgraph of H admits
an embedding in S. A side result of the algorithm is that the returned “minimal forbid-
den subgraph” H is homeomorphic to a graph with a bounded number of edges (where
the bound depends only on S). This yields a constructive proof of the result of Robert-
son and Seymour [27] that for each closed surface there are only finitely many minimal
forbidden subgraphs. A constructive proof for nonorientable surfaces has been pub-
lished by Archdeacon and Huneke [3], while orientable surfaces resisted all previous
attempts. (Recently Seymour [32] also found a constructive proof of that result.)

The results and methods of this paper can be used toward solving a generaliza-
tion of problems of embedding graphs in surfaces—the so-called embedding extension
problems where one has a fixed embedding of a subgraph K of G in some surface and
asks for embedding extensions to G or (minimal) obstructions for existence of such
extensions.

The paper is more or less self-contained with the exception of using results from
[17, 18, 20, 24].

Concerning the time complexity of our algorithms, we assume a random-access
machine (RAM) model with unit cost for some basic operations. This model of
computation was introduced by Cook and Reckhow [8]. It is known as the unit-cost
RAM where operations on integers, whose value is O(n), need only constant time (n is
the order of the given graph). The same model of computation is used in many other
instances, for example, in well-known linear time planarity testing algorithms [16].

2. Basic definitions. We follow standard graph theory terminology as used, for
example, in [5]. Let G and H be graphs. We denote by G − H the graph obtained
from G by deleting all vertices of G ∩H and all their incident edges. If F ⊆ E(G),
then G− F denotes the graph obtained from G by deleting all edges in F .

We will consider 2-cell embeddings of graphs in closed surfaces. They can be
described in a purely combinatorial way by specifying the following:

(1) A rotation system π = (πv ; v ∈ V (G)). For each vertex v of the given graph
G we have a cyclic permutation πv of edges incident with v, representing their
circular order around v on the surface.

(2) A signature λ : E(G)→ {−1, 1}. Suppose that e = uv. Following the edge e
on the surface, we see if the local rotations πv and πu are chosen consistently

8 BOJAN MOHAR

or not. If yes, then we have λ(e) = 1; otherwise we have λ(e) = −1.
The reader is referred to [14] or [25] for more details. We will use this description as
a definition: An embedding of a connected graph G is a pair Π = (π, λ), where π is
a rotation system and λ is a signature. Having an embedding Π of G, we say that
G is Π-embedded . If H is a subgraph of G, then the induced embedding of H (or the
restriction of Π to H) is obtained from that of G by ignoring all edges in E(G)\E(H)
and by restricting the signature to E(H).

Each embedding Π of G determines a set of closed walks in G, called Π-facial
walks or simply Π-faces, that correspond to traversals of face boundaries of the cor-
responding topological embedding. Either each edge e of G is contained in exactly
two Π-facial walks, or it appears twice in the same Π-facial walk W . In the latter
case, e and W are said to be singular . Edges e and f incident with the same vertex
v of G are Π-consecutive if e = πv(f) or f = πv(e). In that case, there is a Π-face F
containing e and f as consecutive edges, and we say that the pair {e, f} is an angle
of F .

Suppose that a subgraph K of G is Π-embedded. An embedding Π̃ of G is
an extension of Π if it is an embedding in the same surface as Π and the induced
embedding of K is equal to Π. Given a graph G and a Π-embedded subgraph K, we
may ask if there is an embedding extension to G. This problem will be referred to as
an embedding extension problem. An obstruction for extensions for such a problem is
a subgraph Ω of G− E(K) such that no embedding extension of K to K ∪ Ω exists.

3. Bridges. Let K be a subgraph of G. A K-bridge in G (or a bridge of K in G)
is a subgraph of G which is either an edge e ∈ E(G)\E(K) with both endpoints in K
or a connected component of G−V (K) together with all edges (and their endpoints)
between this component and K. Each edge of a K-bridge B having an endpoint in
K is a foot of B. The vertices of B ∩K are the vertices of attachment of B, and B is
attached to each of these vertices. A vertex of K of degree different from 2 is a main
vertex (or a branch vertex) of K. For convenience, if a connected component C of K
is a cycle, then we choose an arbitrary vertex of C and declare it to be a main vertex
of K as well. A branch of K is any path in K (possibly closed) whose endpoints are
main vertices but no internal vertex on this path is a main vertex. Every subpath
of a branch e is a segment of e. If a K-bridge is attached to a single branch e of
K, it is said to be local (on e). The number of branches of K, denoted by bsize(K),
is the branch size of K. If B is a K-bridge in G, then the size bsizeK(B) of B is
defined as the number of branches of K ∪ B that are contained in B. Note that
bsize(K ∪ B) ≤ bsize(K) + 2 bsizeK(B). A basic piece of K is either a main vertex
or an open branch of K (i.e., a branch with its endpoints removed). If a K-bridge
B in G is attached to at least three basic pieces of K, then B is strongly attached .
Otherwise, it is weakly attached .

Suppose that K is Π-embedded. Let B be a K-bridge in G and Π̃ an extension
of Π to K ∪ B. Then there is a unique Π-face F that is not a Π̃-face, and we say
that B is embedded in F or that F contains B. Clearly, if B is embedded in F , then
all basic pieces that B is attached to appear on F . Each basic piece on F has one or
more appearances (or occurrences) on F . The total number of appearances of main
vertices on F is the branch size of F . We say that the K-bridge B embedded in F
is attached to an appearance of the basic piece x on F if x contains a vertex x0 such
that the angle in F at this appearance of x0 on x is not an angle within a Π̃-face.

Lemma 3.1. Suppose that there are no local K-bridges in G. Let Π̃ be an embed-
ding of G that is an extension of an embedding Π of K. If B is a K-bridge embedded

EMBEDDING GRAPHS IN AN ARBITRARY SURFACE 9

in a Π-face F , we denote by q(B) the number of appearances of basic pieces on F
that B is attached to. If F is a Π-face of branch size s, and B1, . . . , Bk are K-bridges
embedded in F , then

k∑
i=1

(q(Bi)− 2) ≤ 2s− 2 .(3.1)

Consequently, if B is the set of all K-bridges in G, then∑
B∈B

(q(B)− 2) ≤ 4 bsize(K).(3.2)

Proof. The proof of (3.1) is by induction on the number p ≤ 2s of those occur-
rences of basic pieces on F that some bridge is attached to. We can assume that
q(Bi) ≥ 3 for 1 ≤ i ≤ k and that p ≥ 2. The case p = 2 is trivial. If p > 2, let B
be a strongly attached bridge in F . Let f1, . . . , fq be feet of B attached to distinct
basic pieces of K. They divide F into q segments, containing p1, . . . , pq appearances
of basic pieces of K (or their parts), respectively. Clearly, p1 + · · · + pq = p + q and
pi < p, i = 1, . . . , q. By the induction hypothesis

k∑
i=1

(q(Bi)− 2) ≤ (p1 − 2) + · · ·+ (pq − 2) + (q − 2) = p− 2.

This proves (3.1). The sum of the branch sizes of Π-faces equals 2 bsize(K). Hence,
(3.2) follows from (3.1).

Lemma 3.1 shows, in particular, that too many strongly attached bridges obstruct
embedding extensions. Similarly, every weakly attached bridge that is embedded such
that it is attached to two or more occurrences of the same basic piece contributes to
the left side of (3.2). Thus, under an embedding extension all except a bounded
number of bridges are attached to at most one appearance of the same basic piece.
Such embeddings of bridges are simple. More generally, and embedding extension is
simple if all bridges have simple embeddings. In case of simple embeddings, we will
use some special subgraphs of K-bridges in G. If B is a K-bridge in G, an E-graph
in B is a minimal subgraph H of B such that we have the following:

(E1) Any two vertices of H −K are connected by a path in H −K.
(E2) For each branch vertex ζ that B is attached to, H contains a foot incident

with ζ. If ζ is an open branch with ends x1 and x2 and B is attached to ζ,
let ζi be the vertex of attachment of B on ζ which is closest to xi (i = 1, 2).
Then H contains feet attached to ζ1 and ζ2, respectively (possibly just one if
ζ1 = ζ2).

(E3) Every simple extension of any embedding of K to K ∪H determines a simple
extension to K ∪B.

The difficult part of this paper is to discover obstructions for simple embedding
extensions. The next result somehow simplifies this problem by showing that one can
work only with E-graphs of K-bridges in G and that E-graphs are not too large.

Theorem 3.2 (Mohar [24]). Let B be the set of K-bridges in G. There is a
number c depending only on bsize(K) such that each B ∈ B contains an E-graph B̃
with bsizeK(B̃) ≤ c. If {B1, . . . , Bk} ⊆ B (k ≥ 1) are arbitrary nonlocal K-bridges,
B̃1, . . . , B̃k their corresponding E-graphs, and if Π is an embedding of K, then any
simple extension of Π to K∪B̃1∪· · ·∪B̃k can be further extended to a simple extension

10 BOJAN MOHAR

of Π to K ∪ B1 ∪ · · · ∪ Bk. Moreover, there is a linear time algorithm that replaces
all K-bridges B in G with their E-graphs B̃.

In [24] it is further proved that the size of E-graphs of weakly attached bridges
is at most 12. Moreover, if a weakly attached bridge B has some simple embedding
extension, then bsizeK(B̃) ≤ 5.

Theorem 3.2 shows that we can replace every K-bridge B in G by its small E-
graph B̃, and simple embedding extension problems do not change. This enables us
to consider only obstructions that can be expressed as the union of E-graphs.

4. Restricted embedding extensions. Let K be a subgraph of G and let P
be the set of all basic pieces of K. If B is a K-bridge, let T ⊆ P be the set of basic
pieces of K that B is attached to. We say that B is of type T . Suppose that K
is Π-embedded in some surface. In general, a bridge of type T can be embedded in
two or more faces of K, and in some faces in several different ways. To formalize
the essentially different ways of embedding bridges in particular faces, we introduce
the notion of embedding schemes. Let F be a Π-face. For T ⊆ P, let π1, . . . , πk be
the appearances of basic pieces from T on F . An embedding scheme for the type T
in the face F is a subset of π1, . . . , πk in which at least one appearance of every
basic piece from T occurs. An embedding scheme δ is simple if each basic piece from
T has exactly one appearance in δ. There is a natural partial ordering among the
embedding schemes for the type T ⊆ P in F , induced by the set inclusion: If δ and δ′

are embedding schemes for T in the same face F , then δ � δ′ if every appearance of
a basic piece in δ also participates in δ′.

Let B be a K-bridge of type T and δ an embedding scheme for T in a face F .
An embedding of B in F is δ-compatible (for short, a δ-embedding) if B is attached
only to appearances of basic pieces from δ. If δ � δ′, then every δ-embedding is also
a δ′-embedding.

An embedding distribution ∆(T) for a type T ⊆ P is a selection of embedding
schemes for the type T , possibly in different faces. Suppose that T1, T2, . . . , Ts are all
types ofK-bridges inG. An embedding distribution is a family ∆ = {∆(T1), . . . ,∆(Ts)},
where ∆(Ti) is an embedding distribution for the type Ti, i = 1, . . . , s. ∆ is simple if
all embedding schemes in ∆(T1), . . . ,∆(Ts) are simple. Let B be a set of K-bridges
with an embedding extending the given embedding of K. We say that the embedding
of B is ∆-compatible (or a ∆-embedding) if the embedding of each bridge B ∈ B is
δ-compatible for some δ ∈ ∆(T), where T is the type of B. The relation � naturally
extends from embedding schemes to embedding distributions. The order ord(∆) of
∆ is equal to the total number of embedding schemes in the embedding distributions
∆(Ti), i = 1, . . . , s. If ∆ is an embedding distribution for the set B of K-bridges in G
and if B′ ⊆ B, then the restriction of ∆ to B′ is the embedding distribution obtained
from ∆ by removing the embedding distributions ∆(T) for those types T that are not
present among the bridges in B′. If there is no confusion, the restriction of ∆ to B′ is
also denoted by ∆.

Now we introduce a formal definition of an embedding extension problem, ab-
breviated EEP. This is a quadruple Ξ = (G,K,Π,∆) where G is a graph, K is a
subgraph of G, Π is an embedding of K, and ∆ is an embedding distribution for the
K-bridges in G. The EEP is simple if ∆ is simple. An embedding extension (EE) for
Ξ is an embedding extension of Π to G such that every K-bridge is ∆-embedded. An
obstruction for Ξ is a set B of K-bridges or their subgraphs such that (K∪B,K,Π,∆)

EMBEDDING GRAPHS IN AN ARBITRARY SURFACE 11

admits no EE. The size bsizeK(B) of an obstruction B is

bsizeK(B) =
∑
B∈B

bsizeK(B).

Embedding distributions will be used in later discussion in the following way. For
every possible embedding distribution ∆ we will try to extend the given embedding
of K to a ∆-embedding of G. Embedding distributions will be selected one after
another respecting the order �. We start with the embedding distribution of order 0,
and any bridge is an obstruction for this subproblem. In a general step, we already
have obstructions for all embedding distributions ∆′ ≺ ∆. Let B denote their union.
Then we try to extend each ∆-embedding of B to a ∆-embedding of G. Obtaining an
embedding, we stop and return the embedding (and our task is complete). Otherwise,
an obstruction is obtained. Finally, the obstructions for different embeddings of B are
combined together with B into a single obstruction for ∆-compatible embedding exten-
sions. We will refer to this process as the procedure of embedding distribution of types.

Suppose that we fix an embedding distribution ∆0. Using the procedure of embed-
ding distribution of types we determine all (minimal) embedding distributions ∆ � ∆0

for which a ∆-compatible EE exists, and at the same time construct obstructions for
all other ∆-embeddings (∆ � ∆0). Algorithmically, a problem in the procedure of
embedding distribution of types is in bounding the number of ∆-compatible embed-
dings of the union B of obstructions for all simpler embedding distributions. By using
an operation called compression (cf. section 5), we will be able to prove that all ob-
structions have bounded size and hence also a bounded number of embeddings. We
shall use this approach in the proof of Corollary 5.5.

The procedure of embedding distribution of types can be generalized by intro-
ducing the union of EEPs. Suppose that we want to consider embedding extensions
where we fix embeddings of some of the bridges. To formalize, we call an EEP
Ξ′ = (G,K ′,Π′,∆′) a subproblem of Ξ = (G,K,Π,∆) if

(i) K ′ is the union of K and a set B of K-bridges in G.
(ii) Π′ is an EE of Π.
(iii) the Π′-embedding of every B ∈ B, viewed as an extension of Π, is ∆-

compatible.
(iv) every ∆′-compatible embedding of a K ′-bridge in G, viewed as an EE of the

embedding Π, is ∆-compatible.
For i = 1, . . . , N , let Ξi = (G,Ki,Πi,∆i) be subproblems of Ξ = (G,K,Π,∆).

Denote by Bi the set of K-bridges in Ki. We say that Ξ is the union of subproblems
Ξi (1 ≤ i ≤ N) if for every set B ⊇ ∪Ni=1Bi of K-bridges in G, the restriction of Ξ to
K ∪B admits an EE exactly when the restriction to K ∪B of at least one of Ξi does.
In this case, an EE for some Ξi is also an EE for Ξ, while having obstructions Ωi for
Ξi (1 ≤ i ≤ N), their combination

Ω =

N⋃
i=1

(Ωi ∪ Bi)(4.1)

is an obstruction for Ξ.
A subproblem Ξ′ = (G,K,Π,∆′) of Ξ = (G,K,Π,∆) is equivalent to Ξ if for

every set B of K-bridges in G and every ∆-compatible EE of K to K ∪ B, there is
also a ∆′-compatible EE of K to K ∪ B. In such a case, an EE for Ξ′ is also an EE
for Ξ, and every obstruction for Ξ′ is an obstruction for Ξ. Therefore, a solution for
Ξ′ also provides a solution for Ξ.

12 BOJAN MOHAR

We shall use the introduced notions mainly in the following particular case.
Lemma 4.1. Let Ξ = (G,K,Π,∆) be an EEP. Let B be a set of K-bridges in

G, and let Π1, . . . ,ΠN be all ∆-embeddings of B extending Π. For i = 1, . . . , N , let
∆i be the largest embedding distribution for (K ∪ B)-bridges in G such that every
∆i-embedding of a (K ∪ B)-bridge is also a ∆-embedding, and let ∆′i � ∆i be such
an embedding distribution that the EEP Ξi = (G,K ∪ B,Πi,∆

′
i) is equivalent to

(G,K∪B,Πi,∆i). Then Ξ is the union of subproblems Ξ1, . . . , ΞN . In particular, by
solving EEPs Ξ1, . . . , ΞN either we get an EE for Ξ, or (4.1) gives an obstruction.

In our algorithms we shall use Lemma 4.1 only in cases when the number of
bridges in B (and hence also the number N of their ∆-embeddings) is bounded by
some constant.

We shall also need the following strengthening of a particular case of Lemma 4.1.
Let Ξ = (G,K,Π,∆) be an EEP and x, y be basic pieces (or segments of basic pieces)
of K. Denote by Bx,y the set of K-bridges in G of type T = {x, y}, and suppose that
Bx,y 6= ∅. If x is a main vertex, put x1 = x2 = x. If x is an open branch, let x1 and
x2 be vertices of attachment of bridges in Bx,y that are as close as possible to one
and the other end of x, respectively. Define similarly y1 and y2. For i, j ∈ {1, 2}, we
select a bridge Bi,jx,y ∈ Bx,y with the following properties:

(a) Bi,jx,y is attached to xi.

(b) Among all bridges from Bx,y attached to xi, B
i,j
x,y has an attachment on y as

close to yj as possible.
(c) Subject to (a) and (b), we select Bi,jx,y to be an edge if possible.

Let B◦x,y be the set of bridges that contains all bridges Bi,jx,y (i, j ∈ {1, 2}) and
for each δ ∈ ∆(T) such that Bx,y has no δ-embedding, B◦x,y contains a pair of bridges
from Bx,y whose δ-embeddings overlap. If ∆(T) is simple, then one can construct
B◦x,y in linear time by using [23].

Lemma 4.2. Assuming the above notation, suppose that ∆(T) = {δ1, δ2}. Then
Ξ is equivalent to the union of subproblems Ξ′ = (G,K ∪ B◦x,y,Π′,∆′), taken over

all ∆-compatible EEs Π′ of Π to K ∪ B◦x,y, where ∆′ is the restriction of ∆ to the

remaining bridges with the only exception that ∆′(T) contains only those embedding
scheme(s) δi (i ∈ {1, 2}) which are used by the bridges from B◦x,y under the EE Π′.

Proof. It is to be observed only that whenever the embedding of B◦x,y uses just
one embedding scheme—say, δ1—then all bridges from Bx,y may be assumed to be
δ1-embedded since their embedding obstructs possible embeddings of other bridges
no more than the embedding of B◦x,y.

Let Ξ = (G,K,Π,∆) be an EEP. Let B be the set of all K-bridges in G. Suppose
that B = B1 ∪ · · · ∪ BN . Denote by ∆i the restriction of ∆ to Bi, i = 1, . . . , N .
The EEP Ξi = (K ∪ Bi,K,Π,∆i) is a partial problem of Ξ. We say that Ξ is the
intersection of partial problems Ξi, i = 1, . . . , N , if arbitrary EEs for Ξ1, . . . , ΞN
determine an EE Π0 for Ξ. More precisely, if there are EEs Πi for Ξi (i = 1, . . . , N),
then there is an EE Π0 for Ξ such that its restriction to K ∪ Bi coincides with Πi,
i = 1, . . . , N .

Having Π1, . . . ,ΠN , one can determine Π0 in linear time as described below. We
shall assume that bsize(K) and N are bounded by a constant since this will hold
in our applications (although this assumption is not essential). The number of Π-
faces is bounded by 2 bsize(K). Therefore, it suffices to describe the algorithm for
an arbitrary Π-face F of K. Let B′i ⊆ Bi (1 ≤ i ≤ N) be the bridges that are
Πi-embedded in F . Select an orientation of F . For B ∈ B′i, let v0, . . . , vq−1 be
its consecutive attachments on F . If e is a foot of B attached to vj , then we put

EMBEDDING GRAPHS IN AN ARBITRARY SURFACE 13

next(e) = vj+1 where the index is taken modulo q. The function next can easily
be computed in linear time (for all bridges at the same time). Now, consider an
appearance of a vertex v on F , and let {e1, e2} be the angle on F at this appearance
of v. We may also assume that F is oriented so that e1 precedes e2. The local rotation
Π0 at v between e1 and e2 is now easily determined by a merging: we proceed through
the lists Li = (Πi(e1),Π2

i (e1),Π3
i (e1), . . . , e2), i = 1, . . . , N , and insert in the rotation

of Π0 at v the initial edge e from that list Li which has the largest next(e), i.e.,
the distance along F from v to next(e) (in the given direction) is maximal. If there
is more than one candidate for e, there are exactly two of them, and one of them
belongs to a K-bridge with more than two attachments, the other to a bridge with
two attachments. In such a case we select the former one. It can be shown that this
procedure gives the desired embedding Π0. The details are left to the reader.

5. Simple embedding extensions. In this section we will consider only simple
embeddings of bridges and simple EEPs. We may assume the following:

(a) Each bridge has been replaced by its small E-graph (cf. Theorem 3.2).
(b) Every K-bridge in G has at least one simple embedding extending some em-

bedding of K. (Otherwise, its E-graph is a small obstruction and we may
stop.) In particular, if some bridge is attached only to two vertices of K, its
E-graph is just a branch.

(c) There are no local bridges.
(d) Multiple branches between the same pair of vertices of K have been replaced

by a single one.
(e) There are at most 4 bsize(K) strongly attached bridges. (Otherwise we get

an obstruction of bounded size by Lemma 3.1.)
We shall refer to the above assumptions (a)–(e) as property (E) of K.

Let Ξ = (G,K,Π,∆) be a simple EEP where K has property (E). We shall now
consider some special subproblems of Ξ. Suppose that B is a set of K-bridges and
Ξ′ = (G,K∪B,Π′,∆′) is a subproblem of Ξ. Then Ξ′ is 2-restricted if every K-bridge
B in G, B /∈ B, has at most two ∆′-compatible embeddings extending the embedding
Π′.

Suppose that we have a set of vertices W0 ⊆ V (K). Let W1 be the union of
W0 and all main vertices of K. Denote by S the set of connected components of
K −W1. Suppose that we replace the paths in S by new pairwise disjoint paths in
G−W1 joining the same ends as the original paths. Then the new subgraph K ′ of G
is homeomorphic to K and the homeomorphism K → K ′ is the identity on the stars
of vertices in W1. The types of bridges with respect to K and K ′ are in the obvious
correspondence and so are the embeddings of K and K ′ and the embedding schemes
for their bridges. Suppose that G contains exactly the same types of K-bridges and
K ′-bridges. Then the replacement of K by K ′ is called a compression with respect
to W0.

Theorem 5.1 (Juvan and Mohar [20]). There is a function c1 : N ×N → N
such that the following holds. Let Ξ = (G,K,Π,∆) be a 2-restricted subproblem of
an EEP, and let W0 be a set of vertices of K. If there is no ∆-compatible EE, then
there is a compression K 7→ K ′ with respect to W0 such that the modified EEP Ξ′ =
(G,K ′,Π,∆) admits an obstruction B such that bsizeK′(B) ≤ c1(|W0|,bsize(K)).
Moreover, there is an algorithm with time complexity O(c1(|W0|,bsize(K)) |V (G)|)
that either finds an EE for Ξ or performs the compression K 7→ K ′ and returns an
obstruction B for Ξ′ as described above.

14 BOJAN MOHAR

The compression combined with the procedure of embedding distribution of types
will be our main tool that will be used in order to guarantee that the obstructions
constructed by our algorithms are not too large.

There is another important special instance of EEPs. Suppose that K has prop-
erty (E) and that there is a Π-face F that contains two singular branches e and f .
Suppose that F = AeBfCe−Df−, where e− and f− denote the traversal of e and
f , respectively, in the opposite direction and where A,B,C,D are open segments of
F between the appearances of e and f . Let B be a set of K-bridges in G, each of
which has an attachment in the interior of e or f . Suppose also that ∆ is a simple
embedding distribution for bridges in B such that for each of the types, the embed-
ding schemes allow all together at most one appearance of each basic piece distinct
from e, f . Then the EEP Ξ = (K ∪ B,K,Π,∆) and every EE subproblem of Ξ,
Ξ0 = (K ∪ B,K ∪ B0,Π0,∆0) (B0 ⊆ B), is a corner EEP . Every bridge in B is at-
tached to the interior of e or f . Therefore, under any EE for Ξ (or Ξ0), all bridges
from B are embedded in the face F . The following nontrivial result has been proved
by Marinček, Juvan, and Mohar [18].

Theorem 5.2 (Juvan, Marinček, and Mohar [18]). There is a constant c0 such
that every corner EEP is the union of at most c0 2-restricted EE subproblems.

The difficult part of the proof of Theorem 5.2 consists of showing that B contains
a subset B0 of at most 30 bridges such that for every ∆-embedding of B0 in F that
gives rise to a subface F ′ of F , which contains a singular segment of e and a singular
segment of f , the following holds. For one of the singular branches of F ′, say ε,
the bridges Bε ⊆ B\B0 that are attached to ε admit a ∆-embedding (extending the
embedding of B0) such that no ∆-embedding of any of the remaining bridges from B is
obstructed by this embedding. Consequently, the subproblem with such an embedding
of B0 is equivalent to a subproblem where the bridges from Bε have the corresponding
fixed embedding. Under this subproblem, F ′ can be considered as not having two
singular branches. Therefore we say that B0 removes the double {e, f}-singularity .
Having B0 with the above property, one can see that each subproblem with a fixed
∆-embedding of B0 is the union of 2-restricted subproblems. It is shown in [18] that
B0 and additional representatives for further reductions to 2-restricted EEPs can be
obtained in linear time. Applying the generalized procedure of embedding distribution
of types with compression yields the following theorem.

Theorem 5.3. There is a function c2 : N → N such that the following holds.
Let Ξ = (G,K,Π,∆) be a corner EEP with corresponding singular branches e and
f , and let W0 be a set of vertices of K. If there is no ∆-compatible EE, then there
is a compression K 7→ K ′ with respect to W0 such that the modified corner EEP
Ξ′ = (G,K ′,Π,∆) admits an obstruction B of bounded size, bsizeK′(B) ≤ c2(|W0|).
Moreover, there is an algorithm with time complexity O(c2(|W0|) |V (G)|) that either
finds an EE for Ξ or performs a compression K 7→ K ′ (by changing only segments of
e and f) and returns an obstruction B for Ξ′ as described above.

Proof. By Theorem 5.2, Ξ is the union of a bounded number of 2-restricted
subproblems Ξi = (G,K ∪ B0,Πi,∆i), 1 ≤ i ≤ s. Moreover, as shown in [18], B0

and the corresponding subproblems Ξi can be generated in linear time, and by using
compression with respect to W0, also the size of B0 is bounded by certain constant.
Let W1 be the union of W0 and the set of vertices of attachment of all bridges in
B0. For i = 1, . . . , s, we solve the 2-restricted subproblem Ξi by using Theorem 5.1
and perform compression with respect to Wi. Obtaining an EE we stop. Otherwise,
let Bi be the resulting obstruction (of bounded size). It may happen that after the

EMBEDDING GRAPHS IN AN ARBITRARY SURFACE 15

compression K 7→ K ′, some K ′-bridges in G become large. Therefore, we apply the
procedure from [24] in order that K ′ and its bridges satisfy property (E). We then
define Wi+1 as the union of Wi and vertices of attachment of all bridges in Bi. This
choice guarantees that the compression at the ith step does not change any of the
previous obstructions Bj (j < i) and that Bj remains an obstruction for Ξj although
the subgraph K has been changed. One can think of a corner EEP as being an
embedding into the torus of a graph homeomorphic to K4. Since bsize(K4) = 6,
Theorem 5.1 implies that the size of Bi is bounded by c1(|Wi|, 6). Since s is bounded
by the constant c0 from Theorem 5.2, it follows that |Wi| and bsizeK′(Bi) are bounded
for each i.

After s steps either we find an EE or we stop with a compressed graph K ′ and
the corresponding obstruction B′ = B0 ∪ B1 ∪ · · · ∪ Bs for Ξ′ composed of E-graphs
of K ′-bridges in G.

Suppose that we have an EEP Ξ = (G,K,Π,∆), and that B is an obstruction for
all EEPs Ξ′ = (G,K,Π,∆′) for which ∆′ ≺ ∆. Consider all possible ∆-compatible
embedding extensions of Π to K ∪ B. Then Ξ is the union of subproblems, in each
of which B has a fixed embedding. In each of these subproblems, for every type T
of K-bridges and each embedding scheme δ ∈ ∆(T), there is a bridge of type T in
B that is δ-embedded since otherwise, the embedding of B would be ∆′-compatible
for some ∆′ ≺ ∆. Such a bridge is called a representative for δ (with respect to the
chosen subproblem), and we say that B is a complete set of representatives for Ξ.

The next result will enable us to apply Theorems 5.1 and 5.3 in solving general
simple EEPs.

Theorem 5.4. Let K be a subgraph of G with property (E). Let Ξ = (G,K,Π,∆)
be a simple EEP and suppose that no edge of K appears on a Π-facial walk twice in
the same direction. Suppose that B0 is a complete set of representatives for Ξ and
that K ∪ B0 also has property (E). Then there is a number c3 depending only on
bsize(K ∪B0) such that each subproblem Ξ0 = (G,K ∪B0,Π0,∆0) of Ξ is equivalent
to the union of at most c3 EE subproblems, each of which is the intersection of a
2-restricted EEP and at most bsize(K)/2 corner EEPs. The decompositions of Ξ0

to subproblems and of these to corresponding partial problems can be performed in
O(c3|V (G)|) time.

Proof. Let B′0 be the set of K-bridges consisting of B0, all strongly attached
(K ∪B0)-bridges, and all bridges B◦x,y, where x, y are arbitrary basic pieces of K ∪B0,
and bridges B◦x,y are defined before Lemma 4.2. Since K ∪ B0 has property (E), the
size of B′0 is bounded by a function of bsize(K ∪ B0). Lemma 4.2 implies that Ξ0 is
the union of subproblems Ξ′ = (G,K ∪ B′0,Π′,∆′) taken over all ∆0-embeddings of
B′0\B0 extending the embedding Π0 where every 2-restricted type of (K ∪B0)-bridges
in Ξ0 has its representatives for embedding schemes in ∆′. It suffices to see that every
such subproblem Ξ′ is the union of a bounded number of subproblems, each of which
is equivalent to the intersection of a 2-restricted EEP and at most bsize(K)/2 corner
problems.

First, we shall prove that Ξ′ is equivalent to the union of a bounded number of
subproblems of the form Ξ′′ = (G,K∪B′′0 ,Π′′,∆′′), where B′′0 consists of B′0 and some
additional bridges. The number of these additional bridges is bounded (depending on
bsize(K)).

Recall that B′0 contains all strongly attached (K ∪ B0)-bridges in G. Because of
property (E), B′0 contains all (K ∪B0)-bridges that are attached to two main vertices
of K. Let B /∈ B′0 be a K-bridge of type T = {e, v}, where e is an open branch and

16 BOJAN MOHAR

(a) (b) (c)

e
A AA B BB

C CC D DD

ee

e ef

f fe f ff

Fig. 5.1. The possibilities for more than two embedding schemes.

v is a main vertex of K. Let eB be the smallest closed segment of e containing all
vertices of attachment of B to e. Suppose that F is a Π′-face in which B can be
∆′-embedded. Since B is not a strongly attached (K ∪B0)-bridge, eB is contained in
an open branch e′ ⊆ e of K ∪B0. Denote by ε an appearance of e′ in F . Let v1, . . . , vl
be the appearances of v on F . Since B0 is a complete set of representatives, ∆′(T)
contains at most two embedding schemes using ε and one of v1, . . . , vl. Moreover, any
embedding extension of Π′ to a subset of K-bridges in G can be changed so that all
bridges of type T in F that are attached to ε are attached just to one appearance of
v in F . This implies that Ξ′ is equivalent to a subproblem Ξ′′ = (G,K ∪B′0,Π′,∆′′),
where K-bridges that are not attached to two open branches of K have at most two
admissible embeddings.

It remains to be seen how we control embeddings of K-bridges that are attached
to two open branches of K. For most pairs e, f of open branches, K-bridges of type
{e, f} will have at most two ∆′-embeddings. This may not be the case only when
segments of both e and f appear twice on the same Π′-facial walk. Possible cases are
shown in Figure 5.1 with dotted curves indicating the embedding schemes in ∆′ that
contain appearances of e or f . By assumption, each of the branches e and f appear
on the facial walk once in each direction. Therefore we can speak about the left and
right side of e and the top or bottom of f (with respect to the presentation in Figure
5.1). We shall assume that the face F shown in Figure 5.1 is a Π-face, and we shall
have in mind that there is a collection of K-bridges from B′0 that are Π′-embedded in
F but not explicitly shown.

Let us first consider pairs T = {e, f} which correspond to case (a) of Figure 5.1.
In each of such cases we shall either conclude that bridges of type T admit at most
two ∆′′-embeddings (possibly after restricting to an equivalent subproblem), or we
will find a bridge B whose presence in B′′0 would guarantee the same as in the former
possibility. Since there are only a bounded number of pairs T , we can afterward add
all such bridges B to B′′0 and then start again from the beginning. The presence of
the added bridges in B′′0 will now guarantee that the former possibility always occurs.

Let B1 = Bi,je,f (i, j ∈ {1, 2}) be the K-bridge corresponding to the rightmost
attachment ei on e and the topmost attachment fj on f . Note that B1 ∈ B0 ∪B◦x,y ⊆
B′0 for some x ⊆ e, y ⊆ f . Assume first that B1 is Π′-embedded in F so that it is
attached to the right occurrence of e. Then B1 is attached to f at its upper occurrence
since the other possibility is not ∆′′-compatible. Let y be an attachment of B1 to
f . By the choice of B1, if y is not the only attachment of B1 on f , then each of the
bridges of type T admits at most two ∆′′-embeddings extending Π′, and we are done.
If y is the only attachment, then we can have bridges of type T with three distinct
∆′′-embeddings. However, the set B′ of such bridges has only one attachment on f ;

EMBEDDING GRAPHS IN AN ARBITRARY SURFACE 17

it is equal to y. (Another possibility for bridges with three embeddings in F includes
bridges of type T whose only attachment on e is ei. Though, this case is excluded
since the left-right embeddings in F are not ∆′′-compatible.) The two occurrences of
y on F separate F into two segments. If no bridge from B′0 is embedded in F such
that it is attached to the interior of each of these segments, then every EE of Π′ to
a subset of K-bridges can be changed so that no bridge from B′ is attached to the
left occurrence of y (say). In other words, Ξ′′ is equivalent to a subproblem where
each bridge of type T has only two allowed embeddings (and we shall assume that
this subproblem is already Ξ′′). On the other hand, if there is a Π′-embedded bridge
B2 ∈ B′0 in F that separates the two occurrences of y, there is only one possibility for
a bridge of type T to have three possible ∆′′-embeddings. Such a bridge B must be
attached only to two vertices, and so it is just a branch by property (E). In this case
we shall add B in B′′0 . Then we will be able to forget about B having three distinct
embeddings on the expense of a few additional subproblems to be solved.

The second possibility is when B1 is attached to the lower occurrence of e and
the left occurrence of f . Now, the only bridges of type T with more than two possible
∆′′-embeddings have their only vertex on e equal to ei. We conclude in the same way
as we did in the first case, using ei instead of y.

The third possibility is when B1 is embedded so that it is attached to the lower
and the upper occurrence of e and f , respectively. In this case, there are two ways
that bridges could have more than two ∆′′-embeddings extending Π′. If Bi,3−je,f 6= B1,
then one of the two possibilities is excluded. The remaining one is essentially the
same as the second possibility treated above. On the other hand, if Bi,3−je,f = B1, then
we have a situation that is essentially the same as the first case above. In each case
we know how to act.

Let us now consider cases (b) and (c) of Figure 5.1. In case (c), it may happen
that there is an embedding scheme in ∆′′ containing an appearance of a basic piece in
the segment C and the left occurrence of f (or the bottom occurrence of e). In such
a case, bridges of type {e, f} may be assumed to have only two possible embeddings.
This is established in the same way as above (by possibly adding a new bridge to B′′0
or restricting to an equivalent subproblem). We assume from now on that this is not
the case.

We say that B′′0 removes the double {e, f}-singularity if no subface F ′ of F contains
singular branches e′ ⊆ e and f ′ ⊆ f such that there exist (K ∪ B′′0)-bridges attached
to each of e′ and f ′. If the Π′′-embedded bridges B′′0 do not remove the double
{e, f}-singularity, then {e, f} is a corner pair for Ξ′′. Since B0 is a complete set
of representatives, distinct corner pairs are disjoint. Therefore there are at most
bsize(K)/2 corner pairs. If case (b) or (c) applies for T = {e, f} and T is not a corner
pair, then reductions from [18] (by possibly extending B′′0 or restricting ∆′′ to an
equivalent subproblem) can be used to get subproblems where all K-bridges of type
T have at most two ∆′′-embeddings. This will be assumed in the sequel as already
done.

If {e, f} is a corner pair, let Be,f1 be the set of K-bridges in G of type {e, f} that
are not in B′′0 . Let B2 be the set of K-bridges that are not in B′′0 and that are not in

Be,f1 for any corner pair {e, f}. Furthermore, let Be,f2 contain all K-bridges from B2

that have an attachment on e or f and have at most one ∆′′-embedding extending
the embedding Π′′ of K ∪B′′0 . Similarly, let B1 contain those bridges from Be,f1 , taken
over all corner pairs {e, f}, which have at most one ∆′′-embedding extending Π′′.

18 BOJAN MOHAR

B1

B1

B1

B2

B2

e e
x x

e e

f ff f

(a) (b)

o

Fig. 5.2. B1 and B2 overlap.

Consider the EEPs

Ξe,f1 = (K ∪ B′′0 ∪ Be,f1 ∪ Be,f2 ,K ∪ B′′0 ,Π′′,∆e,f
1),(5.1)

where {e, f} is a corner pair and ∆e,f
1 is the restriction of ∆′′ to Be,f1 ∪ Be,f2 . Let

Ξ2 = (K ∪ B′′0 ∪ B1 ∪ B2,K ∪ B′′0 ,Π′′,∆2)(5.2)

be the partial problem of Ξ′′ restricted to B1∪B2. We claim that Ξ′′ is the intersection
of partial problems Ξe,f1 (taken over all corner pairs {e, f}) and Ξ2. Suppose not.
Since different corner pairs do not obstruct each other, there is an EE Π1 for some
Ξe,f1 and an EE Π2 for Ξ2 that cannot be combined into an EE for Ξ′′. This means

that a Π1-embedded bridge B1 ∈ Be,f1 \B1 and a Π2-embedded bridge B2 ∈ B2\Be,f2

overlap. Since B0 is a complete set of representatives, B1 overlaps only with bridges
that are attached to e or to f . Since B2 /∈ B′′0 , we may assume that B2 is of type {f, x}
where x ⊆ A. See Figure 5.2 where the cases (a) and (b) from below are distinguished.

An embedding of B ∈ Be,f1 is an embedding in the corner α if B is attached to the
lower occurrence of e and the left occurrence of f . Similarly, we define embeddings
in corners β, γ, δ as those that are using the lower/right, upper/right, or upper/left
occurrences of e/f , respectively. In the obvious way we also classify embeddings of
bridges of type {f, x} to be in corners α, β, γ, or δ. We may assume that B2 is
Π2-embedded in the corner α.

Since B1 /∈ B′′0 , there is a (K ∪ B0)-bridge B̃1 ∈ B′′0 that is of the same type
{e1, f1}, e1 ⊆ e, f1 ⊆ f , as B1 and of the form Bi,jf1,e1

, where (f1)i refers to the lowest

attachment on f1. Similarly, there is B̃2 ∈ B′′0 of the same type {e2, f2} as B2 and

of the form Bk,lf2,e2
, where (f2)k refers to the topmost attachment on f2. Now we

distinguish two cases.
Case (a). Embeddings of bridges of type {e, f} in corner α are ∆e,f

1 -compatible.
There is a representative B◦1 ∈ B0 that is Π′′-embedded (and hence also Π1-embedded
and Π2-embedded) in the corner α. Therefore B1 is Π1-embedded in α as well. Since
B̃1 ∈ B′′0 , it does not overlap with B2 under the embedding Π2. Since {e, f} is a corner
pair, B̃1 and B◦1 do not remove the double {e, f}-singularity. Hence B̃1 is embedded
in the corner β. Consequently, B̃2 is not Π′′-embedded in β. If B̃2 is embedded in
the corner γ or δ, B◦1 and B̃2 remove the double {e, f}-singularity. Hence, B̃2 is
Π′′-embedded in α. This implies that B1 cannot be embedded in the corner α, a
contradiction.

Case (b). Embeddings in corner α are not ∆e,f
1 -compatible. Let Bβ , Bγ , Bδ be

representatives from B0 that are Π′′-embedded in corners β, γ, δ, respectively. We
shall distinguish four cases according to where B̃2 is Π′′-embedded.

EMBEDDING GRAPHS IN AN ARBITRARY SURFACE 19

Subcase α. B̃2 is in the corner α. This contradicts the fact that B1 is Π1-embedded
in α.

Subcase β. B̃2 being in β, B̃1 is in α or in δ. Since embeddings in α are not ∆e,f
1 -

compatible, B̃1 is in δ. This eliminates the possibility for B2 being Π2-embedded in
the corner α, and we are done.

Subcase γ. B̃2 is in γ. Denote by y the lowest attachment of Bγ to f . When
adding the sets B◦x′,y′ (x′ ⊆ x, y′ ⊆ f) into B′0 ⊆ B′′0 and restricting ∆′′ according to
Lemma 4.2 we have ensured that there are representatives for all embedding schemes
of (K ∪ B0)-bridges of such types {x′, y′}. Since {e, f} is a corner pair for Ξ′′, such
bridges with embeddings in corner α have all their attachments to f strictly below y.
Therefore, they all belong to Be,f2 . In particular, this holds for the bridge B2, and we
have a contradiction.

Subcase δ. B̃2 is in δ. Let y be the lowest attachment of Bδ to f . We conclude
as above.

This proves that Ξ′′ is the intersection of corner problems Ξe,f1 and Ξ2. Let us
observe that the ≤ 2 embeddings of bridges from B2 are determined by their types
as (K ∪B′′0)-bridges. Therefore, Ξ2 can be formulated as a 2-restricted EEP, and the
proof is complete.

The assumption in Theorem 5.4 that no edge appears on a Π-facial walk twice in
the same direction is not essential. We have decided to use it since it eliminates a few
cases in the proof and since this condition will be automatically satisfied at the time
when applying the theorem. Let us also mention that with a slightly modified proof
of Theorem 5.4, one can achieve c3 being bounded only by a function of bsize(K).

Corollary 5.5. Let Ξ = (G,K,Π,∆) be a simple EEP and let W0 be a subset
of vertices of K. Suppose that K has property (E) and that no edge of K appears on
a Π-facial walk twice in the same direction. There is a function c : N ×N →N and
an algorithm with time complexity O(c(|W0|, ord(∆))|V (G)|) that either finds a ∆-
compatible EE or returns a subgraph K ′ of G obtained by a compression with respect
to W0 and a set of at most c(|W0|, ord(∆)) E-graphs of K ′-bridges in G that form an
obstruction for the corresponding EEP Ξ′ = (G,K ′,Π,∆).

Proof. The proof is by induction on ord(∆). If ord(∆) = 0, then any K-bridge
in G is an obstruction for Ξ. Hence, a ∆-embedding exists if and only if K = G.
Suppose now that ord(∆) > 0. There are ord(∆) embedding distributions ∆1,∆2, . . .
that are strictly simpler than ∆ and are maximal with this property. Inductively,
we first solve the subproblem Ξ1 = (G,K,Π,∆1) taking care of the set W0. An EE
makes us happy and we stop. Otherwise, we compress K with respect to W0. Let
K1 be the new subgraph of G and B1 an obstruction of bounded size as guaranteed
by the induction hypothesis. Let W1 be the union of W0 and the set of vertices of
attachment of bridges from B1. Now we replace W0 by W1 and solve the subproblem
Ξ2 = (G,K1,Π,∆2), taking care of the set W1. Either we stop, or we get a new graph
K2 (after a compression with respect to W1) and an obstruction B2 of bounded size.
In the latter case we extend W1 into W2 by adding all attachments of bridges from
B2. Continuing, we either find an EE, which is a ∆-embedding as well, or we stop
after ord(∆) steps with a subgraph K ′ of K that is a compression of K with respect
to W0. At the same time we get an obstruction B0 = B1 ∪ B2 ∪ · · · . Now, since B0

is an obstruction for all simpler EEPs, it is a complete set of representatives for Ξ.
Since Ξ is the union of subproblems, taken over all ∆-embeddings of B0, and since B0

has bounded size, we can consecutively apply Theorem 5.4 combined with Theorems
5.1 and 5.3 and for each of these subproblems perform a compression with respect to

20 BOJAN MOHAR

attachments of E-graphs in all previously obtained obstructions. An upper bound on
c(|W0|, ord(∆)) is easy to obtain by our inductive approach, and we leave the details
to the reader.

6. Embedding graphs in an arbitrary surface. In this section we prove the
final result of this paper that embeddability in any fixed surface S can be decided in
linear time. Our algorithm not only verifies if such an embedding exists. If it does,
such an embedding is constructed. If not, the algorithm identifies a subgraph of G
that cannot be embedded in S but every proper subgraph can. Such a subgraph is
called a minimal forbidden subgraph for embeddability in S. We define the Euler
genus of S as 2− χ(S), where χ(S) is the Euler characteristic of S.

Theorem 6.1. Let S be a fixed closed surface. There is a constant c and a linear
time algorithm that for an arbitrary given graph G either

(a) finds an embedding of G in S, or
(b) identifies a minimal forbidden subgraph K ⊆ G for embeddability in S. The

branch size of K is bounded by c.
Remark. In case (a), our algorithm constructs an embedding in the surface of

the smallest Euler genus (and the same orientability characteristic as S). Such an
embedding determines a (possibly not 2-cell) embedding in S. If one insists on 2-
cell embeddings in S, there is a polynomial time solution using an algorithm for the
maximum genus [12] (which turns out to be trivial for nonorientable surfaces, cf., e.g.,
[26]).

A corollary of Theorem 6.1 is the result of Robertson and Seymour [27] that the
set of minimal forbidden minors (or subgraphs) is finite for each surface. It is worth
mentioning that our proof is constructive while the proof in [27] is only existential.

Corollary 6.2 (Robertson and Seymour [27]). For every surface S there is a
finite list of graphs such that an arbitrary graph G can be embedded in S if and only
if G does not contain a subgraph homeomorphic to one of the graphs in the list.

The rest of the paper is devoted to the proof of Theorem 6.1. Let us just point
out that in case (b) it suffices to find a subgraph K of bounded branch size (in terms
of the Euler genus of S) since such a subgraph is easily changed to a minimal one in
constant time (for example, by considering all subgraphs of K, up to homeomorphism,
and all their embeddings).

Denote by g the Euler genus of S. If S is orientable, our algorithm determines
the smallest h ≤ g such that G can be embedded in the orientable surface of Euler
genus h (or proves that such an h does not exist). If S is nonorientable, then we will
determine the surface (or two surfaces) with the smallest Euler genus h ≤ g in which
G can be embedded (or show that G cannot be embedded in S). If such minimal
Euler genus h is even, there is a nonorientable surface S̃h as well as an orientable
surface S′h with Euler genus h. If G can be embedded in S̃h and h ≤ g, then it can
also be embedded in S. If G has an embedding in S′h, then changing the sign of an

arbitrary edge which is not a cutedge of G gives an embedding in S̃h+1. Hence, any
outcome determines the nonorientable genus of G.

The orientable genus of G is equal to the sum of the genera of its blocks [4] and
a minimum genus embedding is a simple combination of minimal embeddings of the
blocks. A similar reduction works in the nonorientable case [33]. Since the blocks
can be determined in linear time, we may assume from now on that the graph G is
2-connected.

If G is 2-connected and G = G1 ∪G2, where G1 ∩G2 = {x, y} ⊆ V (G) and each
of G1 and G2 contains at least two edges, then we say that {x, y} is a separating pair .

EMBEDDING GRAPHS IN AN ARBITRARY SURFACE 21

In such a case, let the graph G′i be obtained from Gi by adding the edge xy if it is not
already present in Gi (i = 1, 2). The added edge xy is called the virtual edge of G′i. If
G′1 is 3-connected, then G′1 is a pendant 3-connected block of G. If G′2 is planar, then
every embedding of G′1 can be changed into an embedding of G in the same surface
after replacing the edge xy ∈ E(G′1) by G2 using a planar embedding of G′2. In such
a case we call the operation of replacing G by G′1 a 2-reduction. We can consider
the graph G′1 as being a subgraph of G by using a path in G2 from x to y instead
of the new edge xy. Therefore, any obstructions in G′1 give rise to obstructions of
the same branch size in G. By using linear time algorithms of Hopcroft and Tarjan
to determine the 3-connected components of G [15] and for testing planarity [16], we
can perform all possible 2-reductions in linear time. At the same time we locate all
pendant 3-connected blocks in G, and for each such block B we find a Kuratowski
subgraph HB ⊆ B. If possible, we choose HB so that it does not contain the virtual
edge of B.

We shall assume from now on that G is a 2-connected graph in which no 2-
reductions are possible. In particular, G is simple and has no vertices of degree 2.
The following lemmas will be used to bound the number of pendant 3-connected
blocks.

Lemma 6.3. Suppose that K = L∪H, where H is a subgraph of K homeomorphic
to a Kuratowski graph and that L∩H is either empty, one or two vertices, a segment
of a branch of H, or a segment of a branch of L. If g′ is the Euler genus of K and g
is the Euler genus of L, then g′ ≥ g + 1.

Proof. By the additivity of the Euler genus, the result is clear when L ∩ H is
empty or a single vertex. Otherwise, let x and y be the two vertices of of L∩H or the
ends of the segment of a branch (of L or of H) in L ∩H, respectively. Since L ⊆ K,
we have g ≤ g′.

If g′ = g, consider an embedding Π′ of K with Euler genus g. It is an extension
of an embedding Π of L. Since Π is an embedding of L of minimal Euler genus, no Π-
facial walk W contains two vertices that appear on W in the interlaced order. (If not,
one could change Π to an embedding with smaller Euler genus.) This immediately
excludes the case when L ∩H = {x, y}. Similarly, if L ∩H is contained in a branch
of H, then since K5 and K3,3 are 3-connected, there is a single L-bridge in K. It
is attached to x and y only, and it does not have a simple EE. Therefore, x and y
appear interchangeably on a Π-facial walk, a contradiction. The remaining case is
when L ∩ H is a segment σ of a branch e of L. Let L′ = L − intσ. Since K5 and
K3,3 are 3-connected, there are one or two L′-bridges in K. In the latter case, one
of the L′-bridges is just a segment of a branch of H, and by replacing σ with that
branch we can appeal to the previous case treated above. So, we may assume that
there is a single L′-bridge in K; it is equal to H. If the branch e is contained in two
Π-facial walks, the embedding extension of Π|L′ to L′ ∪H = K gives a contradiction
as above. On the other hand, if e is singular, it appears on the facial walk twice in
opposite direction and hence the embedding of K yields an embedding of H in the
cylinder, a contradiction.

Lemma 6.4. Let G be a 2-connected graph. Suppose that G = K ∪B−1 ∪ · · · ∪B−s
(s ≥ 5), where K has a branch e containing vertices x1, y1, x2, y2, . . . , xs, ys (in that
order; xi 6= yi but possibly yi = xi+1) such that K ∩ B−i is equal to the segment
of e from xi to yi (1 ≤ i ≤ s), and if B−i ∩ B−i+1 6= ∅ for some 1 ≤ i < s, then

B−i ∩B−i+1 = {yi} = {xi+1}. Suppose, moreover, that each of the graphs B−i is planar

but B−i + xiyi is nonplanar (1 ≤ i ≤ s). Let G′ = K ∪ B−1 ∪ B−3 ∪ B−5 . If Π′ is a

22 BOJAN MOHAR

minimum genus or a minimum Euler genus embedding of G′ in the surface S, then
Π′ can be changed into an embedding of G in S.

Proof. Since B−i + xiyi is not planar and since G (and hence also K) contains a
path from xi to yi that is edge-disjoint from B−i , B−i contains a Π′-noncontractible
cycle Ci (i = 1, 3, 5). The graphs B−1 , . . . , B

−
s are planar and distinctB−i , B−j intersect

in at most one vertex which belongs to e. This implies that there is an embedding
Π0 of e ∪B−1 ∪ · · · ∪B−s of genus 0. If C1 is 2-sided, then Π′ restricted to K and Π0

are easily combined into an embedding of G in S (similarly, if C3 or C5 is 2-sided).
On the other hand, if C1, C3, C5 are all 1-sided, then the Euler genus of Π′ restricted
to K − e is smaller than the Euler genus of Π′ by at least three since C1, C3, C5 are
disjoint. Now, the same surgery as used in the 2-sided case yields an embedding of G
whose Euler genus increases by at most two. This is a contradiction to minimality of
Π′.

Our next goal is to find a 2-connected subgraph K of G such that no K-bridges in
G are local. First we construct an intermediate graph K0. If G is 3-connected, then we
let K0 be a Kuratowski subgraph of G. Otherwise, for each pendant 3-connected block
B of G, let KB be its subgraph obtained by the following construction. Let HB be a
Kuratowski subgraph of B and let {x, y} be the separating pair of G corresponding to
B. If HB contains the virtual edge xy, then put KB = HB − xy. Otherwise, let KB

be obtained from HB by adding two disjoint paths (possibly of length 0) from {x, y}
to HB . The graphs KB are easily constructed in linear time by standard techniques
mentioned earlier in this paper. Now, we start by taking K0 = KB0 , where B0 is
an arbitrary pendant 3-connected block of G. We shall extend K0 in several steps.
Note that K0 may become 2-connected only after the next step. In each of these
steps we first check if there is a pendant 3-connected block B such that either KB

is edge-disjoint from the current graph, or KB ⊇ HB . If so, we add KB and two
disjoint paths from its separating set to the current graph. If one of such paths passes
through a pendant 3-connected block Q, we make sure that inside Q it uses only edges
of KQ. By Lemma 6.3, the new graph K0 has larger Euler genus than the previous
one, so this case occurs at most g times (or else we get a small forbidden subgraph for
embeddability in S and stop). After O(g) such steps, each of the remaining pendant
3-connected blocks B has the property that B− (B without its virtual edge) is planar
and that K0 ∩KB is a segment of a branch e of K0. We say that B is pendant on e.

Consider the bridges B1, . . . , Bs that are pendant on e, in the order as their
segments K0 ∩B−i appear on e. By Lemma 6.4 we may assume that s ≤ 4 (possibly
after changing the graph G by replacing B2, B4, and B6, . . . , Bs by corresponding
segments of e). Now we add the graphs KBi , i = 1, . . . , s, into K0. Note that in this
case, there is no need to add corresponding linking paths. We repeat the same for all
branches e of K0, and then our construction stops. Since we make all together O(g)
steps, we can afford to spend O(n) time for each step; hence there is no problem in
achieving linear time complexity in the construction of K0.

The graph K0 constructed above is 2-connected and bsize(K0) is bounded. For
each branch e of K0, let local(e,K0) be the union of e and all local K0-bridges on e.
If {x, y} is a separating pair of G, then each component of G−{x, y} intersects some
pendant 3-connected block and hence contains a main vertex of K0. This property of
K0 enables us to use a linear time algorithm from [17] to achieve one of the following:

(a) We get a path e′ in local(e,K0) joining the ends of e such that the graph K ′0 =
K0 − e+ e′ has no local bridges on e′. Note that local(f,K ′0) = local(f,K0)
for all branches f 6= e of K ′0, and that local(e′,K ′0) = e′.

EMBEDDING GRAPHS IN AN ARBITRARY SURFACE 23

(b) We get a subgraph Ke ⊆ local(e,K0) that is homeomorphic to a Kuratowski
graph. In this case we delete e from K0, and then add Ke and paths in
local(e,K0) from the ends of e to Ke so that the resulting graph K ′0 is 2-
connected. Note that this step increases the branch size of the graph at most
by 13.

We repeat the procedure with the new graph K ′0 and all its branches f for which
local(f,K ′0) 6= f . Lemma 6.3 shows that after a bounded number of steps we either
stop with a 2-connected graph K ⊆ G such that there are no local K-bridges in G
(which we assume henceforth), or we find a subgraph of G of bounded branch size
that cannot be embedded in S.

Having constructed K as explained above, the algorithm continues by induction
on the genus g of S (or the Euler genus g of S if S is nonorientable). Recursively,
either we have either found an embedding in a surface of (Euler) genus smaller than
g (in which case we stop), or we got a 2-connected subgraph K of G that cannot
be embedded in any surface with (Euler) genus smaller than g. By the induction
hypothesis (or by the above construction if g = 0), bsize(K) is bounded. Therefore,
K has only a bounded number of embeddings in S (and each of them is 2-cell).
Existence of an embedding of G in S is thus equivalent to the existence of an EE
with respect to a bounded number of EEPs corresponding to particular embeddings
of K in S. By solving all these problems (and successively performing compressions,
if necessary, and taking care that vertices of attachment of bridges in previously
obtained obstructions are not changed during later compressions), we get either an
embedding of G in S or the union of obstructions for the EEPs gives a subgraph K̃
of bounded branch size that cannot be embedded in S. If we will use K̃ in further
processing, we just make sure that there are no local K̃-bridges. This can be done in
the same way as in the construction of the initial subgraph K.

It remains to see how we solve an EEP Ξ = (G,K,Π,∆), where ∆ contains all
embedding schemes that are possible under the given embedding Π of K in the surface
S. Let us first verify that no edge of K appears on a Π-facial walk F traversed twice
in the same direction. This is clear if S is orientable. If S is nonorientable, changing
the signature on such an edge would change Π into an embedding with the same facial
walks except that F splits into two facial walks. This contradicts the fact that Π is
an embedding of K with minimal Euler genus.

We will construct a sequence of graphs K0,K1, . . . such that K0 = K and Ki+1 is
obtained (after a compression) fromKi by adding an obstruction for simple embedding
extensions. Let us describe the construction of Ki+1 (i = 0, 1, 2, . . .) in more details.
First of all, we replace each Ki-bridge in G by its E-graph. This can be done in
linear time by Theorem 3.2. By using Corollary 5.5, we get in linear time the set Bi
of Ki-bridges in a compressed obstruction for simple embedding extensions of Ki to
G, taken over all EEs of Π to Ki. Of course, having found an EE, we stop and by
Theorem 3.2 we also get an EE of K0 to G. Assuming that no EE has been found,
and assuming inductively that the branch size of Ki is bounded, bsizeKi(Bi) is also
bounded (Corollary 5.5). We now define Ki+1 = Ki ∪ Bi and observe that there are
no Ki+1-bridges that are local on a branch of Ki+1 contained in Ki. On the other
hand, bridges that are local on branches from Bi can be eliminated by the algorithm
from [17] similarly to the very beginning of our algorithm. After doing that, we stop
if Ki+1 = G or if Ki+1 has no embeddings in S.

Note that for each i, Bi 6= ∅ (or we stop with an embedding). Therefore, the
above process terminates after a finite number of steps. We claim that the num-

24 BOJAN MOHAR

Bj,1 Bj,0

x1

x1

x2

x2

Fig. 6.1. Bj,1 does not increase q.

ber of steps cannot be too large. Let B1, . . . , Bk be the K0-bridges in Ki (i ≥ 1).
(When constructing Ki, we may have used a compression and thus have changed
Ki−1,Ki−2, . . . ,K0. But a compression is a graph homeomorphism which is identity
on the neighborhoods of main vertices of Ki−1, and hence we can also view K0,K1, . . .
as being subgraphs of the changed graph Ki−1.) Since B0, . . . ,Bi−1 always consist
of E-graphs with respect to K0, . . . ,Ki−1, respectively, each Bj (1 ≤ j ≤ k) can be
written as Bj = Bj,0 ∪Bj,1 ∪ · · · ∪Bj,i−1, where Bj,l = Bj ∩ Bl, l = 0, . . . , i− 1. Let
us consider an embedding Πi of Ki in S as an EE of the embedding Π of K0. Then
an E-graph in some Bj,0 is nonsimply embedded. This implies that Bj is attached to
at least three appearances of basic pieces of K0. Consider the sum

k∑
r=1

(q(Br)− 2),(6.1)

where q(Br) is defined in Lemma 3.1. Now, q(Bj) contributes at least 1 to (6.1). Let
us now consider the induced embedding of Πi to K2 as an extension of the embedding
of K1. Since B1 ⊆ K2 is an obstruction for simple extensions of K1, there is an
E-graph B in some Bj,1 that is not simply embedded. We claim that we can choose
B such that q(Bj,0 ∪ Bj,1) ≥ q(Bj,0 ∪ B) > q(Bj,0) (in all three cases viewed as
K0-bridges). If this is not the case, then B is attached only to Bj,0 and to the same
appearances of basic pieces of K0 as Bj,0. No basic piece in Bj,0\K0 is singular under
the considered embedding of K1. Hence Bj,1 is attached to two appearances of a basic
piece x′ of K1, and if x ⊇ x′ is the basic piece of K0 containing x′, then Bj,0 is attached
to the corresponding appearances of x. Since Bj,0 is an E-graph of a K0-bridge, it
contains feet at extreme attachments x1, x2 of Bj on x. We have shown above that no
edge of K0 appears on a Π-facial walk twice in the same direction. It follows that the
embedding of B ⊆ Bj,1 is as shown in Figure 6.1 and that x′ is an extreme attachment
of Bj , say x′ = x1. However, this embedding can easily be changed so that B is not
attached to the upper occurrence of x1 (say), without affecting possible embeddings
of other bridges from B1. After doing the same with other candidates for B, we get
a contradiction with B1 being an obstruction for simple embeddings.

The same proof can be carried further, for embeddings of K3,K4, etc. We con-
clude that the sum (6.1) is at least i. Now, Lemma 3.1 implies that i ≤ 4 bsize(K0).
The proof is complete.

REFERENCES

[1] D. Archdeacon, A Kuratowski theorem for the projective plane, J. Graph Theory, 5 (1981),
pp. 243–246.

EMBEDDING GRAPHS IN AN ARBITRARY SURFACE 25

[2] D. Archdeacon, The complexity of the graph embedding problem, in Topics in Combinatorics
and Graph Theory, R. Bodendiek and R. Henn, eds., Physica-Verlag, Heidelberg, 1990,
pp. 59–64.

[3] D. Archdeacon and P. Huneke, A Kuratowski theorem for nonorientable surfaces, J. Combin.
Theory Ser. B, 46 (1989), pp. 173–231.

[4] J. Battle, F. Harary, Y. Kodama, and J. W. T. Youngs, Additivity of the genus of a graph,
Bull. Amer. Math. Soc., 68 (1962), pp. 565–568.

[5] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North–Holland, New
York, 1981.

[6] K. S. Booth and G. S. Lueker, Testing for the consecutive ones property, interval graphs,
and graph planarity using PQ-trees, J. Comput. System Sci., 13 (1976), pp. 335–379.

[7] N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa, A linear algorithm for embedding planar
graphs using PQ-trees, J. Comput. System Sci., 30 (1985), pp. 54–76.

[8] S. A. Cook and R. A. Reckhow, Time bounded random access machines, J. Comput. Syst.
Sci., 7 (1976), pp. 354–375.

[9] H. Djidjev and J. H. Reif, An efficient algorithm for the genus problem with explicit construc-
tion of forbidden subgraphs, in 23rd Annual ACM Symposium on Theory of Computing,
New Orleans, LA, May 1991, pp. 337–347.

[10] I. S. Filotti, G. L. Miller, and J. Reif, On determining the genus of a graph in O(vO(g))
steps, in Proc. 11th Annual ACM STOC, Atlanta, GA, 1979, pp. 27–37.

[11] H. de Fraysseix and P. Rosenstiehl, A depth-first search characterization of planarity, Ann.
Discrete Math., 13 (1982), pp. 75–80.

[12] M. L. Furst, J. L. Gross, and L. A. McGeoch, Finding a maximum-genus graph imbedding,
J. Assoc. Comput. Mach., 35 (1988), pp. 523–534.

[13] H. Glover, J. P. Huneke, and C. S. Wang, 103 graphs that are irreducible for the projective
plane, J. Combin. Theory Ser. B, 27 (1979), pp. 332–370.

[14] J. L. Gross and T. W. Tucker, Topological Graph Theory, Wiley-Interscience, New York,
1987.

[15] J. E. Hopcroft and R. E. Tarjan, Dividing a graph into triconnected components, SIAM J.
Comput., 2 (1973), pp. 135–158.

[16] J. E. Hopcroft and R. E. Tarjan, Efficient planarity testing, J. Assoc. Comput. Mach., 21
(1974), pp. 549–568.

[17] M. Juvan, J. Marinček, and B. Mohar, Elimination of local bridges, Math. Slovaca, 47
(1997), pp. 85–92.

[18] M. Juvan, J. Marinček, and B. Mohar, Obstructions for simple embeddings, submitted.
[19] M. Juvan, J. Marinček, and B. Mohar, Embedding a graph into the torus in linear time,

submitted.
[20] M. Juvan and B. Mohar, Extending 2-restricted partial embeddings of graphs, submitted.
[21] A. Karabeg, Classification and detection of obstructions to planarity, Linear and Multilinear

Algebra, 26 (1990), pp. 15–38.
[22] B. Mohar, Projective planarity in linear time, J. Algorithms, 15 (1993), pp. 482–502.
[23] B. Mohar, Obstructions for the disk and the cylinder embedding extension problems, Combin.

Probab. Comput., 3 (1994), pp. 375–406.
[24] B. Mohar, Universal obstructions for embedding extension problems, submitted.
[25] B. Mohar and C. Thomassen, Graphs on Surfaces, The Johns Hopkins University Press,

Baltimore, MD, to appear.
[26] G. Ringel, The combinatorial map color theorem, J. Graph Theory, 1 (1977), pp. 141–155.
[27] N. Robertson and P. D. Seymour, Graph minors. VIII. A Kuratowski theorem for general

surfaces, J. Combin. Theory Ser. B, 48 (1990), pp. 255–288.
[28] N. Robertson and P. D. Seymour, Graph minors. XIII. The disjoint paths problem, J. Com-

bin. Theory Ser. B, 63 (1995), pp. 65–110.
[29] N. Robertson and P. D. Seymour, Graph minors. XXI. Graphs with unique linkages, J.

Combin. Theory Ser. B, submitted.
[30] N. Robertson and P. D. Seymour, Graph minors. XXII. Irrelevant vertices in linkage prob-

lems, J. Combin. Theory Ser. B, submitted.
[31] N. Robertson and P. D. Seymour, An outline of a disjoint paths algorithm, in Paths, Flows,

and VLSI-Layout, B. Korte, L. Lovász, H. J. Prömel, and A. Schrijver, eds., Springer-
Verlag, Berlin, 1990, pp. 267–292.

[32] P. D. Seymour, A bound on the excluded minors for a surface, submitted.
[33] S. Stahl and L. W. Beineke, Blocks and the nonorientable genus of graphs, J. Graph Theory,

1 (1977), pp. 75–78.

26 BOJAN MOHAR

[34] C. Thomassen, The graph genus problem is NP-complete, J. Algorithms, 10 (1989), pp. 568–
576.

[35] C. Thomassen, Triangulating a surface with a prescribed graph, J. Combin. Theory Ser. B, 57
(1993), pp. 196–206.

[36] S. G. Williamson, Embedding graphs in the plane — algorithmic aspects, Ann. Discrete Math.,
6 (1980), pp. 349–384.

[37] S. G. Williamson, Depth-first search and Kuratowski subgraphs, J. Assoc. Comput. Mach., 31
(1984), pp. 681–693.

NONSYSTEMATIC PERFECT CODES∗

KEVIN T. PHELPS† AND MIKE LEVAN‡

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 1, pp. 27–34

Abstract. We investigate nonsystematic perfect binary codes of length n, establishing that
nonsystematic perfect codes of length n exist for all admissible n ≥ 15. This improves on the result
of Avgustinovich and Solov’eva [Proc. 5th Internat. Workshop Algebraic and Combinatorial Coding
Theory, Cosopol, Bulgaria, 1996, pp. 15–19] who have established the existence of such codes for
n ≥ 255. We also provide the results of a computer investigation of nonsystematic perfect codes of
length 15.

Key words. perfect codes

AMS subject classification. 94B25

PII. S0895480196312206

1. Introduction. A perfect single error correcting binary code has length n =
2r − 1, minimum distance 3, and 2n−r code words. For brevity, we will refer to such
a code as simply, a perfect code (of length n). The linear perfect code, known as the
Hamming code, is unique, but there are innumerable nonlinear perfect codes when
n ≥ 15. A perfect code of length n = 2r − 1 is said to be systematic if there are
n− r coordinates such that no two code words are identical when restricted to these
coordinates; otherwise it is said to be nonsystematic. Obviously, the Hamming code
is systematic, but a long-standing open problem was whether there exist nonlinear
perfect codes that are nonsystematic. Solutions to this problem have implications to
a number of other areas including resilient functions (cf. [5]).

Recently, Avgustinovich and Solov’eva [1], [2] established the existence of nonsys-
tematic perfect codes of length n = 2r − 1, for all r ≥ 8. Since perfect codes of length
n = 3 and 7 are unique, this leaves the question open for perfect codes of length
n = 15, 31, 63, 127. In working on a different problem as part of his dissertation [7],
LeVan had generated many nonequivalent perfect codes of length 15. Subsequent
examination of these codes revealed that a number of them were nonsystematic, thus
settling the case n = 15. In this paper, we present arguments which improve on the
result of Avgustinovich and Solov’eva [1], [2] establishing the existence of nonsystem-
atic perfect codes of length n = 2r − 1, for all r ≥ 6, in particular for n = 63 and
127. The proofs, besides yielding better results, are also an improvement in that they
are in some sense “simpler.” We use a combination of argument and computation
to establish the existence of a nonsystematic perfect code of length 31. Thus the
question of the existence of nonsystematic perfect codes is completely settled.

Finally, we also investigate certain other related properties on nonsystematic per-
fect codes of length n = 15.

2. Preliminary results. There is a natural and well-known correspondence
between binary vectors of length n and subsets of the set {1, 2, . . . , n}. Formally,

∗Received by the editors November 18, 1996; accepted for publication July 23, 1997; published
electronically January 29, 1999.

http://www.siam.org/journals/sidma/12-1/31220.html
†120 Math Annex, Department of Discrete and Statistical Sciences, Auburn University, Auburn,

AL 36849-5307 (phelpkt@mail.auburn.edu).
‡Brown Science Center 117, Department of Mathematics, Transylvania University, Lexington, KY

40508-1797 (mlevan@mail.transy.edu).

27

28 KEVIN PHELPS AND MIKE LEVAN

the support of a code word x, denoted by supp(x), is just the set of coordinates of x
which is equal to 1 (i.e., supp(x) ⊆ {1, 2, . . . , n}). For any binary vectors, x and y, the
distance between x and y, denoted by d(x, y), is the number of coordinates in which
they disagree. The set of coordinates in which they disagree is just supp(x+ y). We
emphasize that in this paper, we are always working in the vector space over GF (2).

In a perfect code C of length n, we are interested in the positions in which two
code words disagree, especially when they are distance 3 apart. Formally, we define
the set of triples ST (C) of a perfect code C as

ST (C) = {supp(x+ y)|x, y ∈ C and d(x, y) = 3}.
In other words, a triple {i, j, k} is in ST (C) iff there exists a pair of code words x, y
in C such that {i, j, k} = supp(x + y). For the Hamming code of length n = 2r − 1,
(denoted by Hr), the set of triples ST (Hr) is just the words of weight 3 in the code
(which form a Steiner triple system on 2r−1 points). In what follows, it is important
to remember that a Steiner triple system is a set of three subsets or triples of an n-set
such that every pair of points is covered exactly once.

Recall that a 3-uniform hypergraph is just a pair (V,E) where V is an n-set
(called vertices) and E is a set of three element subsets of V (called edges). The set
of triples ST (C) of a perfect code C can be thought of as a 3-uniform hypergraph
with V = {1, 2, . . . , n}. Recall further that an r-subset of vertices of a 3-uniform
hypergraph is said to be stable or independent if it does not contain any edge of the
hypergraph. The stability number of a hypergraph is just the size of the largest stable
set. Clearly, if a perfect code C is to be systematic on n − r coordinates, then the
complementary r coordinates must be a stable set in ST (C); otherwise, there are two
code words which disagree only in three of these r coordinates and agree everywhere
else.

The following is an immediate observation.
Lemma 1. For a perfect code of length n = 2r− 1, if the set of triples ST (C) has

stability number less than r, then the code is nonsystematic.
Turán’s number T (n, r, 3) is just the minimum number of edges in a 3-uniform

hypergraph on n points with stability number less than r (see de Caen [3]). Computing
this number is a difficult problem. Avgustinovich and Solov’eva [1], [2] avoided this
difficulty by constructing perfect codes C of length n = 2r − 1, r ≥ 8 such that the
set of triples ST (C) is the complete 3-uniform hypergraph (i.e., ST (C) contains all
three subsets of {1, 2, . . . , n}). Obviously, such hypergraphs have stability number 2
and thus these codes are nonsystematic. In our investigation of nonsystematic perfect
codes of length 15, we examine a similar problem to Turan’s.

The most intuitive and basic approach to constructing (nonlinear) perfect codes
involves starting with the Hamming code, Hr, and switching out one specially selected
set of code words S ⊂ Hr for another set of words S′. The resulting code,

C = (Hr \ S) ∪ S′,
would still be perfect as long as |S| = |S′| and the minimum distance between code
words in C is still 3. The difficult part is proving that one can select S and S′ so that
they will have the necessary properties. This general approach has a long history but
we will be concerned with only more recent and relevant developments.

For the purposes of this paper, the set S can be formed by selecting cosets of
linear subcodes of the Hamming code Hr. These linear subcodes are generated by
all the words of weight 3 in Hr having a 1 in the same (ith) coordinate. To make

NONSYSTEMATIC PERFECT CODES 29

things simpler, we require the chosen cosets to be mutually disjoint. There are alter-
nate definitions of this subcode which provide different insights into its structure and
properties and these insights were developed in a series of papers (see [8], [4], [6], [1],
[2]).

Formally, we define a linear subcode Ti of the Hamming code Hr, for each coor-
dinate i, as the subcode spanned by the words of weight 3 in Hr having a 1 in the
(i th) coordinate. The dimension of Ti is clearly (n− 1)/2.

We then select a subset of coordinates, I ⊆ {1, . . . , n}, and corresponding coset
representatives xi ∈ Hr, letting

S =
⋃
i∈I

Ti + xi,

where

Ti + xi
⋂
Tj + xj = ∅, for i 6= j.

Then we have

S′ =
⋃
i∈I

Ti + xi + ei,

where ei has a 1 only in the i th coordinate and zeros elsewhere. The resulting code
will be perfect (see [4], [8], or [6]).

Let us consider how this switching would effect the set of triples ST (C) of the
perfect code C (see Fig. 2.1).

C + ei

Ti + xi + ei

C

Ti + xi

x

y

x′ = x+ ei
i

a, b, c
i, a, b, c

Fig. 2.1.

Consider a code word x. Let x ∈ Ti+xi and x′ = x+ei, then x′ ∈ Ti+xi+ei. For
every y ∈ C such that d(x, y) = 4 and supp(x+ y) = {i, a, b, c}, we have d(x′, y) = 3
and supp(x′ + y) = {a, b, c}. Since Ti is generated by the words of weight 3 in Hr

30 KEVIN PHELPS AND MIKE LEVAN

containing i, it is easy to see that y 6∈ Ti+xi and thus switching Ti+xi and Ti+xi+ei
will result in the triples {a, b, c} being added to the set of triples. Of course, some
code words which had been distance 3 from some x ∈ Ti + xi will now be distance
4 from x′. Avgustinovich and Solov’eva [1], [2] argue that if the cosets are chosen so
that the distance between them is at least 5, then no triple from the set of triples of
the code will be lost by any switch. Furthermore, they argue that choosing n such
cosets, i.e., |I| = n, will ensure that the set of triples of the resulting code will be the
complete uniform 3-hypergraph on n vertices. This last observation follows from the
fact that because the code is perfect, every triple {a, b, c} is either the support of a
code word (and thus in ST (C)) or is distance 1 from a code word x of weight 4 with
supp(x) = {i, a, b, c} for some i and thus will be in ST (C) after all the switches.

3. Nonsystematic codes of length n. In this section we present an argu-
ment which is a little stronger and somewhat simpler than that of Avgustinovich and
Solov’eva [1], [2]. This enables us to establish that nonsystematic perfect codes exist
for all n = 2r − 1, r ≥ 6. The key argument can be viewed as an extension of the
proof of Lemma 5 of Phelps and LeVan [6].

Again, let Ti denote the linear subcode of the Hamming code Hr of length n =
2r − 1 generated by the words of weight 3 in Hr having a 1 in the ith component.
Since the dimension of Ti is (n− 1)/2, we have that the number of cosets of Ti in Hr

is 22r−1−r. The following results from [6] are crucial to our argument (and that of [1],
[2]).

Lemma 2 (see [6, Theorem 2]). For any i, j, i 6= j, the intersection of linear
subcodes Ti and Tj has dimension 2r−2, or equivalently,

|Ti ∩ Tj | = 22r−2

.

Corollary 1 (see [6]). Each coset Ti+xi intersects with at most 22r−2−1 cosets
of Tj.

Proof. Given cosets Ti + xi and Tj + xj , if z is in the intersection of these cosets,
then

Ti + xi = Ti + z and Tj + xj = Tj + z.

But

(Ti + z) ∩ (Tj + z) = (Ti ∩ Tj) + z.

Therefore, any coset of Tj is either disjoint from Ti+xi or intersects it in 22r−2

words.

Since the cosets of Tj are disjoint and Ti + xi has 22r−1−1 code words, the result
follows.

Lemma 3. In the Hamming code Hr of length n = 2r − 1, r ≥ 6 there exist n
mutually disjoint cosets Ti + xi, i = 1, 2, . . . , n, one for each coordinate position.

Proof. The argument is the same as in Lemma 5 of [6]. Since at most 22r−2−1 of

the 22r−1−r cosets of Tj intersect a given coset Ti + xi, we can find m disjoint cosets
(and thus make m switches) as long as

m22r−2−1 < 22r−1−r

or

log2m < 2r−2 − r + 1.

NONSYSTEMATIC PERFECT CODES 31

This inequality holds for m = n when r ≥ 6.
Avgustinovich and Solov’eva [1] argue that one can find a set of disjoint cosets

Ti+xi, one for each coordinate, which, in addition, are at least distance 5 apart from
one another. This requirement is not necessary as the following result demonstrates.

Theorem 1. Given the Hamming code Hr of length n = 2r − 1, r ≥ 5, if one
can find n disjoint cosets Ti+xi, one for each coordinate i, i = 1, 2, . . . , n, then there
exists a nonsystematic perfect code of length n.

Proof. Given the Hamming code Hr and the n disjoint cosets Ti+xi one removes
these cosets and replaces them with the cosets Ti + xi + ei. Let C denote the perfect
code which results from this switch. We claim that the set of triples of C, ST (C),
will contain every triple and thus C will be nonsystematic if r ≥ 5.

Since the Hamming code is perfect, every binary word of weight 3, (i.e., every
triple {a, b, c}), is either a code word (and thus in the set of triples of the Hamming
code) or distance 1 from a code word z, of weight 4. Let supp(z) = {i, a, b, c} and
assume that Ti+xi+ ei replaced the coset Ti+xi in Hr. As we noted above, for each
x′ = x+ei of C, x′ ∈ Ti+xi+ei there is a unique y = x+z, y ∈ Ti+xi+z such that
supp(x′ + y) = {a, b, c}. This triple, {a, b, c}, will remain in the set of triples of C as
long as there is at least one such pair of code words x′, y. Some of these code words y
may be in other chosen cosets Tj + xj and thus would not be in C. But this will not
matter as long as some of these code words y ∈ Ti + xi + z are left. Again, assuming
n = 2r − 1 and one wants to pick m ≤ n disjoint cosets to switch out, then using the
fact that any switch replaces at most 22r−2

code words of the coset Ti +xi + z , there
must be some code words remaining in C as long as

m22r−2

< 22r−1−1.

Simplifying this gives

log2m < 2r−2 − 1.

This inequality holds for m = n = 2r − 1 and r ≥ 5. Thus in this case, we only need
the n chosen cosets, one for each coordinate position, to be disjoint for the resulting
code C to be nonsystematic!

Since we can always find such a set of disjoint cosets when r ≥ 6 by the previous
lemma, we have the following corollary.

Corollary 2. There exist nonsystematic perfect codes of length n = 2r − 1 for
all r ≥ 6.

We now turn our attention to the question of nonsystematic perfect codes of
lengths 15 and 31 as well as some related questions.

4. Nonsystematic codes of length 15, 31. In our computer investigation
of nonsystematic perfect codes of length 15, we examined the previously generated
perfect codes of length 15 and found a number which were nonsystematic. However,
none of these codes had the complete 3-uniform hypergraph as its set of triples, ST (C).

We developed two approaches to the problem. The first approach investigated
the minimum number of switches necessary to convert the Hamming code H4 into
a nonsystematic code. We considered all codes formed from the Hamming code by
seven or fewer switches. Phelps and LeVan [6] showed that the first four independent
switches that can be made will yield an equivalent code. From here, there are 17
choices one could make for the fifth switch, which leads to over 250 choices one could
make for the sixth switch, which also leads to over 5000 choices one could make for

32 KEVIN PHELPS AND MIKE LEVAN

the seventh switch. None of the codes resulting from six switches or less yielded
a nonsystematic code. However, this approach found 144 different nonsystematic
perfect codes of length 15, constructed with m = 7 switches. It was also determined
that for all of the 144 different nonsystematic codes constructed, |ST (C)| = 427. So
ST (C) does not form the complete 3-uniform hypergraph. These codes also appear
to be equivalent as the invariants we usually compute for perfect codes could not
distinguish between them.

The second approach considered was to randomly make a switch from the code C
to form a new code C ′ iff |ST (C)| < |ST (C ′)|. This approach showed that it is possible
to construct a code, C, which does indeed have |ST (C)| = 455, and thus ST (C) will
form the complete 3-uniform hypergraph, but it takes at least eight switches.

Here is a listing of the generator matrix for H4, as well as the switches and coset
representatives one could use in order to construct a nonsystematic code. We have
also listed the size of ST (C) after every switch.

H4 =

{
010100000000101, 000000110000110, 111100000000000, 000000000000111,
000110001000111, 000001010000101, 000000000011110, 000000001111000,
000011110000000, 001100000000110, 000000000101101

}

Switch Coset representative xi |ST (C)| Systematic

0 − − 35 yes
1 T12 + e12 + x1 110010100000000 63 yes
2 T6 + e6 + x2 000010000000101 107 yes
3 T3 + e3 + x3 110111000101101 167 yes
4 T2 + e2 + x4 001001010101111 243 yes
5 T13 + e13 + x5 001000101101100 311 yes
6 T7 + e7 + x6 101110100010001 375 yes
7 T8 + e8 + x7 000001011000101 427 no
8 T9 + e9 + x8 001100000111000 455 no

This settles the case for n = 15. We now turn our attention to the case when
n = 31.

To construct a nonsystematic perfect code of length 31, we just have to find 31
disjoint cosets of Ti to switch out. The arguments of the previous section only prove
that one can find 15 disjoint cosets Ti + xi, but by a computer search we found all
the switches that are needed to construct the desired code. We generated 31 disjoint
cosets, Ti+xi, one for each coordinate i = 0, . . . , 30. Making these switches would give
us a code whose set of triples, ST (C), was again the complete uniform 3-hypergraph
on 31 vertices, which also says the code is nonsystematic.

We start with a cyclic representation of the Hamming code of length 31. The
supports for the words of weight 3 are all cyclic shifts of the following:

{0, 1, 12}, {0, 2, 24}, {0, 3, 8}, {0, 4, 17}, {0, 6, 16}.
The coset T0 is generated by the words of weight 3 containing 0. The supports for
these words are the following triples:

{0, 1, 12} , {0, 2, 24} , {0, 3, 8} , {0, 4, 17} , {0, 6, 16} ,
{0, 7, 9} , {0, 10, 25} , {0, 11, 30} , {0, 13, 27} , {0, 14, 18} ,
{0, 15, 21} , {0, 19, 20} , {0, 22, 29} , {0, 23, 26} , {0, 5, 28} .

NONSYSTEMATIC PERFECT CODES 33

The generators for the coset Ti then are just the ith cyclic shift of these words.
The coset representatives xi for each i are the following:

i xi i xi
0 0000000000001000000000000010001 16 0010000000010111000000000000000
1 0000000001000000000000000000110 17 0001000000001101100000000100000
2 0100000000000010000000000000100 18 0000100000000101110000000000000
3 1000000000010000000000000000001 19 0000010000000011011000000001000
4 0001000000000000100000000000001 20 0100000000000001000100000000000
5 0110000000000100000000000000000 21 0000000000000000011000000000010
6 0111010000000010001000000000000 22 0001000000000000010001000000000
7 0001100000000001000000000000000 23 0000100001000000000011000000000
8 0001110100000000100010000000000 24 0000010000000000000100010000000
9 0000011000000000010000000000000 25 0000000000010000000010111000000

10 0000011101000000001000100000000 26 0001000100001000000000101000000
11 0000000110000000000100000000000 27 0000000000000100000000101110000
12 0000000111010000000010001000000 28 0000000001000010000000000110000
13 0000000001100000000001000000000 29 0000001000100001000000000101000
14 0000000001110100000000100010000 30 0000000100010000000000000111010.
15 0100000000110110000000010000000

We claim that these cosets are mutually disjoint and thus by Theorem 1, replacing
each coset, Ti+xi by Ti+xi+ei, will produce a nonsystematic perfect code of length
31.

5. Conclusions and questions. In summary, we have established the following.
Theorem 2. There exists a nonsystematic perfect binary single error correcting

code of length n = 2r − 1 iff r ≥ 4.
From the previous arguments and computations we can extend another result of

Avgustinovich and Solov’eva [1], [2].
Theorem 3. There exists a nonlinear perfect binary single error correcting code

of length n = 2r−1, whose set of triples is the complete 3-uniform hypergraph of order
n iff r ≥ 4.

There are several additional questions regarding nonsystematic perfect codes
which are of interest. The one which intrigues us is what is the fewest number of
switches needed to change the Hamming code into a nonsystematic perfect code? For
instance, we believe that one can form a nonsystematic code of length 31 by choosing
far fewer switches than the 31 switches we used. Related to this is Turan’s problem
and how small can the set of triples, ST (C), of the nonsystematic perfect code C be?

Finally, the fact the ST (C) has stability number less than r (for n = 2r − 1) is
sufficient for a code to be nonsystematic. Is it necessary? This seems unlikely.

REFERENCES

[1] S. V. Avgustinovich and F. I. Solov’eva, Existence of nonsystematic perfect binary codes,
in Proc. 5th Internat. Workshop Algebraic and Combinatorial Coding Theory, Cosopol,
Bulgaria, 1996, pp. 15–19.

[2] S. V. Avgustinovich and F. I. Solov’eva, On nonsystematic perfect binary codes, Problemy
Peredachi Informatsii, 32 (1996), pp. 47–50 (in Russian).

[3] D. de Caen, The current status of Turán’s problem on hypergraphs, in Extremal Problems for
Finite Sets, Visegrad, Hungary, 1991, Bolyai Soc. Math. Stud. 3, János Bolyai Math. Soc.,
Budapest, 1994, pp. 187–197.

[4] T. Etzion and A. Vardy, Perfect codes: Constructions, properties and enumeration, IEEE
Trans. Inform. Theory, 40 (1994), pp. 754–763.

34 KEVIN PHELPS AND MIKE LEVAN

[5] T. Etzion and A. Vardy, On perfect codes and tilings: Problems and solutions, SIAM J.
Discrete Math., 11 (1998), pp. 205–223.

[6] K. T. Phelps and M. LeVan, Kernals of nonlinear Hamming codes, Des. Codes Cryptogr., 6
(1995), pp. 247–257.

[7] J. M. LeVan, Designs and Codes, Dissertation, Auburn University, Auburn, AL, June 1995.
[8] F. I. Solov’eva, Factorization of code-forming DNFs, Metody Diskret. Analiz., 47 (1988), pp.

66–88 (in Russian).

WELL-ORDERED STEINER TRIPLE SYSTEMS AND 1-PERFECT
PARTITIONS OF THE N-CUBE∗

JOSEP RIFÀ†

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 1, pp. 35–47

Abstract. Binary 1-perfect codes which give rise to partitions of the n-cube are presented. The
1-perfect partitions are characterized as homomorphic images of simple algebraic structures on Fn

and are constructed starting from a particular case of a structure defined in Fn.
A special property (so-called well-ordering) of STS(n) is given in such a way that for this kind

of STS it is possible to define the algebraic structure we need in Fn and to construct 1-perfect
partitions of the n-cube.

These 1-perfect partitions give us a kind of 1-perfect code for which it is easy to do the coding
and decoding. Furthermore, there exists a syndrome which allows us to perform error correction. We
present systematic codes of length n = 15 and we give examples of how to do the coding, decoding,
and error correction.

Key words. 1-perfect binary codes, 1-perfect partitions, Steiner triple systems, Sloops, distance-
compatible action

AMS subject classifications. 94B25, 05B30, 68R05

PII. S0895480197330722

1. Introduction. Let F be the binary finite field GF (2) and consider the n-cube
F n.

A binary code C of length n is a subset of F n. If this subset is a linear subspace of
F n, then C will be a linear code. In any case we will call the vectors in C codewords.

The concept of Hamming distance between two vectors v, w ∈ F n is defined as
the number of coordinates in which they differ. A binary code is a 1-perfect code if
all the vectors in F n are either in C or at distance one from exactly one codeword of
C.

A binary 1-perfect code has length n = 2m − 1, and the linear 1-perfect codes
are unique up to isomorphism (see [4]). The characterization of binary nonlinear
1-perfect codes is not complete. Nonlinear 1-perfect codes were first constructed
by Vasil’ev, and other constructions have been presented subsequently by Mollard,
Phelps, Solov’eva, Bauer, and more recently by Etzion and Vardy (the reader can see
a review of all these constructions in [2]).

Two 1-perfect codes are isomorphic if there exists a permutation of the coordinates
such that the codewords in the first code are converted to the codewords in the second
code.

Two 1-perfect codes are equivalent if there exists a translation such that the
codewords in the first code are converted to the codewords in the second code or
isomorphic to them (see [7]).

In this paper a construction of 1-perfect partitions of F n is proposed, that is,
partitions of the n-cube in 1-perfect codes. The construction is based on Theo-
rems 3.1 and 3.2, which we present in section 3. In particular, within the various
possibilities offered by these theorems, we have opted to use the Steiner loop (Sloop)
structure associated with the well-ordered Steiner triple system (STS).

∗Received by the editors December 1, 1997; accepted for publication March 10, 1998; published
electronically January 29, 1999. This research was partially supported by Spanish grant TEL97-0663.

http://www.siam.org/journals/sidma/12-1/33072.html
†Department of Computer Sciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain

(jrifa@ccd.uab.es).

35

36 JOSEP RIFÀ

In section 2, we present several general characteristics of quasi groups, Sloops,
STSs, and 1-perfect codes.

In section 3 (the main section), we look at Theorems 3.1 and 3.2, which allow the
algebraic construction of 1-perfect partitions and, therefore, of 1-perfect codes. Using
these theorems and the Sloop structure given by possible STSs, we see in Theorem 3.5
that, for a specific type of STS, we can ensure the construction of 1-perfect partitions
of the n-cube.

In section 4, we analyze the well-ordered STSs, and in section 5 we see an example
of how to handle coding, decoding, and error correction using the 1-perfect codes
constructed.

Finally, we present our conclusions in section 6, along with possibilities for future
research on this topic.

2. Sloops, STSs, and 1-perfect codes.
Definition 2.1. Let A,F be two sets. We say that A acts on F by means of · if

there exists a map

F ×A −→ F,
(f, a) −→ f · a.

Definition 2.2. Assume A acts on F by means of · and also on G by means of
∗. An A-homomorphism h : F −→ G is a map compatible with the action of A on F
and on G, that is, a map such that for all a ∈ A, f ∈ F it holds that f ·a = h(f) ∗a.

We are interested in algebraic structures defined on the n-cube F n, and also in
the Hamming distance defined between vectors in F n.

Let An be the set {e0, e1, . . . , en}, where e0 ∈ Fn is the zero vector and ei
(i = 1, 2, . . . , n) are the basis vectors in F n having a one in the ith coordinate and
zeroes elsewhere.

Definition 2.3. A distance-compatible (Hamming distance) action of the set An

on F n is a map

F n ×An → F n,
(v, ei) → v · ei,

such that
• for all v ∈ F n there is a permutation πv of n coordinates such that v · ei =
v + eπv(i);
• for all ei ∈ An the induced map v → v · ei is one-to-one.

For instance, the translation (v, ei) → v + ei is a distance-compatible action of
An on the n-cube.

The following proposition shows us three properties of distance-compatible actions
of An on F n that we will give without proof, because they proceed directly from the
definition.

Proposition 2.4.

1. For all v ∈ F n we have v · ei = v · ej if and only if i = j.
2. For all ei, d(v · ei, v) = 1.
3. The set {a · ei|i = 1..n} is the set of all the vectors in F n at distance one

from a given a ∈ F n.
One of the simplest algebraic structures is that of a quasi group, which we will

use in this paper. Readers interested in quasi groups and related structures can find
more information in [6].

WELL-ORDERED STS AND 1-PERFECT PARTITIONS 37

Definition 2.5. Let A be a finite set. An algebraic structure of a quasi group
consists of A and a binary operation on A defined by the function

∗ : A×A −→ A

such that x ∗ y = x ∗ z and y ∗ x = z ∗ x only if y = z for all x, y, z ∈ A.
Definition 2.6. A quasi group (A, ∗) is called a Sloop if
• there exists 0 ∈ A such that 0 ∗ a = a ∗ 0 = a for all a ∈ A;
• the operation is totally symmetric, that is, any relation a ∗ b = c implies any

other relation obtained by permuting a, b, and c.
Definition 2.7. A Steiner triple system STS(n) is a pair (A,B), where A is

a finite set of n elements and B is a collection of 3-subsets of A, which we will call
blocks, such that every two different elements x, y ∈ A are contained in exactly one
block of B.

• It is easy to see that starting from a Sloop A, we can define an STS on the set
A∗ = A−{0} by taking a set of blocks B = {(x, y, x∗ y) | ∀x, y ∈ A∗, x 6= y}.
• Conversely, starting from an STS(n) = (A∗, B), we can define a Sloop on the

set A = A∗ ∪ {0} = {0, 1, 2, . . . , n} by

A×A −→ A,
(a, b) −→ a ∗ b,

if a 6= b then a ∗ b = c, where (a, b, c) ∈ B,
if a = b then a ∗ b = 0,
if a = 0 then a ∗ b = b,
if b = 0 then a ∗ b = a

• Two STSs (A,B) and (A′, B′) are isomorphic if A = A′ and there exists a
permutation of the elements in A such that the triples in B are converted to
the triples in B′.
If ‖A∗‖ = 15, there are 80 nonisomorphic triples (see [9]).
If ‖A∗‖ = 31, there are ≈ 10200 nonisomorphic triples (see [5]).

Starting from a 1-perfect binary code C ∈ F n (not necessarily linear but such
that 0 ∈ C), we can construct an STS by taking the supports of the codewords of
weight three. Take A∗ = {1, 2, . . . , n} as the set of coordinates, and the set of blocks
as B = {(i, j, k)}, where (i, j, k) are the support of any codeword in C of weight three.
We denote this set by STS0.

Let C be a 1-perfect binary code. Let v ∈ C be a codeword in C. The set of all
w ∈ C at distance three from v is an STSv taking as the set of blocks B the support
of all the vectors v + w (∀w ∈ C | d(w, v) = 3).

Starting from a 1-perfect code C we can obtain different STSs, for instance STS0,
STSv, etc.

An STS can be obtained from a 1-perfect code or not. In the case that the STS
comes from a 1-perfect code, it can be unique or not and, moreover, if there is more
than one 1-perfect code which gives the same STS, they do not need to be isomorphic
nor equivalent.

Phelps (see [7]) constructs several 1-perfect codes in a combinatorial way which
lead to 23 of 80 nonisomorphic STSs of length 15 (these STSs are called “perfect”).
Levan (see [3]) adds 8 codes to the previous list.

In this paper we prove that starting from a well-ordered STS it is possible to
construct a partition of F n in 1-perfect codes such that the given STS is the support
of the minimum-weight codewords. It will remain the same problem when the given
STS is not well ordered.

38 JOSEP RIFÀ

3. 1-perfect partitions. In this paper, we are interested in 1-perfect codes
which give rise to partitions of F n in 1-perfect codes, rather than in 1-perfect codes
alone.

We already know that, given any 1-perfect code C of length n, we can always
find a partition of F n generated by this code. For example, the trivial partition
{Ci |Ci = C + ei; ∀ i = 1, . . . , n}, where ei are the different vectors of F n of weight
1 and e0 = (0, 0, . . . , 0), is a partition of F n on 1-perfect codes, that is, a 1-perfect
partition. The above partition is only natural when C is a linear code, that is, in
those cases where C + C = C.

In other 1-perfect codes, another type of partition would be more natural. For
example, in propelinear codes (see [8]), it would be more natural to use the partition
on F n given by {Ci |Ci = C ∗ ei; ∀ i = 1, . . . , n} since, for these codes, C ∗ C = C.

Generally, for 1-perfect codes, there does not exist an operation on F n allowing
a natural partition. There is a gap in the literature on this aspect and this paper
attemps to analyze it.

We begin by assuming that we have F n partitioned into classes, each of which is
a 1-perfect code. In every class other than the class C, which includes the vector 0,
we can take a vector of weight 1 as a representative and, therefore, we can consider
the partition as given by An = {e0, e1, e2, . . . , en}.

Theorem 3.1. Given a 1-perfect partition An on F n it is possible to define a
distance-compatible action of An on F n, such that the given partition can be consid-
ered as a quasi group which is an An-homomorphic image of F n.

Proof. In essence, we assume a 1-perfect partition An and define an operation on
An as follows:

ei ∗ ej = ek,(3.1)

where ek represents the class containing the vector ei + ej . An has a quasi group
structure with this operation, where e0 is the zero element. In fact An has a Sloop
structure.

This operation is not the only one which could be defined on An.
Assuming thatAn has a quasi-group structure, it is important to observe whether

An can be considered as anAn-homomorphic image of F n. For this purpose, we must
have defined an operation on F n or at least an operation between elements of F n and
An (An could be considered a subset of F n).

Given any element c ∈ C, we define c ·ei as the only element of class ei at distance
one from c.

Given any element v ∈ F n, since C is a 1-perfect code, we can always write it
uniquely as v = c · ei, where c ∈ C. We now define an operation F n ×An −→ F n

such that v · ej = w is the only vector of the class ek ∈ An at distance one from v,
where ei ∗ ej = ek.

This operation F n × An meets the conditions of Definition 2.3, so we have a
distance-compatible action of An on F n.

Now we can define

φ : F n −→ An

such that φ(v) = ei if and only if v is in class ei.
If φ(v · ej) = ek, then ei ∗ ej = ek, where φ(v) = ei. Hence φ(v) ∗ φ(ej) = ek and

φ(v · ej) = φ(v) ∗ φ(ej), so φ is an An-homomorphism, which is the identity map on
An.

WELL-ORDERED STS AND 1-PERFECT PARTITIONS 39

Now the inverse: let us assume that we have defined a distance-compatible action
ofAn on F n and also that we have defined a quasi-group structure with a zero element
on An.

With these conditions, we will consider the following theorem.
Theorem 3.2. Let us assume there is an An-homomorphism φ : F n −→ An

which is the identity map on An.
Then, for all ei ∈ An, the sets H = φ−1(ei) ⊂ F n are 1-perfect codes.
Proof. First, we will see that the minimum distance of H is 3.
Suppose d(a, b) = 1, where a, b ∈ H. For some index j, a · ej = b, since all

a · ej are different and we obtain the elements of F n at distance one from a. Hence,
φ(b) = φ(a · ej) = φ(a) ∗ φ(ej) = φ(a) ∗ ej , but φ(a) = φ(b), so e0 = ej , which
contradicts the initial assumption.

Let us now assume d(a, b) = 2, where a, b ∈ H. There will be ei 6= ej such that
a · ei = b · ej . Hence φ(a · ei) = φ(b · ej) and, since φ(a) = φ(b), then φ(ei) = φ(ej)
and, therefore, ei = ej , which is impossible.

Finally, we will see that, given any element v ∈ F n, then either v ∈ H, or there
is a unique element w ∈ H such that d(v, w) = 1.

In essence, let us assume that v /∈ H and φ(H) = ek. Then for any index i,
φ(v) = ei. Since ∀ j ∈ An, j 6= 0, the elements ei ∗ ej ∈ An are all different, there
will be a certain value for which ei ∗ ej = ek. Hence φ(v · ej) = φ(v) ∗ ej = ek and
w = v · ej ∈ H. Moreover, d(v, w) = 1.

Suppose now that there is a w′ ∈ H, w′ 6= w at distance 1 from v. This means
that, for a certain s, we have w′ = v ·es and φ(w′) = ek. Therefore, ei∗es = ek = ei∗ej
and es = ej , contrary to what we assumed.

According to this theorem, our interest lies, therefore, in defining distance-compatible
actions of An on F n for which An is a homomorphic image.

One way to do so is the following.
Fix an order in the set An − {e0}; for instance e1 < e2 < e3 · · · < en.
For x ∈ F n, x = (x1, x2, . . . , xn) define the ordered support of x as sx = ea1 <

ea2 < · · · < ear , where eai ∈ sx if and only if xai = 1.
Given an STS(n) we can define in An = {e0, e1, . . . , en} the Sloop structure as

we stated in Definition 2.7. Hence, if B is the set of blocks of the given STS we have
if ei 6= ej , then ei ∗ ej = ek, where (ei, ej , ek) ∈ B,
if ei = ej , then ei ∗ ej = 0,
if ei = e0, then ei ∗ ej = ej ,
if ej = e0, then ei ∗ ej = ei.

(3.2)

For x ∈ F n define the value φ(x) of x in the following way:

F n
φ−→ An,

x −→ φ(x) = ((· · · ((ea1 ∗ ea2) ∗ ea3) ∗ ea4 ∗ · · ·) ∗ ear),
(3.3)

where sx = ea1 < ea2 < · · · < ear .
Given c1, c2, . . . , cr, we will write [c1c2 · · · cr] ∈ An to represent the result of the

chain of operations ((· · · ((c1 ∗ c2) ∗ c3) ∗ c4 ∗ · · ·) ∗ cr).
Given a, x, y ∈ An, the equation (a ∗ x) ∗ y = (a ∗ ȳ) ∗ x always has a unique

solution that can be calculated as

ȳ = [axyxa].(3.4)

40 JOSEP RIFÀ

For some STS the condition ȳ = y is always true, for example, when we consider
the first STS of the 80 possible STSs of length 15 (we will consider the list of 80 STSs
to be ordered normally, as, for example, in [1]).

Definition 3.3. We will say that an STS is a well-ordered STS if it is possible
to order the elements in An such that ∀ a, x, y ∈ An we have x < y if and only if
x < ȳ, where ȳ = [axyxa].

Lemma 3.4. Let (A∗, B) be a well-ordered STS and let An be the Sloop defined
in (3.2).

Then there is a distance-compatible action of An on F n such that the value map
φ : F n −→ An defined in (3.3) is an An-homomorphism.

Proof. Let x = (x1, x2, . . . , xn) ∈ F n, and let sx = ea1 < ea2 · · · < ear be the
ordered support of x.

Then φ(x) ∗ ei = [ea1ea2 · · · earei] = [ea1ea2 · · · ear−1ei′ear] = [ea1ea2 · · ·
ear−2ei′′ear−1ear] = . . ., where ei < ear if and only if ei′ < ear and ei′ < ear−1 if and
only if ei′′ < ear−2 .

The same argument brings us finally to an index j such that φ(x) ∗ ei = [ea1 · · ·
eas−1ejeas · · · ear], where eas−1 ≤ ej < eas .

Now we define πx(ei) = ej . πx is a permutation of {ei | i = 1..n } that allows us
to define, for all x ∈ F n,

x · ei = x+ ej = x+ πx(ei)

so that An acts on F n and this is a distance-compatible action.
Furthermore, with the given definition, φ(x) ∗ φ(ei) = φ(x+ ej) = φ(x · ei), so φ

is an An-homomorphism.
As a consequence of Theorem 3.2 and Lemma 3.4, we can establish the following

theorem which proves that the well-ordered property of STSs is of interest because it
allows us to start from an STS(n) and efficiently determine when there is a 1-perfect
partition associated with it.

Theorem 3.5. Let (A∗, B) be a well-ordered STS(n) and let An be the Sloop
defined in (3.2).

Then there is a distance-compatible action of An on F n such that the value map
φ : F n −→ An gives us a partition of F n into 1-perfect codes H = φ−1(ei) for all
ei ∈ An.

Starting from a well-ordered STS not only can we assure that An acts in a dis-
tance-compatible way on F n but we can extend the action to all the elements in F n

as we can see in the following proposition.
Proposition 3.6. Let (A∗, B) be a well-ordered STS and let An be the Sloop

defined in (3.2).
Then we can extend the action of An ⊂ F n on F n to an action of F n on F n.
Proof. Given x, y ∈ F n with ordered supports sx = ea1 < ea2 · · · < ear and

sy = eb1 < eb2 < · · · < ebs , respectively, we define x · y by using Lemma 3.4:

x · y = (· · · ((x · eb1) · eb2) · · ·) · ebs .

It is now easy to see that the previous operation is well defined, that is, x · y has a
unique value, so we have an action of F n on F n.

Remark. Proposition 3.6 shows us that the well-ordered condition is stronger than
needed to assure the construction of 1-perfect partitions starting from an STS (see
Theorem 3.2). We will see in the following section that in the specific case n = 15
we can construct 1-perfect partitions starting in 16 STS(15)s, but this result does

WELL-ORDERED STS AND 1-PERFECT PARTITIONS 41

not close the problem of finding all possible STSs which allow the construction of
1-perfect partitions.

A problem we leave open is the construction of distance-compatible actions of
An ⊂ F n on F n that cannot be extended to actions of F n on F n.

4. Well-ordered STSs. We will now consider the STSs which have the well-
ordered property.

In general, if the equality (a ∗ x) ∗ y = (a ∗ y) ∗ x does not hold, we can calculate
ȳ = [axyxa] (see (3.4)) such that (a∗x)∗y = (a∗ ȳ)∗x and, if the STS is well ordered,
we obtain an element ȳ that has the same order relationship with x that y has with
x.

Whenever we vary a ∈ An in (3.4), we obtain n elements, not necessarily different,
that are greater than x if y > x, or less than x if y < x. For all x 6= y, we will use qxy
to designate the set of different elements obtained:

qxy = {ȳ ∈ An|ȳ = [axyxa]|a ∈ An}

The vector (q1, q2, . . . , qn), where qi is the quantity of pairs (x, y) for which |qxy| =
i, will be denoted the characteristic vector of the STS(n) and, when n = 15, it is a
complete invariant for STSs which allows us to distinguish completely nonisomorphic
STS(15)s.

In the appendix, we have listed the 80 vectors which characterize the nonisomor-
phic STS(15)s. We have suppressed the coordinates q8, q9, q10, q11, q12, q13, q14, q15 in
each vector since their value is always zero. Moreover, we have added to each vector
a coordinate q16 which allows us to decide which STS(15)s are well ordered, as we
will see in Proposition 4.1.

There are other invariants which make it possible to distinguish between non-
isomorphic STS(15)s, for example the cycle structure (see [5]), the train (see [5]), and
the fragments (see [3]). We will use the invariant we propose, since it allows us to link
the STS structure with the construction of perfect codes, as we will see later on.

All of the elements in qxy’s have the same order relationship with x that y has
with x.

Let us assume that for certain y, y′, y′′ ∈ A∗n we have some elements α, β, γ ∈ A∗
such that

α, β ∈ qγy,
α, γ ∈ qβy′ ,(4.1)
γ, β ∈ qαy′′ .

We will use q16 to denote the quantity of triples α, β, γ that satisfy (4.1).
Proposition 4.1. The component q16 in the characteristic vector of a well-

ordered STS(n) is zero (see the appendix to see the values of the q16 for all the STSs
of length 15).

Proof. In essence, if q16 6= 0, then there is a α, β, γ triple that fulfills (4.1).
Nevertheless, this is absurd since, if α > β > γ, the second equation fails; if α > γ > β,
the first equation fails, etc. For any assumption, one of the three equations in (4.1)
always fails.

Proposition 4.1 limits the number of STS(15)s for which it is possible to define a
well-ordering that allows to obtain perfect codes. In particular, there are 16 STS(15)s
that can be well ordered and, therefore, produce 1-perfect codes: 1− 10 and 13− 18.
If, for each class of nonisomorphic STS(15)s, we choose as representative the one

42 JOSEP RIFÀ

Table 4.1

Well-ordered STSs for n = 15.

STS Ordering
1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
2 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
3 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
4 1,2,3,4,5,6,7,8,11,9,10,12,15,13,14
5 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
6 1,2,3,4,5,6,7,8,11,9,10,12,14,13,15
7 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
8 1,2,3,4,5,6,7,8,11,13,14,9,10,12,15
9 1,2,3,4,5,6,7,8,14,9,15,10,12,11,13

10 1,2,3,4,5,6,7,8,14,10,12,9,15,11,13
13 1,2,3,4,5,6,7,8,11,13,14,9,10,12,15
14 1,2,3,4,5,6,7,8,11,13,14,9,10,12,15
15 1,2,3,4,5,6,7,8,11,12,15,9,10,13,14
16 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
17 1,2,3,4,5,6,7,8,11,13,14,9,10,12,15
18 1,2,3,4,5,6,7,8,12,9,13,10,14,11,15

given in [1], an example of well-ordering (although not the only one), calculated
computationally, associated with each of these STS(15)s, is the one listed in Table 4.1.

In the specific case n = 15, we have studied the codes constructed using the well-
ordering given in Table 4.1 and calculated re and rn, respectively the outer rank and
dimension of the kernel:

re = min{k|k = dim(E), C ⊂ E, E is a vector space},

rn = dim(E), where E = {x ∈ C|x+ C ⊂ C}.

The results obtained, for the representatives we have chosen from each family, are as
follows:

STS 1 2 3 4 5 6 7 8 9 10 13 14 15 16 17 18
rn 11 9 8 7 8 6 8 7 6 6 6 6 6 8 6 6
re 11 12 13 13 13 13 13 14 14 14 14 14 14 14 14 14

For a given STS, by considering other well-orderings, we can obtain 1-perfect
codes that are neither isomorphic nor equivalent amongst themselves. Thus, for each
STS we obtain a family of 1-perfect codes.

For a given code C, if we consider C + v, where v ∈ C, we obtain another code
equivalent to the first one that does not have to have the same STS(n) associated
with it, or, in other words, the STSvs associated with each of the codewords v ∈ C
do not necessarily have to match (if they match, the code is known as homogeneous).

In general, each of these STS(n)s, together with a well-ordering, will result in a
partition, taking as classes Ci = {x|x ∈ F n, where φ(x) = ei}, where all the classes
are 1-perfect codes (what we have called a 1-perfect partition).

5. Error-correcting, coding, and decoding. With the codes obtained, error-
correcting is very easy. In essence, the codewords are characterized by having a
constant value (the value map is defined in (3.3)). Therefore, when we receive a word,
we can calculate its value and use it as a syndrome to correct errors.

Let us assume a code C defined using a well-ordered STS, which consists of all
the vectors with value ei, C = {v ∈ F n |φ(v) = ei}.

WELL-ORDERED STS AND 1-PERFECT PARTITIONS 43

Table 5.1

Redundant bits for code 17.

φ x10 = 0 x10 = 1
0 0000 0111
1 1001 1110
2 1010 1101
3 1111 1000
4 1100 1011
5 0110 0001
6 0011 0100
7 0101 0010
8 1011 1100
9 0100 0011
10 0111 0000
11 1101 1010
12 0010 0101
13 1110 1001
14 1000 1111
15 0001 0110

Given any vector v ∈ F n, we can compute its syndrome φ(v) and we will have
φ(v) = ei if and only if v ∈ C.

If v /∈ C, we have φ(v) = ek, where ek 6= ei. Let ej be such that ei = ek ∗ ej . Now
we will calculate the only vector w ∈ C at distance one from v as w = v · ej , since
d(v, w) = 1 and φ(w) = φ(v · ej) = φ(v) ∗ ej = ek ∗ ej = ei (see Theorem 3.5).

Concerning coding-decoding, we were unable to show that, for any value of n, the
codes obtained are systematic, although in the specific case n = 15, Table 4.1 gives
systematic codes where the 11 information coordinates are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13
and the 4 redundant coordinates are 11, 12, 14, 15 (after the well-ordering).

We have not included the proof that the codes in Table 4.1 are systematic since
it is only of interest in the particular case n = 15.

Example. We will provide an example of the above, using the code 17 defined
with the order given in Table 4.1.

The STS which results in this code is formed by the following triples (see [1]):
(1, 2, 3), (1, 4, 5), (1, 6, 7), (1, 8, 9), (1, 10, 11), (1, 12, 13),
(1, 14, 15), (2, 4, 6), (2, 5, 7), (2, 8, 10), (2, 9, 11), (2, 12, 14),
(2, 13, 15), (3, 4, 7), (3, 5, 6), (3, 8, 12), (3, 9, 13), (3, 10, 14),
(3, 11, 15), (4, 8, 15), (4, 9, 14), (4, 10, 13), (4, 11, 12), (5, 8, 11),
(5, 9, 12), (5, 10, 15), (5, 13, 14), (6, 8, 14), (6, 9, 10), (6, 11, 13),
(6, 12, 15), (7, 8, 13), (7, 9, 15), (7, 10, 12), (7, 11, 14).
The codeword that we wish to construct will be v, of which we know the 11

coordinates x1, x2, x3, x4, x5, x6, x7, x8, x11, x13, x10. Starting with these coordinates
and using the value φ(v) we can calculate the 4 redundant symbols x14, x9, x12, x15,
according to the coordinate 10 in the way described in Table 5.1.

• Let us suppose the information is given by the 11 bits 010 111 001 10, which
we assume are the coordinates 1, 2, 3, 4, 5, 6, 7, 8, 11, 13, 10 of the codeword we
wish to construct (we have used the order given in Table 4.1 for code 17).
• Using the operation defined in An (according to the Steiner triples), we cal-

culate φ = [x1, x2, x3, x4, x5, x6, x7, x8, x11, x13] = [e2, e4, e5, e6, e11, e13] = e7.
• According to Table 5.1, for this value of φ(v) = e7 and knowing x10 = 0,

44 JOSEP RIFÀ

there is a redundancy 0101 for which the codeword will be

v = (010 111 001 101 001)

(the order of the coordinates is 1, 2, 3, 4, 5, 6, 7, 8, 11, 13, 14, 9, 10, 12, 15).
• Let us assume that a transmission error has occurred and that the vector

received is w = (010 101 001 101 001).
• Let us calculate the syndrome for the vector received as φ(w) = [e2, e4, e6, e11, e13,
e9, e15] = e5.
• We will correct the error made by calculating the vector v = w · e5 since
φ(v) = φ(w · e5) = e5 ∗ e5 = 0;
φ(v) = φ(w · e5) = φ(w) ∗ e5 = [e2, e4, e6, e11, e13, e9, e15] ∗ e5 =
[e2, e4, e6, e11, e13, e9, e15, e5] = [e2, e4, e6, e11, e13, e9, e5, e15] =
[e2, e4, e6, e11, e13, e1, e9, e15] = [e2, e4, e6, e11, e5, e13, e9, e15] =
[e2, e4, e6, e5, e11, e13, e9, e15] = [e2, e4, e5, e6, e11, e13, e9, e15],
so v = (010111001101001).

Remark. The calculation made, [ea1ea2 · · · earei] = [ea1ea2 · · · ear−1ei′ear] =

[ea1ea2 . . . ear−2ei′′ear−1ear] = . . . is as described in (3.4).

6. Conclusions and further research. In this paper, we have seen that a
partition of the n-cube on 1-perfect codes is equivalent to having a quasi-group struc-
ture An = {e0, e1, e2, . . . , en}, with zero element e0 = 0, which acts in a distance-
compatible way on F n and is an An-homomorphic image of F n.

In the specific case that An is considered to be the structure derived from a
well-ordered STS, we have seen an effective way to construct 1-perfect partitions and,
therefore, 1-perfect codes, that in the case n = 15 are systematic. Moreover, it is not
difficult to see that according to the nomenclature of Etzion and Vardy (see [2]), these
1-perfect codes are of the noninterlaced type.

Further research in this topic should include the following:

• A consideration of quasi-group structures on An with more characteristics,
for example, commutativity or associativity. In the extreme case, analysis
should also consider the case when An has the commutative group structure.
In this situation, the factorization theorem of commutative groups indicates
what the An algebraic structure should be like.
• A consideration of distance-compatible actions of An on F n, which vary

from the one given by the construction included in this paper. For instance
it could be interesting to construct distance-compatible actions of An on F n

that could not be extended the whole n-cube.
• The existence of well-ordered STSs for all n as well as is proved in the specific

case n = 15.
• The codes obtained in this paper are systematic for any value of n as well as

in the case n = 15.
• Characterization of the 1-perfect partitions such that we use the partition

to determine the algebraic properties of the perfect codes which make it up.
For example, using uniform 1-perfect partitions, we can give the propelinear
structure to all the classes of the partition (see [8]).

WELL-ORDERED STS AND 1-PERFECT PARTITIONS 45

Appendix.

STS q1 q2 q3 q4 q5 q6 q7 q16

1 225 0 0 0 0 0 0 0
2 129 96 0 0 0 0 0 0
3 113 24 24 64 0 0 0 0
4 73 60 60 32 0 0 0 0
5 73 108 12 32 0 0 0 0
6 45 42 90 48 0 0 0 0
7 57 36 36 96 0 0 0 0
8 65 52 12 32 28 28 8 0
9 41 32 48 52 34 18 0 0
10 41 36 62 46 26 12 2 0
11 25 6 50 62 62 12 8 64
12 41 12 69 48 45 0 10 64
13 57 20 28 72 48 0 0 0
14 65 12 24 72 36 12 4 0
15 37 30 50 40 32 36 0 0
16 113 0 0 56 0 0 56 0
17 57 12 12 64 24 48 8 0
18 37 30 38 48 24 44 4 0
19 21 14 42 64 36 36 12 64
20 23 6 36 49 63 39 9 64
21 25 0 15 81 69 21 14 91
22 21 0 12 86 77 12 17 91
23 23 6 47 42 57 34 16 122
24 23 4 38 44 57 34 25 173
25 33 4 21 45 58 51 13 167
26 37 6 32 36 51 42 21 165
27 21 2 29 37 64 57 15 183
28 21 2 25 41 53 61 22 224
29 29 6 18 54 42 54 22 178
30 21 0 10 41 76 51 26 252
31 23 8 56 38 50 34 16 96
32 17 0 15 52 49 60 32 252
33 17 0 11 33 56 61 47 297
34 19 0 10 33 51 75 37 282
35 25 0 0 30 48 72 50 313
36 19 0 8 32 96 56 14 268
37 19 0 0 24 72 36 74 322
38 19 0 4 23 44 83 52 337
39 19 0 6 39 64 73 24 290
40 23 0 6 29 73 61 33 298

46 JOSEP RIFÀ

STS q1 q2 q3 q4 q5 q6 q7 q16

41 23 0 3 26 62 76 35 315
42 17 0 0 17 71 79 41 368
43 21 0 3 9 105 69 18 296
44 17 0 4 19 65 77 43 354
45 17 0 7 20 61 76 44 334
46 17 0 0 14 53 88 53 373
47 17 0 9 32 56 70 41 299
48 17 0 5 23 69 73 38 317
49 17 0 2 16 58 84 48 361
50 17 0 2 26 62 88 30 300
51 19 0 1 21 58 91 35 354
52 17 0 2 25 59 83 39 344
53 19 0 3 33 63 69 38 307
54 19 0 6 34 63 68 35 311
55 17 0 6 25 57 91 29 344
56 17 0 4 23 64 79 38 333
57 17 0 3 12 70 82 41 333
58 17 0 5 40 75 56 32 259
59 17 0 6 43 66 69 24 295
60 17 0 0 21 57 81 49 364
61 15 0 0 63 77 21 49 91
62 15 0 9 26 44 90 41 328
63 15 2 12 37 48 75 36 271
64 15 0 3 24 53 66 64 337
65 15 0 3 18 57 88 44 350
66 15 0 0 15 52 93 50 374
67 15 0 0 13 60 99 38 377
68 15 0 2 18 68 80 42 359
69 15 0 2 14 47 86 61 379
70 15 0 7 28 53 88 34 338
71 15 0 4 11 59 85 51 355
72 15 0 1 17 60 87 45 360
73 15 0 0 14 50 98 48 380
74 15 0 16 32 40 98 24 289
75 15 0 3 36 63 90 18 337
76 15 0 15 25 85 45 40 330
77 15 0 0 3 33 111 63 412
78 15 0 4 26 62 98 20 340
79 15 0 18 18 72 90 12 212
80 15 0 0 0 0 90 120 455

Acknowledgments. The author wishes to thank J. Borges, K. Phelps, and
J. Pujol for useful discussions and valuable comments during the preparation of this
paper.

WELL-ORDERED STS AND 1-PERFECT PARTITIONS 47

REFERENCES

[1] C.J. Colbourn and J.H. Dinitz, The CRC Handbook of Combinatorial Designs, CRC Press,
Boca Raton, FL, 1996.

[2] T. Etzion and A. Vardy, Perfect binary codes: Constructions, properties and enumeration,
IEEE Trans. Inform. Theory, 40 (1994), pp. 754–763.

[3] J.M. LeVan, Designs and Codes, Ph.D. thesis, Auburn University, Auburn, AL, 1995.
[4] F.J. MacWilliams and N.J.A. Sloane, Error Correcting Codes, North–Holland, New York,

1977.
[5] R.A. Mathon, K.T. Phelps, and A. Rosa, Small triple systems and their properties, Ars

Combin., 15 (1983), pp. 3–110.
[6] H.O. Pflugfelder, Quasigroups and Loops. Introduction, Helderman-Verlag, Berlin, 1990.
[7] K.T. Phelps, A combinatorial construction of perfect codes, SIAM J. Algebraic Discrete

Meth., 4 (1983), pp. 398–403.
[8] J. Rifà and J. Pujol, Distance invariant propelinear codes, IEEE Trans. Inform. Theory, 43

(1997), pp. 590–598.
[9] H.S. White, F.N. Cole, and L.D. Cummings, Complete classification of the triad systems of

fifteen elements, Mem. Mat. Acad. Sci. USA, 2nd memoir, 14 (1919), pp. 1–89.

CONSTRUCTIVE QUASI-RAMSEY NUMBERS AND
TOURNAMENT RANKING∗

A. CZYGRINOW† , S. POLJAK† , AND V. RÖDL†

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 1, pp. 48–63

Abstract. A constructive lower bound on the quasi-Ramsey numbers and the tournament
ranking function was obtained in [S. Poljak, V. Rödl, and J. Spencer, SIAM J. Discrete Math.,
(1) 1988, pp. 372–376]. We consider the weighted versions of both problems. Our method yields a
polynomial time heuristic with guaranteed lower bound for the linear ordering problem.

Key words. discrepancy, linear ordering problem, derandomization, regularity lemma

AMS subject classifications. 68R05, 68R10, 05D99

PII. S0895480197318301

1. Introduction. The quasi-Ramsey number g(n) is defined as the maximum
discrepancy between the number of edges and nonedges that appears on some induced
subgraph of any graph of order n, i.e.,

g(n) = min
f

max
S⊆[n]

|f(S)|,

where [n] = 1, . . . , n, f is a function from [n]2 into {−1, 1} and f(S) =
∑
e∈S2 f(e).

It is well known (Erdös and Spencer [4]) that for some positive, absolute constants
c1, c2

c1n
3/2 ≤ g(n) ≤ c2n3/2.

The tournament ranking function h(n) is defined as the maximum size of an acyclic
(undirected) subgraph that appears in any tournament of order n. More precisely, let
Tn be a tournament on n vertices, Pn a transitive tournament on n vertices, and let
|Tn ∩ Pn| denote the number of common oriented arcs of Tn and Pn; then

h(n) = min
Tn

max
Pn
|Tn ∩ Pn|.

It was shown by Spencer ([14], [15]) that

1

2

(
n

2

)
+ c1n

3/2 ≤ h(n) ≤ 1

2

(
n

2

)
+ c2n

3/2

where c1 and c2 are positive absolute constants. The proof of the upper bound has
been simplified by Fernandez de La Vega [5]. Using the method of Spencer, the lower
bound on h(n) can be obtained by an algorithmic argument from the lower bound on
g(n).

Poljak, Rödl, and Spencer [12] proposed a fast O(n3 log n) time algorithm that

finds a set S with discrepancy at least π−1/2

24 n3/2, the corresponding result for the
tournament ranking function h(n) is also presented in [12]. We will consider the

∗Received by the editors March 12, 1997; accepted for publication (in revised form) March 5,
1998; published electronically January 29, 1999.

http://www.siam.org/journals/sidma/12-1/31830.html
†Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322

(aczygri@mathcs.emory.edu, rodl@mathcs.emory.edu).

48

CONSTRUCTIVE TOURNAMENT RANKING 49

weighted version of both problems. Our algorithm uses the Erdös–Selfridge method
of conditional expectations that was also applied in [12]. For the lower bound on the
quasi-Ramsey number g(n) we prove the following result.

Theorem 1. Let f : [n]
2 → R be a weight function on the edges of a complete

graph Kn. Then there is a subset S ⊂ [n] such that

|f(S)| ≥ 1

12
√
π
n−1/2

∑
e∈[n]2

|f(e)|.

Moreover, S can be found in O(n3 lg (nd) lg n) time, provided the weights are
integers from {−d, . . . , d}.

The weighted version of the tournament ranking problem is also known as the
linear ordering problem (see Grötschel, Jünger, and Reinelt [10]). The problem can
be formulated in the following way: For a given tournament T with weight c(i, j) on
the arc (i, j) ∈ T , find the ordering σ of vertices for which the sum∑

(i,j)∈T,σ(i)<σ(j)

c(i, j)

is a maximum. The list of applications of the linear ordering problem can be found
in Lenstra [11]. It includes applications from different areas of econometrics (input-
output matrix analysis), sociology (social choice), psychology, machine scheduling,
and even archaeology. The problem is NP-complete (see Garey and Johnson [8]), but
there were several methods developed for solving small instances, e.g., up to order of
50 by Grötschel, Jünger, and Reinelt [10]. Using the algorithm from Theorem 1, we
will get a polynomial time heuristic with a guaranteed lower bound.

Theorem 2. Let T be a tournament on n vertices with nonnegative weights w(e)
on edges. Then there is an ordering σ such that the sum of weights on edges that
agree with the ordering is at least(

1

2
+

1

4
√
π
n−1/2

)
K,

where K is the total sum of weights. The ordering σ can be constructed by a O(n3 lg
(nd) lg n) time algorithm, provided weights are integers from {0, . . . , d}.

From the upper bound on h(n), we conclude that there exists weight function for
which the heuristic is best possible (up to a constant factor).

Given a real number ρ, 0 < ρ < 1 a polynomial time approximation scheme
(PTAS) for an optimization problem is an algorithm which when given an instance of
size n, finds in polynomial time (in n) a solution of value at least (1− ρ)OPT , where
OPT is the optimal value. Using the regularity lemma and its constructive version
of Alon et al. [1], we design a PTAS for the “dense” quasi-Ramsey problem and for
tournament ranking. For the quasi-Ramsey number we have the following theorem.
Let f : E(Kn)→ {−1, 1} and OPT (f) = maxS⊆[n] |f(S)|.

Theorem 3. Let c > 0 be fixed. If OPT (f) ≥ cn2, then for every ρ, 0 < ρ < 1,
there is a O(n2.4) time algorithm that constructs set S such that

|f(S)| ≥ (1− ρ)OPT (f).

50 A. CZYGRINOW, S. POLJAK, AND V. RÖDL

For the tournament ranking we prove the following theorem for the case when
OPT (Tn) = maxPn |Tn ∩ Pn| for a tournament Tn.

Theorem 4. For 0 < ρ < 1 there is a polynomial time algorithm that constructs
an ordering σ of vertices of Tn so that at least (1− ρ)OPT (Tn) of arcs agree with σ.

Note that Theorem 3 and Theorem 4 are in some sense counterparts to Theorem
1 and Theorem 2. For example, Theorem 1 provides the existence of a polynomial
time algorithm to find the set S with |f(S)| being the guaranteed minimum; Theorem
3 gives for every ρ the const(ρ)n2.4 algorithm that finds a set S with f(S) being a
(1− ρ) multiple of the optimal. Theorem 3 is based on the algorithmic version of the
regularity lemma which “approximates the graph with error of εn2”. Therefore, it
can be applied only to instances with OPT (f) ≥ cn2. On the other hand, in case of
Theorem 4, clearly OPT (Tn) ≥ 1

2

(
n
2

)
and, therefore, a PTAS for the linear ordering

problem can be obtained with no additional assumptions. Independently, very re-
cently Frieze and Kannan [6] and [7] applied a version of the regularity lemma to the
maximum subgraph problem, an equivalent to tournament ranking. Our arguments
differ from those in [7]. The rest of the paper is organized as follows: In section 2, for

a given −→v1 , . . . ,−→vn ∈ Rk, we will show how to construct sign vector
−→
X = (X1, . . . , Xn)

such that

‖ X1
−→v1 + · · ·+Xn

−→vn ‖≥ cn−1/2
n∑
i=1

‖ −→vi ‖,

where ‖−→u ‖ =
∑k
j=1 |uj |. The algorithm is later applied to quasi-Ramsey numbers and

to the linear ordering problem. Section 3 includes the applications of the regularity
lemma. We conclude with an open problem in section 4.

2. Constructing sign vectors. Set
−→
1 = (1, . . . , 1) and

−→
0 = (0, . . . , 0), and

for −→u and −→v from Rk, let 〈−→v ,−→u 〉 denote the dot product of −→v and −→u , and ‖−→u ‖
its l1 - norm, i.e., ‖−→u ‖ =

∑k
j=1 |uj |. We first establish two auxiliary facts.

Lemma 5. ∑
−→
X∈{−1,1}n

|〈−→1 ,−→X 〉| = 2n

(
n− 1

bn2 c
)
.

The proof can be found in [12]. For 1 ≤ i ≤ n, let Xi be independent random
variables with distribution Pr(Xi = 1) = Pr(Xi = −1) = 1

2 .
Lemma 6. Let b1, . . . , bn and a be real numbers and let u be the arithmetic mean

of |b1|, . . . , |bn|. Then we have the following inequality:

E(|a+ X1b1 + · · ·+ Xnbn|) ≥ E(|a+ X1u+ · · ·+ Xnu|).

Proof. We may assume that all bi’s are nonnegative since the random variables
Zi = sgn(bi)Xi have the same distribution as Xi, i.e., E(|a + X1b1 + · · · + Xnbn|) =
E(|a + Z1b1 + · · · + Znbn|) = E(|a + X1|b1| + · · · + Xn|bn||). Given a vector −→w =

(w1, . . . , wn) ∈ Rn, let
−−→
w(l) be the vector obtained from −→w by cyclic shifting, with ith

coordinate w
(l)
i = wi+l mod n for i = 1, 2, . . . , n. We have

E(|a+X1b1+· · ·+Xnbn|) =
1

2n

∑
−→
X∈{−1,1}n

∣∣∣∣∣a+

n∑
i=1

Xibi

∣∣∣∣∣ =
1

2n

∑
−→
X

1

n

n∑
l=1

∣∣∣∣∣a+

n∑
i=1

X
(l)
i bi

∣∣∣∣∣

CONSTRUCTIVE TOURNAMENT RANKING 51

≥ 1

2n

∑
−→
X

1

n

∣∣∣∣∣na+
n∑
i=1

n∑
l=1

X
(l)
i bi

∣∣∣∣∣ =
1

2n

∑
−→
X

∣∣∣∣∣a+
n∑
i=1

Xiu

∣∣∣∣∣ = E(|a+X1u+· · ·+Xnu|).

Lemma 7. Let −→v1 , . . . ,−→vn ∈ Rk. Then

E(‖X1
−→v1 + · · ·+ Xn

−→vn‖) ≥
√

2

π
n−1/2

n∑
i=1

‖−→vi ‖.

Proof. From Lemma 5 and Stirling‘s formula, we obtain

E(|X1 + · · ·+ Xn|) =
1

2n

∑
−→
X∈{−1,1}n

|〈−→1 ,−→X 〉| = 2n2−n
(
n− 1

bn2 c
)
≥
√

2n

π
.

Let uj be the arithmetic mean of absolute values of the jth components of −→v1 , . . . ,−→vn ,
where j = 1, . . . , k and let −→u = (u1, . . . , uk). Using Lemma 6 with a = 0 we have

E(‖X1
−→v1 + · · ·+ Xn

−→vn‖) ≥ E(‖X1
−→u + · · ·+ Xn

−→u ‖) =
k∑
j=1

E(|X1uj + · · ·+ Xnuj |)

=

k∑
j=1

ujE(|X1 + · · ·+ Xn|) ≥
√

2

π
n−1/2

n∑
i=1

‖−→vi ‖.

Corollary 8. For given −→v1 , . . . ,−→vn ∈ Rk, there is a choice of signs (X1, . . . , Xn) ∈
{−1, 1}n such that

‖X1
−→v1 + · · ·+Xn

−→vn‖ ≥
√

2

π
n−1/2

n∑
i=1

‖−→vi ‖.

Next we will show that a vector
−→
X = (X1, . . . , Xn) from Corollary 8 can be

constructed by a polynomial time algorithm. The idea is as follows. We have
E(‖X1

−→v1 + · · · + Xn
−→vn‖) ≥ T , where T = cn−1/2

∑ ‖−→vi ‖ in the beginning. (For
later convenience, we write the vectors in the reverse order.) Let us assume that signs
Xn, Xn−1, . . . , Xi+1 are chosen, one in each step, such that

E(‖Xn
−→vn + · · ·+Xi+1

−−→vi+1 + Xi
−→vi + · · ·X1

−→v1‖) ≥ T.
At this moment there are two possible choices of Xi, and we take the better one (the
one that maximizes the value of the expectation). As we cannot compute quickly the
expected value E(‖Xn

−→vn+· · ·+Xi+1
−−→vi+1+Xi

−→vi +· · ·+X1
−→v1‖) for general −→vi , . . . ,−→v1 ,

we compute E(‖Xn
−→vn + · · ·+Xi+1

−−→vi+1 + Xi
−→u + · · ·+ X1

−→u ‖) instead, where −→u is
the component-wise “average” of −→v1 , . . . ,−→vn .

To describe the algorithm more precisely, we need to introduce some notation.
For vectors −→a = (a1, . . . , ak),

−→
b = (b1, . . . , bk) ∈ Rk we define the polynomials

W (bj , i, aj) = E(|bj + Xiaj + · · ·+ X1aj |) =
i∑
l=0

(
i

l

)
2−i|bj + aj(i− 2l)|,

52 A. CZYGRINOW, S. POLJAK, AND V. RÖDL

W (
−→
b , i,−→a) =

k∑
j=1

W (bj , i, aj) =
k∑
j=1

i∑
l=0

(
i

l

)
2−i|bj + aj(i− 2l)|.

For given−→vi = (vi1, . . . , vik) ∈ Rk, i = 1, . . . , n, let uij denote the arithmetic mean
of absolute values of the jth coordinates of −→vi , . . . ,−→v1 , i.e., uij = 1

i (|vij |+ · · ·+ |v1j |),
and set −→ui = (ui1, . . . , uik). By

−→
Si we denote the partial sums: let

−→
Sn =

−→
0 and−→

Si = Xn
−→vn+· · ·+Xi+1

−−→vi+1, where Xn, . . . , Xi+1 have already been defined. (Observe

that E(‖−→Si + Xi
−→ui + . . .X1

−→ui ‖) = W (
−→
Si , i,−→ui).) Now we choose

Xi =

{
1 if W (

−→
Si +−→vi , i− 1,−−→ui−1) ≥W (

−→
Si −−→vi , i− 1,−−→ui−1),

−1 otherwise.

We can formalize the algorithm in the following procedure.
Algorithm

input: vectors −→v1 , . . . ,−→vn ∈ Rk
output: sign vector (X1, . . . , Xn)−→
Sn =

−→
0

for i=n downto 1
begin

if i < n then
−→
Si = Xn

−→vn + · · ·+Xi+1
−−→vi+1

compute W+ = W (
−→
Si +−→vi , i− 1,−−→ui−1) and W− = W (

−→
Si −−→vi , i− 1,−−→ui−1)

if W+ ≥W− then Xi = 1
else Xi = −1

end
return (X1, . . . , Xn)

Proposition 9. The above algorithm returns a vector (X1, . . . , Xn) such that

‖X1
−→v1 + · · ·+Xn

−→vn‖ ≥
√

2

π
n−1/2

n∑
i=1

‖−→vi ‖.

Proof. Since E(‖−→Si+Xi
−→vi +Xi−1

−−→ui−1+· · ·X1
−−→ui−1‖) = 1

2W (
−→
Si+−→vi , i−1,−−→ui−1)+

1
2W (
−→
Si −−→vi , i− 1,−−→ui−1), we have

W (
−−→
Si−1, i− 1,−−→ui−1) = W (

−→
Si +Xi

−→vi , i− 1,−−→ui−1) ≥ E(‖−→Si + Xi
−→vi + Xi−1

−−→ui−1

+ · · ·+ X1
−−→ui−1‖)

≥ E(‖−→Si + Xi
−→ui + · · ·X1

−→ui ‖) = W (
−→
Si , i,−→ui).

The first inequality holds by the choice of Xi, the second one by Lemma 6, and
the (obvious) fact that uij is an arithmetic mean of vij and i − 1 copies of ui−1j .
Hence

‖Xn
−→vn + · · ·+X1

−→v1‖ ≥W (
−→
S1, 1,−→u1) ≥ · · · ≥W (

−→
Sn, n,−→un)

and

W (
−→
Sn, n,−→un) =

k∑
j=0

n∑
l=0

(
n

l

)
2−n|unj(n− 2l)| =

k∑
j=0

unj2
−n

n∑
l=0

(
n

l

)
|n− 2l|

≥
√

2

π
n1/2

k∑
j=0

unj =

√
2

π
n−1/2

n∑
i=1

‖−→vi ‖.

CONSTRUCTIVE TOURNAMENT RANKING 53

Proposition 10. For k = O(n), the time complexity of the above algorithm is
O(n3 lg (nd) lg n) provided the vectors −→v1 , . . . ,−→vn ∈ Rk are integral and |vij | ≤ d .

Proof. The procedure consists of n iterations for computing Xn, . . . , X1. At each
step we evaluate the expression W (

−→
Si , i,−→ui). To keep the computation in integers we

replace it by

i2iW (
−→
Si , i,−→ui) =

i∑
l=0

(
i

l

)(k∑
j=1

|iSij + (i− 2l)iuij |
)
,

where
−→
Si = (Si1, . . . , Sik). The O(n2) combinatorial coefficients

(
i
l

)
can be evaluated

in advance using the identity
(
i
l

)
=
(
i−1
l

)
+
(
i−1
l−1

)
. Since i is of size at most n and the

terms Sij , iuij are of size nd, we can compute |iSij+(i−2l)iuij | in O(lg n lg (nd)) steps.

The sum
∑k
j=1 |iSij + (i − 2l)iuij | can be evaluated in O(k lg n lg (nd)) steps. The

number
(
i
l

)
is less than 2n and so the multiplication

(
i
l

) · (∑k
j=1 |iSij + (i − 2l)iuij |)

can be computed in O(lg (2n) lg (ndk)) steps. The total complexity of the proce-
dure is O(n2(k lg n lg (nd) + n lg (ndk))), which when k = O(n) becomes O(n3 lg
(nd) lg n).

Using the divide and conquer technique, one can design a slightly faster algorithm
that gives a little worse results (for details consult [2]).

We will now apply the algorithm to quasi-Ramsey numbers and to the linear
ordering problem. Let us start with the proof of Theorem 1.

Proof of the Theorem 1. We use the same technique that was applied in [12]. Let
K =

∑
e∈[n]2 |f(e)|. First we need to find a large cut of Kn with edge weights |f(e)|.

Obviously, by a greedy procedure we can construct disjoint sets X and Y such that
X ∪ Y = [n] and

∑
x∈X,y∈Y

|f(x, y)| ≥ K

2
.

Indeed, assume that setsXi∪Y i = [i] have been constructed. LetW i
X =

∑
j∈Xi f(j, i+

1) and W i
Y =

∑
j∈Y i f(j, i + 1). If W i

X ≤ W i
Y then set Xi+1 = Xi ∪ {i + 1} and

Y i+1 = Y i; otherwise, set Xi+1 = Xi and Y i+1 = Y i∪{i+ 1}. (Using the Goemans–
Williamson algorithm from [9], one can possibly improve a constant in our theorem.
However, since the result in [9] provides .878 approximation of the optimal cut, it
does not guarantee that the produced cut is bigger than K

2 . For slightly better cut
algorithms consult [13].)

Let X = {x1, . . . , xn1}, Y = {y1, . . . , yn2}. We assume n1 ≤ n/2. Assign a
vector −→vi = (vi1, . . . , vin2) to each vertex xi, where vij = f(xi, yj), i = 1, . . . , n1, j =
1, . . . , n2. Using the algorithm from section 2, we construct a sign vector (X1, . . . , Xn1

)
such that

‖X1
−→v1 + · · ·+Xn1

−→vn1‖ ≥
√

2

π
n1
−1/2K

2
≥
√

2

π
(
n

2
)−1/2K

2
≥ 1√

π
n−1/2K.

We partition sets X = X+ ∪ X− and Y = Y + ∪ Y − by X+ = {xi, Xi = 1},

54 A. CZYGRINOW, S. POLJAK, AND V. RÖDL

Y + = {yj ,
∑n1

i=1Xif(xi, yj) ≥ 0} and X− = X −X+, Y − = Y − Y +. Then

‖X1
−→v1 + · · ·+Xn1

−→vn1
‖ =

n2∑
j=1

|
n1∑
i=1

Xif(xi, yj)| =
∑

y∈Y +,x∈X+

f(x, y)

+
∑

y∈Y +,x∈X−
−f(x, y) +

∑
y∈Y −,x∈X+

−f(x, y) +
∑

y∈Y −,x∈X−
f(x, y).

Hence, we can choose X∗ ∈ {X+, X−} and Y ∗ ∈ {Y +, Y −} such that

|f(X∗, Y ∗)| =
∣∣∣∣∣∣

∑
y∈Y ∗,x∈X∗

f(x, y)

∣∣∣∣∣∣ ≥ 1

4
√
π
n−1/2K.

We also have f(X∗, Y ∗) = f(X∗ ∪ Y ∗) − f(X∗) − f(Y ∗). Let S be one of X∗, Y ∗,
X∗ ∪ Y ∗ for which |f(S)| ≥ 1

3 |f(X∗, Y ∗)|. We see that S is such that |f(S)| ≥
1

12
√
π
n−1/2K.

Taking K =
(
n
2

)
we obtain a lower bound on the quasi-Ramsey numbers.

Corollary 11.

g(n) ≥ 1

24
√
π
n3/2.

We can now apply the result of Theorem 1 to the linear ordering problem. Since
the proof resembles the reasoning for the corresponding result in [12], we omit the
details.

Proof of Theorem 2. Let wij be the weight of the pair {i, j}. Define f : [n]2 → Z
as follows. For i < j,

f(i, j) =

{
wij if (i, j) ∈ T ,
−wij if (j, i) ∈ T .

Let X∗, Y ∗ be the sets constructed in the proof of Theorem 1 and let R =
[n]−X∗−Y ∗. Construct ≺ in the following way. Construct ranking on X∗ such that
at least half of the arcs with both endpoints in X∗ are consistent with the ranking.
(This can be obtained by considering an arbitrary ordering and its inverse.) Similarly
construct rankings of Y ∗ and R. Assume that f(X∗, Y ∗) ≥ 0; then for x ∈ X∗ and
y ∈ Y ∗ let x ≺ y. Suppose that f(X∗ ∪ Y ∗, R) ≥ 0; then for r ∈ R and z ∈ X∗ ∪ Y ∗
let z ≺ r.

3. Applications of the regularity lemma. In this section we present the
applications of the regularity lemma to both quasi-Ramsey and tournament ranking
functions. A variant of the regularity lemma was applied for max-cut, graph bisection,
and a quadratic assignment problem in Frieze and Kannan [6] and for computing
frequencies in graphs in Duke, Lefmann, and Rödl [3]. For simplicity, we restrict our
discussion to the unweighted case, but similar results can be obtained for weighted
graphs and tournaments. Let (V,E) be a graph on n vertices, for V1, V2 ⊂ V , V1∩V2 =

Ø, the density d(V1, V2) is defined as d(V1, V2) = e(V1,V2)
|V1||V2| , where e(V1, V2) denotes the

number of edges between V1 and V2.
Definition 12. A pair of subsets (V1, V2) is called ε-regular if for every W1 ⊂ V1,

with |W1| ≥ ε|V1| and for every W2 ⊂ V2, with |W2| ≥ ε|V2|
|d(W1,W2)− d(V1, V2)| < ε.

CONSTRUCTIVE TOURNAMENT RANKING 55

Definition 13. A partition V1 ∪ V1 ∪ · · · ∪ Vk of V is ε-regular if

(i) ||Vi| − |Vj || ≤ 1 for all i, j and

(ii) all except at most ε
(
k
2

)
pairs (Vi, Vj) are ε-regular

Let us now state the powerful regularity lemma of Szemerédi [16].

Lemma 14. For every ε > 0 and every integer l there exist N and L such that
any graph with at least N vertices admits an ε-regular partition V1 ∪ · · · ∪ Vk with
l ≤ k ≤ L.

The following version can be easily concluded from the original proof [16].

Lemma 15. For every ε > 0 and every integer l, there exists an N such that for
any graph with at least N = N(l, ε) vertices and any partition P of the graph into
m subsets, there exists L = L(l, ε,m) and an ε-regular partition V1 ∪ · · · ∪ Vk with
l ≤ k ≤ L which is a refinement of P .

The partition postulated in both lemmas can be found in O(n2.4) time using the
algorithm described in Alon et al. [1].

Proof of Theorem 3. The algorithm is as follows: Let ε = ρc
7 .

1. Find an ε-regular partition V1 ∪ · · · ∪ Vk with k ≥ 1
ε of the graph G1 =

(V, f−1(1)).
2. Check all 2k subsets of V of the form S =

⋃
l∈L Vl, where L ⊂ [k] and choose

S that maximizes |∑1≤i<j≤k(2dij − 1)|Vi ∩ S||Vj ∩ S||.
Note that if (Vi, Vj) is ε-regular with density dij in G1 = (V, f−1(1)), then (Vi, Vj) is
ε-regular with density 1−dij in G−1 = (V, f−1(−1)). Given the partition V1∪· · ·∪Vk,
we define f∗ : 2[n] → R in the following way. For T ⊂ [n], f∗(T) =

∑
1≤i<j≤k(2dij −

1)|Vi ∩ T ||Vj ∩ T |, where dij = d(Vi, Vj).

Fact 16. Let T ∗ be a minimal set that maximizes f∗. Then for every l such that
Vl ∩ T ∗ 6= ∅ the sum

∑
j 6=l(2dlj − 1)|Vj ∩ T ∗| > 0.

Proof. We use proof by contradiction. Assume that there exists l such that
Vl ∩ T ∗ 6= ∅ and

∑
j 6=l(2dlj − 1)|Vj ∩ T ∗| ≤ 0. Then

f∗(T ∗) =
∑

1≤i<j≤k
(2dij − 1)|Vi ∩ T ∗||Vj ∩ T ∗| =

∑
j 6=l

(2dlj − 1)|Vl ∩ T ∗||Vj ∩ T ∗|

+
∑

i,j 6=l,i<j
(2dij − 1)|Vi ∩ T ∗||Vj ∩ T ∗| = |Vl ∩ T ∗|

∑
j 6=l

(2dlj − 1)|Vj ∩ T ∗|

+
∑

i,j 6=l,i<j
(2dij − 1)|Vi ∩ T ∗||Vj ∩ T ∗| ≤

∑
i,j 6=l,i<j

(2dij − 1)|Vi ∩ T ∗||Vj ∩ T ∗|

=
∑

1≤i<j≤k
(2dij − 1)|Vi ∩ (T ∗ \ Vl)||Vj ∩ (T ∗ \ Vl)| = f∗(T ∗ \ Vl)

and we get the contradiction with minimality of T ∗.
Fact 17. Let T ∗ be a minimal set that maximizes f∗. If T ∗ ∩ Vl 6= ∅, then

Vl ⊂ T ∗.
Note that Fact 17 implies that if S is a set found by the algorithm, then |f∗(S)| ≥

f∗(T ∗) as the algorithm checks all the possible unions of Vi’s to maximize |f∗|. In
the same way, one can show that |f∗(S)| ≥ −f∗(L∗) where L∗ maximizes −f∗.

56 A. CZYGRINOW, S. POLJAK, AND V. RÖDL

Proof.

f∗(T ∗) = |Vl ∩ T ∗|
∑
j 6=l

(2dlj − 1)|Vj ∩ T ∗|+
∑

i,j 6=l,i<j
(2dij − 1)|Vi ∩ T ∗||Vj ∩ T ∗|

≤ |Vl|
∑
j 6=l

(2dlj − 1)|Vj ∩ T ∗|+
∑

i,j 6=l,i<j
(2dij − 1)|Vi ∩ T ∗||Vj ∩ T ∗|

=
∑

1≤i<j≤k
(2dij − 1)|Vi ∩ (T ∗ ∪ Vl)||Vj ∩ (T ∗ ∪ Vl)| = f∗(T ∗ ∪ Vl).

Hence, f∗(T ∗) ≤ f∗(T ∗ ∪ Vl) and the equality holds only if |Vl ∩ T ∗| = |Vl| as∑
j 6=l(2dlj − 1)|Vj ∩ T ∗| > 0 by the previous fact.

It will be convenient to use the following notation. For two functions A(n) and
B(n), we write A(n) =ε B(n) if |A(n)−B(n)| ≤ εn2 for n large enough.

Our main lemma shows that f∗ is a “good” approximation for the discrepancy
function f .

Lemma 18. For every U ⊂ V |f∗(U)− f(U)| < 7
2εn

2.
Proof. We divide the proof into five claims.
Claim 19. f(U) = ε

2

∑
{i,j}∈[k]2 f(Vi ∩ U, Vj ∩ U).

Indeed, since |Vi| ≤ n
k and also |Vi∩U | ≤ n

k , we infer that |f(Vi∩U)| ≤ (nk
2

) ≤ n2

2k2 .
Therefore,

|f(U)−
∑

{i,j}∈[k]2

f(Vi ∩ U, Vj ∩ U)| =
∣∣∣∣∣
k∑
i=1

f(Vi ∩ U)

∣∣∣∣∣ ≤
k∑
i=1

|f(Vi ∩ U)| ≤ n2

2k
≤ ε

2
n2

which proves Claim 19.
We partition [k]2 = S ∪ I ∪R as follows: {i, j} ∈ S if and only if either |Vi ∩U | <

ε|Vi| or |Vj ∩ U | < ε|Vj |, {i, j} ∈ I if and only if the pair (Vi, Vj) is not ε-regular,
R = [k]2 \ (S ∪ I).

Claim 20. f(U) =ε

∑
R∪I f(Vi ∩ U, Vj ∩ U).

∣∣∣∣∣∣
∑
[k]2

f(Vi ∩ U, Vj ∩ U)−
∑
R∪I

f(Vi ∩ U, Vj ∩ U)

∣∣∣∣∣∣ =

∣∣∣∣∣∑
S

f(Vi ∩ U, Vj ∩ U)

∣∣∣∣∣
≤
∑
S

|f(Vi ∩ U, Vj ∩ U)| ≤
∑
S

|Vi ∩ U ||Vj ∩ U | ≤
(
k

2

)
ε
n2

k2
=
ε

2
n2.

Since |f(U) − ∑[k]2 f(Vi ∩ U, Vj ∩ U)| ≤ ε
2 by Claim 19, we infer that |f(U) −∑

R∪I f(Vi ∩ U, Vj ∩ U)| ≤ ε.
Claim 21. f(U) = 3ε

2

∑
R f(Vi ∩ U, Vj ∩ U).

Indeed, there are at most εk
2

2 irregular pairs and for each of them |f(Vi ∩U, Vj ∩
U)| ≤ (nk)

2
, which implies∣∣∣∣∣∑

R∪I
f(Vi ∩ U, Vj ∩ U)−

∑
R

f(Vi ∩ U, Vj ∩ U)

∣∣∣∣∣ =

∣∣∣∣∣∑
I

f(Vi ∩ U, Vj ∩ U)

∣∣∣∣∣

CONSTRUCTIVE TOURNAMENT RANKING 57

≤
∑
I

|f(Vi ∩ U, Vj ∩ U)| ≤ εk
2

2

(n
k

)2

=
ε

2
n2.

Together with Claim 20, this shows that f(U) = 3ε
2

∑
R f(Vi ∩ U, Vj ∩ U).

Claim 22. f(U) = 5ε
2

∑
R(2dij − 1)|U ∩ Vi||U ∩ Vj |.

From Claim 21 we know that f(U) = 3ε
2

∑
R f(U ∩ Vi, U ∩ Vj). For {i, j} ∈ R we

can approximate f(U ∩ Vi, U ∩ Vj) by (2dij − 1)|U ∩ Vi||U ∩ Vj | with 2ε(nk)
2

error,
namely,

|f(U ∩ Vi, U ∩ Vj)− (2dij − 1)|U ∩ Vi||U ∩ Vj ||
= |d(U ∩ Vi, U ∩ Vj)|U ∩ Vi||U ∩ Vj | − (1− d(U ∩ Vi, U ∩ Vj))|U ∩ Vi||U ∩ Vj |
−(2dij − 1)|U ∩ Vi||U ∩ Vj ||

= 2|d(U ∩ Vi, U ∩ Vj)− dij ||U ∩ Vi||U ∩ Vj | ≤ 2ε
(n
k

)2

.

Thus,∣∣∣∣∣∑
R

f(U ∩ Vi, U ∩ Vj)−
∑
R

(2dij − 1)U ∩ Vi||U ∩ Vj ||
∣∣∣∣∣ ≤ k2

2
2ε
(n
k

)2

= εn2

which proves the claim.
Claim 23. f(U) = 7ε

2
f∗(U).

By definition, f∗(U) =
∑

[k]2(2dij − 1)|U ∩ Vi||U ∩ Vj | and by Claim 22 we have

f(U) = 5ε
2

∑
R(2dij − 1)|U ∩ Vi||U ∩ Vj |. Similar computations show∣∣∣∣∣∣
∑
[k]2

(2dij − 1)|U ∩ Vi||U ∩ Vj | −
∑
R

(2dij − 1)|U ∩ Vi‖|U ∩ Vj‖
∣∣∣∣∣∣

≤
∑
I∪S
|(2dij − 1)||U ∩ Vi||U ∩ Vj | ≤

(
k

2

)(
ε
(n
k

)2

+ ε
(n
k

)2
)
≤ εn2.

From Lemma 18 we can easily conclude that the set S found by the algorithm has
discrepancy |f(S)| ≥ (1 − ρ)OPT (f). Indeed, let T be such that |f(T)| = OPT (f)
and S be the set chosen by the algorithm. From the note after Fact 17 we know that
|f∗(S)| ≥ |f∗(T)| and Lemma 18 implies

|f(S)− f∗(S)| ≤ 7

2
εn2, |f(T)− f∗(T)| ≤ 7

2
εn2.

Thus,

|f(S)| = |f∗(S) + f(S)− f∗(S)| ≥ |f∗(S)| − |f(S)− f∗(S)| ≥ |f∗(T)| − 7

2
εn2

= |f(T) + f∗(T)− f(T)| − 7

2
εn2 ≥ |f(T)| − |f∗(T)− f(T)| − 7

2
εn2

≥ |f(T)| − 7εn2.

58 A. CZYGRINOW, S. POLJAK, AND V. RÖDL

Since |f(T)| ≥ cn2 and ε = ρc
7 we get |f(S)| ≥ (1− ρ)|f(T)|.

We will now turn our attention to the linear ordering problem. Let Tn = (V,A)
be a tournament with V = [n]. We denote by OPT (Tn) = maxPn |Tn ∩ Pn|, where
max is taken over all transitive tournaments of order n. For a pair of subsets (V1, V2)
with V1∩V2 = ∅ we define the tournament density dT (V1, V2) as follows: dT (V1, V2) =
arcs(V1,V2)
|V1||V2| , where arcs(V1, V2) is the number of arcs that start at V1 and end at V2.

Note that dT (V1, V2) = 1− dT (V2, V1).
Proof of Theorem 4. The ranking σ′ can be constructed by the following proce-

dure: Let ε = (ρ12)
2
.

1. Define an auxiliary graph GT as GT = (V,E), where E = {{vi, vj} : i <
j, (vi, vj) ∈ A}. Let l = 1

ε and let Ui = {vn
l (i−1), . . . , vnl i} where i = 1, . . . , l.

2. Apply Lemma 15 to obtain an ε-regular partition of V into V1 ∪ · · · ∪ Vk,
which is a refinement of U1 ∪ · · · ∪ Ul.

3. Check all k! permutations of the sets {V1, . . . , Vk} to find a permutation σ
that maximizes

∑
1≤i1<i2≤k dT (Vσ(i1), Vσ(i2))|Vσ(i1)||Vσ(i2)|.

4. Extend σ inside each of Vi in an arbitrary way to obtain the ranking σ′ of V .
Let us first observe that in the first two steps of the algorithm we actually con-

struct an ε-regular partition of the tournament T , where the regularity is defined as
follows.

Definition 24. A pair of subsets (V1, V2) of V with V1 ∩ V2 = ∅ is ε-regular in
tournament (V,A) if for every W1 ⊂ V1 with |W1| ≥ ε|V1|, and every W2 ⊂ V2 with
|W2| ≥ ε|V2|,

|dT (W1,W2)− dT (V1, V2)| ≤ ε.
Then, since maxUi < minUj for i < j, the following fact holds.
Fact 25. For i < j let Vi ⊂ Ui and Vj ⊂ Uj. If (Vi, Vj) is ε-regular in the graph

GT with density dij, then the pair (Vi, Vj) is ε-regular in tournament T with density
dT (Vi, Vj) = dij.

Thus V1 ∪ · · · ∪ Vk is an ε-regular partition of a tournament T . Without loss
of generality, we may assume that the optimal ordering of V is 1 < 2 < · · · < n.
For a subset S ⊂ V , define h(S) as the number of arcs of T that agree with the
optimal ordering, i.e., h(S) = |{(i, j) ∈ A : i < j, and i, j ∈ S}|. For sets S1, S2 ⊂ V
with S1 ∩ S2 = ∅ let h(S1, S2) be the number of arcs of T between S1 and S2 that
agree with the optimal ordering, i.e., h(S1, S2) = |{(i, j) ∈ A : i < j, i ∈ S1, j ∈ S2 or
i ∈ S2, j ∈ S1}|. Note that h(S1, S2) = h(S2, S1). Define sets Zj = {ns (j−1), . . . , ns j},
where s = 1√

ε
and i = 1, . . . , s. Simple computations show the following.

Fact 26.
1.
∑s
j=1 h(Zj) ≤

√
ε

2 n
2;

2.
∑k
i=1 h(Vi) ≤ ε

2n
2.

Let Wij = Vi ∩ Zj where i = 1, . . . , k and j = 1, . . . , s. We define

h∗ =
∑

1≤j1<j2≤s

∑
i1 6=i2

dT (Vi1 , Vi2)|Wi1j1 ||Wi2j2 |.

We will show that the number of arcs that agree with the optimal ordering cannot be
much larger than h∗, namely, the following.

Lemma 27. h(V) ≤ h∗ + 1
2 (3
√
ε+ 5ε)n2.

Before giving a proof we will establish some auxiliary facts.
Claim 28. h(V) ≤∑1≤j1<j2≤s

∑
i1 6=i2 h(Wi1j1 ,Wi2j2) + 1

2 (ε+
√
ε)n2.

CONSTRUCTIVE TOURNAMENT RANKING 59

Indeed, since {Wij} is a partition of V we have

h(V) ≤
∑

1≤j1<j2≤s

∑
i1 6=i2

h(Wi1j1 ,Wi2j2) +
k∑
i=1

h(Vi) +
s∑
j=1

h(Zj)

≤
∑

1≤j1<j2≤s

∑
i1 6=i2

h(Wi1j1 ,Wi2j2) +
ε

2
n2 +

√
ε

2
n2

by Fact 26.
We adopt the notation from the proof of Lemma 18. Let [k]× [k] = R ∪ I where

(i1, i2) ∈ I if and only if (Vi1 , Vi2) is not ε-regular in a tournament T . Note that if
(i1, i2) ∈ I, then either

• Vi1 , Vi2 ⊂ Ui for some i ∈ [l] or
• (Vi1 , Vi2) is irregular in the graph GT .

Claim 29. h(V) ≤∑1≤j1<j2≤s
∑

(i1,i2)∈R h(Wi1j1 ,Wi2j2) + 1
2 (3ε+

√
ε)n2.

To prove the claim we bound
∑

1≤j1<j2≤s
∑

(i1,i2)∈I h(Wi1j1 ,Wi2j2) from above.∑
1≤j1<j2≤s

∑
(i1,i2)∈I

h(Wi1j1 ,Wi2j2) =
∑

(i1,i2)∈I

∑
j1<j2

h(Wi1j1 ,Wi2j2)

≤
l∑
i

h(Ui) + ε

(
k

2

)
n2

k2
≤ l
(n
l

2

)
+
ε

2
n2 ≤ εn2.

Thus,

h(V) ≤
∑

1≤j1<j2≤s

∑
(i1,i2)∈R

h(Wi1j1 ,Wi2j2) +
1

2
(3ε+

√
ε)n2.

Finally, let [s]× [k] = B ∪ S, where S = {(j, i), |Wij | < ε|Vi|}.
Claim 30. h(V) ≤∑1≤j1<j2≤s

∑{h(Wi1j1 ,Wi2j2), (i1, i2) ∈ R, (j1, i1), (j2, i2) ∈
B}+ 1

2 (3ε+ 3
√
ε)n2.

Indeed, for (j1, i1) ∈ S we have h(Wi1j1 ,Wi2j2) < ε|Vi1 ||Wi2j2 |. Therefore,∑
j1<j2

∑
{h(Wi1j1 ,Wi2j2), (j1, i1) ∈ S, or(j2, i2) ∈ S} ≤

∑
[k]×[k],i1 6=i2

∑
j1<j2

ε|Vi1 ||Wi2j2 |

≤
∑

[k]×[k],i1 6=i2

s∑
j1=1

s∑
j2=1

ε|Vi1 ||Wi2j2 | ≤ εs
∑

[k]×[k],i1 6=i2
|Vi1 ||Vi2 | ≤ εsk2n

2

k2
=
√
εn2

as s = 1√
ε
.

Proof of Lemma 27. To show Lemma 27, we need to prove that h(V) ≤ h∗ +
1
2 (7ε+ 3

√
ε)n2. For j1 < j2 we have

h(Wi1j1 ,Wi2j2) = arcs(Wi1j1 ,Wi2j2) = dT (Wi1j1 ,Wi2j2)|Wi1j1 ||Wi2j2 |.

60 A. CZYGRINOW, S. POLJAK, AND V. RÖDL

Since |Wi1j1 | ≥ ε|Vi1 |, |Wi2j2 | ≥ ε|Vi2 |, and (Vi1 , Vi2) is ε-regular we can approximate
dT (Wi1j1 ,Wi2j2) ≤ dT (Vi1 , Vi2) + ε. Clearly,∑

j1<j2

∑
i1 6=i2

ε|Wi1j1 ||Wi2j2 | = ε
∑
i1 6=i2

∑
j1<j2

|Wi1j1 ||Wi2j2 | = ε
∑
i1 6=i2

|Vi1 ||Vi2 | ≤ εn2.

From Claim 30

h(V) ≤
∑

1≤j1<j2≤s

∑
{h(Wi1j1 ,Wi2j2), (i1, i2) ∈ R, (j1, i1), (j2, i2) ∈ B}+1

2
(3ε+3

√
ε)n2

≤
∑
j1<j2

∑
i1 6=i2

dT (Vi1 , Vi2)|Wi1j1 ||Wi2j2 |+
1

2
(5ε+ 3

√
ε)n2 = h∗ +

1

2
(5ε+ 3

√
ε)n2.

To complete the proof of Theorem 4, we first introduce an auxiliary digraph K
with vertices corresponding to sets Wij , weights on arcs corresponding to approxi-
mation of the number of arcs that are consistent with optimal ordering. More for-
mally, let K be a complete k-partite, symmetric digraph with a vertex set V (K) =
{yij : i ∈ [k], j ∈ [s]} and with weights on arcs defined as follows: w(yi1j1 , yi2j2) =
dT (Vi1 , Vi2)|Wi1j1 ||Wi2j2 | if i1 6= i2, and w(yi1j1 , yi1j2) = 0. Let Yi =

⋃
j∈[s]{yij}.

Vertex yij ∈ Yi corresponds to the set Wij ⊂ Vi and Yi corresponds to Vi,
⋃
i∈[k] yij

to Zj . We define the ordering ≺ of V (K) in the following way: yi1j1 ≺ yi2j2 if and
only if either j1 < j2 or j1 = j2 and i1 < i2. Then

h∗ =
∑

1≤j1<j2≤s

∑
i1 6=i2

w(yi1j1 , yi2j2) ≤
∑

yi1j1≺yi2j2
w(yi1j1 , yi2j2).

The final part of the proof is based on the following lemma.
Lemma 31 (ordering lemma). There exists a permutation σ : [k]→ [k] such that

for every ordering ≺ of V (K)∑
yi1j1≺yi2j2

w(yi1j1 , yi2j2) ≤
∑

1≤i1<i2≤k

∑
j1,j2∈[s]

w(yσ(i1)j1 , yσ(i2)j2).

In other words, the sum of weights of the arcs is maximized for an ordering < in
which Yi1 < Yi2 < · · · < Yik . We postpone the proof of Lemma 31 until the end of
this section.

Lemma 32. h∗ ≤ maxσ
∑

1≤i1<i2≤k dT (Vσ(i1), Vσ(i2))|Vσ(i1)||Vσ(i2)|
Proof. By the ordering lemma, there exists a permutation σ : [k]→ [k] such that

h∗ ≤
∑

yi1j1≺yi2j2
w(yi1j1 , yi2j2) ≤

∑
1≤i1<i2≤k

∑
j1,j2∈[s]

w(yσ(i1)j1 , yσ(i2)j2)

=
∑

1≤i1<i2≤k

∑
j1,j2∈[s]

dT (Vσ(i1), Vσ(i2))|Wi1j1 ||Wi2j2 |

=
∑

1≤i1<i2≤k
dT (Vσ(i1), Vσ(i2))|Vσ(i1)||Vσ(i2)|

CONSTRUCTIVE TOURNAMENT RANKING 61

≤ max
σ

∑
1≤i1<i2≤k

dT (Vσ(i1), Vσ(i2))|Vσ(i1)||Vσ(i2)|.

The number of arcs that are consistent with constructed ranking σ′ is at least
maxσ

∑
1≤i1<i2≤k dT (Vσ(i1), Vσ(i2))|Vσ(i1)||Vσ(i2)|, which by Lemma 27 and Lemma

32 is at least h(V) − 1
2 (5ε + 3

√
ε)n2. When we combine it with the lower bound

h(V) = OPT (Tn) ≥ 1
4n

2 mentioned in the introduction we conclude that the number
of arcs that are consistent with constructed ordering is at least (1− ρ)OPT (Tn) since
ρ ≥ 10ε+ 6

√
ε.

We will now prove the ordering lemma.
Proof of the ordering lemma. To prove the lemma, it is sufficient to show that the

sum of weights of arcs is maximized for an ordering in which every Yi is an interval.
Let ≺ be an ordering of V (K). We denote by h(≺) the sum

∑
yi1j1≺yi2j2 w(yi1j1 , yi2j2)

and for every Yi, where i = 1, . . . , k, we define a gap-number gi = gap≺(Yi) as the

minimum number of intervals Iij such that Yi =
⋃gi+1
j=1 Iij . Note that the gap-numbers

depend on the ordering of V (K).
Claim 33. If gap≺(Yi0) > 0 then there exists an ordering ≺∗ such that
1. h(≺) ≤ h(≺∗),
2. gap≺∗(Yi0) < gap≺(Yi0), and
3. gap≺∗(Yi) = gap≺∗(Yi) for every i 6= i0.

Applying the claim to Y1, Y2, . . . , Yk, we construct the ordering in which every
gi = 0, i.e., all Yi are intervals.

Proof of the claim. Since gap≺(Yi0) > 0 there exist two intervals Ii01, Ii02 such
that Ii01, Ii02 ∈ Yi0 and

Ii01 < Ii1j1 < Ii2j2 < · · · < Iitjt < Ii02.

Without loss of generality we may assume that dT (Vi0 , Vi1)|Wi1j1 |+ · · ·+ dT (Vi0 , Vit)
|Witjt | ≥ dT (Vi1 , Vi0)|Wi1j1 | + · · · + dT (Vit , Vi0)|Witjt |. Then the sum of the weights
of arcs between intervals Ii01 < Ii1j1 < Ii2j2 < · · · < Iitjt < Ii02 is

dT (Vi0 , Vi1)|Wi1j1 ||Ii01|+ · · ·+ dT (Vi0 , Vit)|Witjt ||Ii01|

+dT (Vi1 , Vi0)|Wi1j1 ||Ii02|+ · · ·+ dT (Vit , Vi0)|Witjt ||Ii02|

≤ dT (Vi0 , Vi1)|Wi1j1 ||Ii01|+ · · ·+ dT (Vi0 , Vit)|Witjt ||Ii01|

+dT (Vi0 , Vi1)|Wi1j1 ||Ii02|+ · · ·+ dT (Vit0, Vit)|Witjt ||Ii02|,
which equals the sum of weights of arcs between intervals

Ii01 < Ii02 < Ii1j1 < Ii2j2 < · · · < Iitjt .

Therefore, we can reduce the number of gaps of Yi0 .

4. Conclusions and an open problem. In this paper, we considered the
weighted version of discrepancy and tournament ranking problems. In the first part
of the paper we generalized the approach from [12] to weighted graphs. In the second
part we presented algorithms for both problems which were based on the algorithmic
regularity lemma. We want to conclude with the following open problem.

62 A. CZYGRINOW, S. POLJAK, AND V. RÖDL

Open Problem 1. For a given n, construct an m × n matrix M = [mij] of
+1’s and −1’s with m small which has the following property. For every vector −→u ∈
{−1, 1}n

1

m

m∑
i=1

∣∣∣∣∣∣
n∑
j=1

mijuj

∣∣∣∣∣∣ ≥ c√n
for some constant c.

By probabilistic method one can show the existence of matrix M with m = n
and a constant c = 0.0017 sufficiently small. Note that Hadamard matrices do not
possess the required property, taking −→u as one of the row vectors of M results in∑m
i=1 |

∑n
j=1mijuj | = n.

Let us observe that we can use the solution matrix M to our initial problem of
finding a sign vector. Namely, for given −→v1 , . . . ,−→vn ∈ {−1, 1}n, there is an O(n2m)

algorithm that finds
−→
X = (X1, . . . , Xn) ∈ {−1, 1}n such that

||X1
−→v1 + · · ·+Xn

−→vn || ≥ cn3/2.

Indeed, let −→vi = (vi,1, . . . , vi,n) and −→wj = (v1,j , . . . , vn,j). We can construct a sign
vector in the following way: For every row vector −→mi of matrix M we compute∑n
j=1 |〈−→wj ,−→mi〉| and we choose −→mi such that the sum is the largest.

By the property of the matrixM , we know that for every vector−→wj ,
∑m
i=1 |〈−→wj ,−→mi〉|

≥ cm
√
n and so

∑n
j=1

∑m
i=1 |〈−→wj ,−→mi〉| ≥ cmn3/2. This implies that if a vector

−→m = (m1, . . . ,mn) is chosen by the algorithm, then
∑n
j=1 |〈−→wj ,−→m〉| ≥ cn3/2. We

verify that

||−→v1m1 + · · ·+−→vnmn|| =
n∑
j=1

|v1,jm1 + · · ·+ vn,jmn| =
n∑
j=1

|〈−→wj ,−→m〉| ≥ cn3/2.

In computing the sum
∑n
j=1 |〈−→wj ,−→mi〉| we add n2 numbers of size O(1). Note that

the same argument can be repeated (resulting in different constant c) if −→v1 , . . . ,−→vn ∈
{−1, 1}k, and k = Θ(n).

As long as m is smaller then n lg n this will improve the time complexity of results
in [12]. A similar question can be asked for the weighted case.

Acknowledgments. We would like to thank referees for helpful comments and
suggestions.

REFERENCES

[1] N. Alon, R.A. Duke, H. Lefmann, V. Rödl, and R. Yuster, The algorithmic aspects of the
regularity lemma, J. Algorithms, 16 (1994), pp. 80–109.

[2] A. Czygrinow, S. Poljak, and V. Rödl, On the Linear Ordering Problem, Emory University
Technical Report, Atlanta, GA, 1996.

[3] R.A. Duke, H. Lefmann, and V. Rödl, A fast algorithm for computing frequencies in a given
graph, SIAM J. Comput., 24 (1995), pp. 598–620.

[4] P. Erdos and J. Spencer, Probabilistic Methods in Combinatorics, Academic Press, New
York, 1974.

[5] W. Fernandez de la Vega, On the maximal cardinality of a consistent set of arcs in a random
tournament, J. Combin. Theory Ser. B, 35 (1983), pp. 328–332.

[6] A. Frieze and R. Kannan, The regularity lemma and approximation schemes for dense prob-
lems, in Proc. 37th FOCS, 1996, pp. 12–20.

CONSTRUCTIVE TOURNAMENT RANKING 63

[7] A. Frieze and R. Kannan, Quick Approximation to Matrices and Applications, preliminary
manuscript, February 1997.

[8] M. R. Garey and D. S. Johnson, Computers and Intractability. A Guide to the Theory of
NP-Completeness, W.H. Freeman, San Francisco, CA, 1979.

[9] M. X. Goemans and D. P. Williamson, .878-Approximation Algorithm for MAX CUT and
MAX 2SAT, in Proc. 26th STOC, 1994, pp. 422–431.

[10] M. Grötschel, M. Jünger, and G. Reinelt, A cutting plane algorithm for the linear ordering
problem, Oper. Res., 32 (1984), pp. 1195–1220.

[11] J. K. Lenstra, Sequencing by Enumerative Methods, in Mathematical Center Tracts 69, Math-
ematisch Centrum, Amsterdam.

[12] S. Poljak, V. Rödl, and J. Spencer, Tournament ranking with expected profit in polynomial
time, SIAM J. Discrete Math., 1 (1988), pp. 372–376.

[13] S. Poljak and D. Turzik, A polynomial time heuristic for certain subgraph optimization
problems with guaranteed lower bound, Discrete Math., 58 (1986), pp. 99–138.

[14] J. Spencer, Optimal ranking of tournaments, Networks, 1 (1971), pp. 135–138.
[15] J. Spencer, Nonconstructive Methods in Discrete Mathematics, in Studies in Combinatorics,

G. C. Rota, ed., Mathematical Association of America, Washington, D.C., 1978, pp. 142–
178.

[16] E. Szemerédi, Regular partitions of graphs, in Proc. Colloque Internat. CNRS, J.C. Bermond,
ed., Paris, 1978, pp. 399-401.

OPTIMAL BOUNDS FOR MATCHING ROUTING ON TREES∗

LOUXIN ZHANG†

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 1, pp. 64–77

Abstract. The permutation routing problem is studied for trees under the matching model. By
introducing a novel and useful (so-called) caterpillar tree partition, we prove that any permutation
on an n-node tree (and thus graph) can be routed in 3

2
n + O(logn) steps. This answers an open

problem of Alon, Chung, and Graham [SIAM J. Discrete Math., 7 (1994), pp. 516–530].

Key words. matching routing, off-line algorithms, trees

AMS subject classifications. 05C, 68M, 68R

PII. S0895480197323159

1. Introduction. Routing problems on networks arise in different fields such as
communications, parallel architectures, and very large scale integration (VLSI) theory
and have been extensively studied in recent years (see [9, 10] for a comprehensive
survey). In this paper, we study permutation routing under the matching model,
which was proposed by Alon, Chung, and Graham [2]. The routing of this type is
described as follows. Given a graph G = (V,E) with vertex set V and edge set
E. Initially, each vertex v of G is occupied by a “packet” p. To each packet p is
associated a destination π(v) ∈ V so that distinct packets have distinct destinations,
where the permutation π is usually called a routing assignment. Packets can be
moved to different vertices of G under the protocol, which at each step a set S of
edges sharing no endpoints of G is selected, and packets at the endpoints of each
edge in S are interchanged. The goal of routing is to route all the packets to their
destinations in a minimum number of parallel steps. The routing model considered
here is interesting as its basic building blocks are very simple. Like hot-potato routing
or deflection routing [1, 4], the striking feature of the matching model is that it involves
no message queues at each node. In addition, best-known off-line routing algorithms
for the hypercube, the linear array, and the mesh can be implemented in this routing
model [6, 10, 12]. Such a kind of off-line routing algorithms has also been generalized
in various Cayley networks [3].

In their paper, Alon, Chung, and Graham [2] investigated this routing problem for
a variety of popular networks including trees, complete (bipartite) graphs, hypercubes,
expander graphs, and Cayley graphs. One of their interesting results is that any
permutation on a tree with n nodes can be routed in at most 3n steps, which was
improved to 13

5 n in [13] and then 2n in [5, 7]. They also conjecture that the optimal
upper bound for trees is 3

2n. In [13], Roberts, Symvonis, and Zhang proved that any
permutation can be routed in at most n+o(n) steps on an n-node d-ary complete trees
in which the root has degree d and any other internal node has degree d+ 1 for some
fixed d > 0. Furthermore, relation routing under a variant of the matching model

∗Received by the editors June 17, 1997; accepted for publication (in revised form) March 5, 1998;
published electronically January 29, 1999. This work was done at the University of Waterloo and
was partially supported by a CGAT grant. A preliminary version of this paper was presented at the
8th Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, 1997.

http://www.siam.org/journals/sidma/12-1/32315.html
†BioInformatics Center, Kent Ridge Digital Labs, 21 Heng Mui Keng Terrace, Kent Ridge, Sin-

gapore 119613 (lxzhang@krdl.org.sg).

64

MATCHING ROUTING ON TREES 65

r

Td

r1
r2

T

T1
T2

· · ·

rd

Fig. 1. Partition a tree T .

are also studied by Krizanc and Zhang [8] and Pantziou, Roberts, and Symvonis [11]
independently.

This paper favors their conjecture. After a number of refinements are incorporated
in Alon, Chung, and Graham’s algorithm and their analysis, we obtain a simple 2n
upper bound for routing on trees in section 2. In section 3, by introducing a novel tree
partition and extending our approach, we prove that any permutation can be routed
in 3

2n+O(log n) steps on any n-node tree. (As a consequence, any permutation on a
n-node graph G can be routed in at most 3

2n+O(log n) steps since G has an n-node
spanning subtree.) This bound is quite sharp since the lower bound for the problem
is 3

2n (see [2]).

2. A simple 2n-step algorithm. Let T be a tree. For a permutation assign-
ment π on T , we define rt(π, T) to be the minimum number of steps required to route
π. Further, we define rt(T), the routing number of T [2], by rt(T) = maxπ rt(π, T),
where π ranges over all possible permutations on T . We first prove a weak result to
demonstrate our approach as a warmup.

Theorem 2.1. For any n-node subtree T , rt(T) ≤ 2n.
For proving Theorem 2.1, we first introduce some necessary definitions and facts.

Given a tree T = (V,E) with vertex set V and edge set E, a class of disjoint subtrees
{Ti}s1 is called a partition of T if V (T) = ∪si=1V (Ti). Let T ′ be any one of these
subtrees. For a routing assignment π, call a packet p that is initially located in T ′

improper if its destination π(p) does not belong to T ′; call it proper, otherwise. T ′ is
pure if it does not contain any improper packets, and is mixed, otherwise. Since π is a
permutation and each node holds one packet, the number of improper packets located
in a subtree T ′ is always equal to the number of improper packets with destinations
in T ′ during routing. This simple observation plays a crucial role in designing off-line
algorithms for matching routing.

Proof. We use the standard divide-and-conquer technique to design a 2n-step off-
line algorithm for our purpose, which is a refinement of Alon, Chung, and Graham’s
algorithm [2, Theorem 1].

For any n-node tree T , there is always a node r ∈ V (T) that minimizes maximum
remaining components. Such a node is called the “centroid.” Obviously, each subtree
formed by removing the centroid r (and all incident edges) has at most n/2 nodes
(see Figure 1). Let d subtrees be formed after the removal of r, and let |Ti| ≥ |Ti+1|
for all i ≤ d− 1. Then there exists a nonnegative integer s such that

1 +

d∑
j=s+1

|Tj | ≤ |T1| < 1 +
d∑
j=s

|Tj |,(2.1)

where we assume
∑d
j=d+1 |Tj | = 0. Let Tr be the subtree (of T) consisting of the

node r and subtrees Ts+1, . . . Td. Obviously, T1, T2, . . . , Ts and Tr form a partition of
T .

66 LOUXIN ZHANG

The first objective of our algorithm is to move all improper packets into their
destination subtrees in the partition {Tr, T1, T2, . . . , Ts}. For any subtree T ′ in the
partition, let I(T ′) and P (T ′) denote the sets of improper and proper packets in T ′,
respectively.

Lemma 2.2. All improper packets, with respect to the partition, can be moved
into their destination subtrees in at most

max{|P (Tr)|, |P (Tj)| | j ≤ s}+ |I(Tr)|+
s∑
j=1

|I(Tj)|+ s− 1 ≤ n+ s− 1(2.2)

steps.

Proof. A similar result was proved in [13]. We use a greedy algorithm for moving
improper packets into their destination subtrees. In a subtree T ′, whenever we can
interchange an improper and proper packet so as to bring the improper packet close
to its destination subtree, we do it; between the vertex r and the roots ri of subtrees
Ti, whenever we can interchange two improper packets so as to bring them into their
destination subtrees, we do it.

Our algorithm consists of two phases. In the first phase, we only move im-
proper packets in each subtree T ′ towards r′, the root of T ′, as many as m =
max{|P (Tr)|, |P (Ti)| | 1 ≤ i ≤ s} steps. More specifically, this phase is executed
as follows. A node v is said to be in level i of the tree if the distance between it and
the root r is i. Let pv denote the packet at node v before step t. Then packets are
moved according to the following rules at step t:

• When t = 0 (mod 2), the packet pv in even levels is interchanged with an
improper packet in a child of v if pv is proper and the child of v holds an
improper packet. When several children hold improper packets, one child is
chosen randomly. Otherwise, pv is not moved at this step.
• When t = 1 (mod 2), the packet pv in odd levels is interchanged with an

improper packet in a child of v if pv is proper and the child of v holds an
improper packet. Otherwise, pv is not moved at this step.

Since there are at most m proper packets in each subtree T ′, after this phase is
executed, the first improper packet has reached the root r′ of T ′. Further, in every
two steps, a new improper packet will be moved onto r′ if there are improper packets.
All these facts allow the second phase described below to be executed without delay.

In the second phase, we move improper packets across r into their destination
components, as well as keeping on moving up improper packets in each subtree. Before
Tr becomes pure, we can move two improper packets into their destination subtrees in
every two steps. However, we need extra steps after Tr is pure. After Tr has become
pure, the packet pr at r is proper. If other subtrees still contain improper packets, we
have to move pr into a subtree before moving improper packets cross r and then move
it back to r. In order to use the minimum number of steps to move the remaining
improper packets, we move the packet pr to a mixed subtree T ′ and move pr back
to r when the last improper packet is moved into T ′. It can easily be seen that we
need one extra step for moving improper packets out of T ′ for each remaining mixed
subtree T ′. Since there are at most as many as s such subtrees, the second phase can
be finished in at most

|I(Tr)|+
s∑
j=1

|I(Tj)|+ s− 1

MATCHING ROUTING ON TREES 67

steps, where the subtractive term −1 is derived from the fact that the last two mixed
subtrees become pure during the last step (since either at least two mixed subtrees
exist or none).

Overall, the whole procedure takes at most

max{|P (Tr)|, |P (Tj)| | j ≤ s}+ |I(Tr)|+
s∑
j=1

|I(Tj)|+ s− 1 ≤ n+ s− 1

steps. This proves the lemma.
Now, we continue the proof of Theorem 2.1. After all improper packets have been

moved into their destination subtrees, we route each subtree (in parallel).
Obviously, our algorithm is correct. Let rt(T) denote the number of steps needed

for routing a permutation on tree T . Then we have

rt(T) ≤ max{rt(Tj), rt(Tr) | j ≤ s}+ n+ s− 1 = rt(T1) + n+ s− 1.(2.3)

Let k = |Ts|. Then, k ≥ 1. By inequality (2.1), |T1| ≤ |Tr| + k − 1. Since, by the
assumption, |Tj | ≥ |Ts| for j ≤ s,

s ≤ 1 +
n− |T1| − |Tr|

k
≤ 1 +

n− 2|T1|+ k − 1

k
.

Therefore, from (2.3) follows that

rt(T) ≤
⌊(

1 +
1

k

)
n− 2|T1|

k
+ rt(T1) +

k − 1

k

⌋
.(2.4)

Further, for a 2-node tree T , rt(T) = 1 ≤ 2 × 2. Since rt(T) ≥ |T |, k ≥ 1, and
|T1| ≤ n

2 , (2.4) implies that

rt(T) ≤ 2n.

This proves the theorem.

3. Tight bound for the routing number of trees. In this section, we prove
that the routing number of n-node trees is 3n

2 + O(log n) by refining our approach
used in last section. We first introduce the (so-called) caterpillar partition for trees.

Given a tree T and after the removal of a node v (and all incident edges), T is
partitioned into some disjoint subtrees. Such a partition is called a star partition of
T . Given a positive real number γ < 1, a star partition is γ-type if each subtree in the
partition contains at most γ|T | vertices. Recall that every tree has a 1

2 -star partition.
However, for any γ < 1

2 , a γ-star partition does not always exist for an arbitrary tree.
A partition of T into subtrees is called a caterpillar partition if there is a path

P in T such that each subtree is rooted at either an nonendpoint v′ in P or a child
of endpoints of P (see Figure 2). A subtree is direct if its root is on P and indirect
otherwise. The path P is called the backbone of the partition. Given two positive real
numbers γ, β < 1, a caterpillar partition is called (γ, β)-type if each indirect subtree
has at most γ|T | nodes and the number of nodes in all direct subtrees is at most
β|T |. Note that by definition, the backbone of a caterpillar partition contains at most
β|T |+ 2 nodes.

The proof of our main theorem will use the following result about tree partition.
The theorem is of independent interest.

68 LOUXIN ZHANG

· · ·

P

· · ·
· · ·

Fig. 2. A caterpillar partition of a tree T . Indirect subtrees are rooted at children of endpoints;
direct ones are rooted at internal nodes on the path.

Theorem 3.1. Any tree T has either a 1
3 -star or a (1

3 ,
1
3)-caterpillar partition.

Proof. Let v be a centroid of an n-node tree T . Let B be the set of all nodes
u such that when u is removed there is a component not containing v with at least
n/3 nodes. If B is empty, then the centroid v induces a 1

3 -star partition. Otherwise,
v ∈ B and B consists of a path in T. This follows from the following facts. First, B
induces a subtree. Let u1, u2 ∈ B. Then, for any node w on the path between u1 and
u2 in T , there is a component C not containing v formed after w is removed satisfying
the property that C contains u1 or u2, and so w ∈ B. Second, if B does not induce a
path, then there are three nodes u1, u2, u3 ∈ B that are adjacent to a common node
u ∈ B. In this case, we have three different components not containing v each with
at least n/3 after nodes u1, u2, u3 are removed—a contradiction. Hence, B consists
of a path in T .

It is easy to see that B forms the backbone of a desired (1
3 ,

1
3)-caterpillar

partition.
Theorem 3.2. For any n-node tree T ,

rt(T) ≤ 3n

2
+ 9 log3 n.

Proof. We prove the result by induction. Obviously, the result is trivial for any
tree with less than 4 nodes. Thus, we assume that |T | > 4 in the rest of our proof.

Let u and v be two leaves in the n-node tree T . They are sibling if they have a
common parent. Consider a multiset of sibling leaves of T

S = {v1, v2, . . . , vl |l ≥ 3, },
where vi and vj are different unless i = 1 and j = l. If the packet p(vi) at vi has
destination vi+1 for all i ≤ l− 1, then we can use l steps to move l− 1 packets p(vi),
1 ≤ i ≤ l−1, to their destinations. By induction, we can route the rest of the packets
to their destinations in t ≤ 3

2 (n− l+ 1) + 9 log3(n− l+ 1). Since l ≥ 3, we can route
π in at most l + t ≤ 3

2n + 9 log3 n steps. Therefore, in what follows, we assume that
T satisfies the following condition:

(???) There are no sibling leaves v1, v2, and v3 such that the packet
p(vi) has destination vi+1 for i = 1, 2, where v1 and v3 could be same.

By Theorem 3.1, T has either a 1
3 -star or a (1

3 ,
1
3)-caterpillar partition.

Case 1. T has a 1
3 -star partition.

With T1, T2, . . . , Td denoting subtrees in such a partition, we assume that the
“centroid” is r and |Ti| ≥ |Ti+1| for i = 1, 2, . . . , d− 1 (see Figure 1). We consider the
following partition of T :

{T1, T2, . . . , Td, {r} }.

MATCHING ROUTING ON TREES 69

We route a permutation by first moving all improper packets into their destination
subtrees and then route each subtree recursively as in the proof of Theorem 2.1. In
order to reach our desired bound, however, we have to overlap the two phases. For
simplicity, we assume that the packet pr located at node r is proper. (Otherwise, our
algorithm takes less steps.) Recall that P (Ti) and I(Ti) denote the sets of proper
and improper packets in the subtree Ti for i ≤ d. After moving all improper packets
towards r in max1≤i≤d |P (Ti)| steps, we start to move improper packets out of subtree
T1 by pushing pr into T1. While we move improper packets out of T1, some improper
packets may be moved out of other subtrees. Once T1 has become pure (and pr is
back to r, of course), we start to route T1 immediately, as well as move improper
packets out of T2. In general, after moving all improper packets out of Ti, we start
to route Ti, as well as move improper packets out of other trees Tj (j ≥ i + 1), if
necessary.

We now analyze the algorithm. Let ni denote the number of steps taken by the
algorithm for moving all improper packets out of Ti after all Tj ’s (j < i) become pure.
Since |Ti| ≤ 1

3n, by induction, all packets with destinations in Ti have been moved to
their destinations after at most

ti = max
j
|Pj |+

i∑
j=1

nj + rt(Ti)(3.1)

steps. Let Ikij (i, j ≥ k) denote the number of improper packets moved from Ti to Tj
during the phase of moving improper packets out of Tk. Then, it is not difficult to
verify the following formulae:

|I(Ti)| =
i∑
l=1

d∑
j=l

I lij(3.2)

and

ni = 1 +
∑
j,k≥i

Iijk.(3.3)

The additive term 1 in the last formula is derived from the fact that we use one extra
step to move the packet pr, located at r, into Ti at the beginning of moving improper
packets out of Ti. Plugging formulae (3.2) and (3.3) into (3.1), we have that

ti ≤ i+
d∑
j=1

|Tj |+ rt(Ti).(3.4)

By the condition (? ? ?), all subtrees have become pure if all improper packets are
moved out of all subtrees that have at least 2 nodes. Thus, we need only to consider
those multinode subtrees T ′. Since there are at most n

2 multinode subtrees, lormula
(3.4) can be refined into

ti ≤ min
{
i,
n

2

}
+

d∑
j=1

|Tj |+ rt(Ti).(3.5)

For i ≤ 9, since |Ti| ≤ n
3 ,

min
{
i,
n

2

}
+ |Ti| ≤ 9 +

n− |Ti|
2

(3.6)

70 LOUXIN ZHANG

...

r1
r2

Tr

T ′1
T ′2

T ′

T ′′ T ′′2

T ′′1

Fig. 3. A (1
3
, 1

3
)-caterpillar partition of T . Combine all direct subtrees into a middle subtree

and some small indirect subtrees at each endpoint into a larger subtree.

holds.
For 9 < i ≤ n

3 , we have |Ti| ≤ n
i <

n
9 . Thus inequality (3.6) is also true.

For i > n
3 , we have |Ti| ≤ 2. Thus inequality (3.6) is still true.

By the induction hypothesis,

rt(Ti) ≤ 3|Ti|
2

+ 9 log3 |Ti|.

Therefore, (3.5) becomes

ti ≤ 3(n− |Ti|)
2

+ 9 + rt(Ti) ≤ 3n

2
+ 9 log3 |T |,

which implies that

rt(π, T) = max
1≤i≤d

ti ≤ 3n

2
+ 9 log3 |T |.

Case 2. T has a (1
3 ,

1
3)-caterpillar partition.

Let such a partition P be illustrated in Figure 3. The backbone P has endpoints
r1 and r2; indirect trees around the endpoints r1 and r2 are T ′i , 1 ≤ i ≤ m, and T ′′j ,
1 ≤ j ≤ n, respectively. Without loss of generality, we assume that

|T ′i | ≥ |T ′i+1|,

|T ′′j | ≥ |T ′′j+1|,
for all possible i and j. By definition,

m∑
i=1

|T ′i |+ 1 >
1

3
n(3.7)

and

n∑
i=1

|T ′′i |+ 1 >
1

3
n.(3.8)

Let Tr denote the union of all directed trees. Set

M = max{|Tr|, |T ′1|, |T ′′1 |}.

MATCHING ROUTING ON TREES 71

Since P is (1
3 ,

1
3)-caterpillar partition, M ≤ 1

3n. Further, by inequality (3.7), there
exists c such that

m∑
i=c+1

|T ′i |+ 1 ≤M <
m∑
i=c

|T ′i |+ 1,

where the sum is 0 if c=m+1. Similarly, there exists d such that

n∑
j=d+1

|T ′′j |+ 1 ≤M <

n∑
j=d

|T ′′j |+ 1.

Let T ′r1 be the union of T ′c+1, T ′c+2, . . . , T
′
m and r1, and let T ′′r2 be the union of T ′′d+1,

T ′′d+2, . . . , T
′′
n and r2. Then disjoint subtrees Tr, T

′
r1 , T

′′
r2 , T

′
i (1 ≤ i ≤ c), and T ′′j

(1 ≤ j ≤ d) form a partition of T (see Figure 3). For routing permutation π we move
all packets into their destination subtrees in the partition and then route each subtree
in parallel as in Theorem 2.1. First, we establish the following fact, a generalization
of Lemma 2.2 in section 2, the proof of which is somewhat lengthy and involved.

Lemma 3.3. Let c′ and d′ denote the numbers of indirect subtrees T ′i and T ′′j
satisfying |T ′i |, |T ′′j | ≥ 2, respectively. Then, all improper packets can be moved into
their destination subtrees in at most

n+ c′ + d′ +
⌈
c− c′

2

⌉
+

⌈
d− d′

2

⌉
(3.9)

steps.
Proof. Note that c − c′ and d − d′ are the numbers of indirect, 1-node subtrees

around r1 and r2 in the partition, respectively. The algorithm for routing improper
packets into their destination subtrees consists of two phases.

Let x denote the total number of proper packets with respect to the partition of
T , which is described above. Note that an improper packet in each direct subtree
has its destination in some indirect subtree around endpoints. In the first phase,
improper packets are moved up as many as x steps in each direct or indirect subtree.
This phase is detailed in the proof of Theorem 2.1. Roughly speaking, in each direct
or indirect subtree T ′, whenever we can interchange an improper and proper packet
so as to bring the improper packet close to the root r(T ′) of T ′, we do it.

Recall that after the first phase, in each direct or indirect subtree T ′ the vertices
that improper packets occupy form a subtree T ′′. In particular, the root of each
subtree T ′ holds an improper packet. Furthermore, if there exist some improper
packets out of T ′′ in T ′, one improper packet can be moved into T ′′ in every two
steps. This fact guarantees that all improper packets will be moved out of each
subtree (and into their destination subtrees) during the second phase.

In the second phase, improper packets will be moved into their destination sub-
trees. For convenience, we denote all nodes on the backbone P from r1 to r2 as

v0(= r1), v1, v2, . . . , vk(= r2).

We also assume that k is an odd integer (the case that k is even is similar). Let
pi denote the packet at the node vi before step t. At step t, we move the packets
according to the following rules:

• When t = 0 (mod 2), for every i such that 0 ≤ i ≤ bk/2c, (1) if either p2i+1

has destination in a subtree around r1 and p2i does not, or p2i has destination

72 LOUXIN ZHANG

Wf

r2r1 · · ·· · · · · · · · · · · ·
· · ·· · ·

R0 W1 R1 W2

Fig. 4. Packet distribution on the path P . All packets are divided into alternating blocks of
red packets and nonred packets, where a red packet is one with destination at some indirect subtree
around r1.

in a subtree around r2 and p2i+1 does not, then interchange the packet p2i

and p2i+1. Otherwise, (2) for i > 0, interchange p2i with an improper packet
in a subtree right below it if p2i is proper. For i = 0, either move p0 into its
destination subtree if p0 is improper, or move p0 into a chosen subtree around
r1 (to be specified later) if p0 is proper and T ′r1 is pure.
• When t = 1 (mod 2), for every i such that 0 ≤ i ≤ bk/2c, (1) if either
p2i+2 has destination in a subtree around r1 and p2i+1 does not, or p2i+1 has
destination in a subtree around r2 and p2i+2 does not, interchange the packet
p2i+1 and p2i+2. Otherwise, (2) for i < bk/2c, interchange p2i+1 with an
improper packet in a subtree right below it if p2i+1 is proper. For i = bk/2c,
move pk into its destination subtree if pk is improper, or move pk into a chosen
subtree around r2 (to be specified later) if pk is proper and T ′′r2 is pure.

Since r1 is the parent of all subtrees T ′i , 1 ≤ i ≤ c, any improper packet must
cross r1 for being moved into subtrees T ′i . Recall that a subtree is pure if it does not
contain any improper packets and is mixed otherwise. After T ′r1 is pure, the packet
p(r1) located at root r1 is proper. If there still exists a mixed subtree T ′i (for some
i ≤ c) around r1, the packet p(r1) has to be moved into a mixed subtree and moved
back later. Such moves of p(r1) cost extra steps. For reducing extra steps, p(r1) will
be moved into the largest mixed subtree T ′j and back to vertex r1 during the last step
before T ′j becomes pure. Such a choice will reduce the number of extra steps spent at
r1 to c, the number of subtrees around r1. However, the extra cost can be reduced
further if we take care of all 1-node indirect subtrees around r1.

When all remaining mixed subtrees around r1 are 1-node subtrees, by our as-
sumption (? ? ?), an improper packet having destination in these subtrees is still in
the middle subtree Tr or in a subtree around r2. We choose a mixed 1-node subtree
into which p(r1) is moved temporarily according to the arrival time of those improper
packets. Suppose the first improper packet of this kind has destination in a 1-node
subtree T ′j ; we choose any other 1-node, mixed subtree as a temporary destination of
p(r1), unless T ′j is the only one remaining. Such a choice will further reduce the extra

steps spent at r1 from c to c′ + d c−c′2 e, where c′ is the number of multinode subtrees
T ′i (i ≤ c) around r1. The strategy of reducing extra cost at r2 is the same.

Now we use the potential method to analyze the complexity of the second phase,
which was first used in [2] for studying matching routing. Notice that the second
phase will finish once all improper packets with destinations in subtrees around r1

and r2 have been moved into their destination subtrees. Therefore, without loss of
generality, we may assume that the improper packet that is moved during the last
step has destination in a subtree around r1. For analysis purpose, we call a packet
red if its destination is in a subtree around r1 and blue if its destination is a subtree
around r2. After each step t, there is a certain distribution of packets on the backbone
P . We denote the packet distribution on P in terms of alternating blocks of red and
nonred packets as illustrated in Figure 4, where Rj(t) denotes the jth block of red

MATCHING ROUTING ON TREES 73

packets and Wj(t) the jth block of nonred packets, which may contain blue improper
packets and proper packets, which have destinations in the middle subtree Tr. Each
Rj(t) and Wj(t) is nonempty except Wf (t) and R0(t). Let I(t) denote the set of all
improper packets that are off P , and let g1(t) and g2(t) denote the numbers of 1-node
and multinode, mixed subtrees around r1 or r2 after step t, respectively. Finally,
define the potential φ(t) after step t by

φ(t) = max(1, |R0(t)|)− |R0(t)|+ max(1, |Wf(t)(t)|)
−|Wf(t)(t)|+

∑f(t)−1
j=1 |Wj(t)| − f(t) + |I(t)|

+g2(t) + g1(t)/2,

where |Wj(t)| and |Rj(t)| denote the numbers of packets in blocks Wj(t) and Rj(t),
respectively.

We will show that if the last red packet is not moved into its destination subtree,
the potential φ(t) must decrease at the next step. In the rest of our proof, we refer
to the packet of a block that is closest to r1 as the first packet and the packet that is
closest to r2 as the last packet.

During step t+ 1, the following changes on P may happen:
• Some proper packet p in a nonred block Wj(t), 1 ≤ j ≤ f , is interchanged

with an improper packet in the subtree right below p, which has destination
in an indirect subtree around an endpoint (i.e., r1 or r2).

• The last packet in a nonred block Wj(t) (1 ≤ j ≤ f(t) − 1) is interchanged
with the first packet of the red block Rj(t).

• In the middle of a nonred block Wj(t) (1 ≤ j ≤ f(t)), some improper packet
p having destination in a subtree around r2 is interchanged with a proper
packet right to p, which has destination in the middle subtree Tr.

• If Wf(t)(t) is nonempty, the packet p(r2) at r2 can be a proper packet (having
destination in T ′′), an improper packet having destination either in a subtree
T ′′j around r2 or in the middle subtree Tr. If p(r2) is a proper packet and there
are still mixed subtrees around r2, p(r2) is moved into a chosen mixed subtree;
if it is improper and has destination in some T ′′j around r2, it is moved into
T ′′j ; if it is improper and has destination in Tr, then it is interchanged with an
improper packet to the left of it, which has destination in a subtree around
r2. Similar events happen at the endpoint r1.

Based on these observations, we can prove the following facts.
Fact 1. |I(t)|, g1(t), and g2(t) is nonincreasing with t > 0.
Proof. The proof follows from definitions.
Fact 2. Let t > 0. For any nonempty blocks Wi(t) and Ri(t), 1 ≤ i ≤ f(t), one

of the following occurs during step t+ 1:
(i) The last packet of Wi(t) and the first packet of Ri(t) are inter-
changed, or
(ii) The last packet of Wi(t) is moved into the subtree right below
it. In this case, it is a proper packet with destination in the middle
subtree Tr.

Proof. The events listed in the fact do not happen for some i, 1 ≤ i ≤ f(t), only
if the last packet of Wi(t) is not compared with either the first packet of Ri(t) or a
packet in the subtree right below it. As we will show, this cannot happen when t > 0.
We prove this fact by induction on t.

The basis case t = 1 can easily be verified. Assume that the fact is true for
t′ ≤ t − 1. For any nonempty and adjacent blocks, Wi(t) and Ri(t), we consider the

74 LOUXIN ZHANG

following two cases.

Case 1. Wi(t) is a single-packet block.

Denote the single packet in Wi(t) by q. Consider three subcases.

(a) q was the last packet of some multipacket block Wj′(t−1) after step t−1. By
the induction hypothesis, q is moved right 1 node and formed the single block Wi(t),
or the second last packet was interchanged with the red packet right below it. Thus,
during step t+1, q will be compared with the red packet following it or a packet right
below it. So q either moves right or is interchanged with a packet right below it at
step t+ 1.

(b) q was the first packet of a two-packet block Wj′(t− 1) after step t− 1. Then
one of the edges adjacent to the node holding the last packet of Wj′(t− 1) was active
during step t (by the induction hypothesis). This implies that now it is the turn of
one of the edges adjacent to node holding q to be active. Thus, q either moves right
or is interchanged with a packet right below it at step t+ 1.

(c) q is a packet in the middle of a multipacket block Wj′(t− 1) after step t− 1.
For q to form a single block after step t, during step t the nonred packet p left to
q in Wj′(t − 1) must be interchanged with a red packet in the subtree right below
it and the nonred packet right to q must be moved right one step or moved into a
subtree below it. This implies that after step t, the packet right to q is a red packet
and also that one of the edges adjacent to the node holding q from the right side is
active during step t+ 1. Thus, q either moves right or is interchanged with a packet
right below it at step t+ 1.

Case 2. Wi(t) is a multipacket block. By the induction hypothesis, after step
t − 1, the last packet q of the nonred block Wi(t) was either the second last packet
of a nonred block Mj′(t − 1), or it was a middle packet of the block and the packet
right to it was moved right one step or moved off the backbone P . This implies that
the edges adjacent to q are active during step t+ 1.

Thus we finish the proof of Fact 2.

Fact 3. For any t > 0, φ(t+ 1) < φ(t).

Proof. Since in the middle of the backbone moving an improper packet into the
backbone from a direct subtree decreases |I(t)| by 1 and f(t) at most by 1, it will
not increase the potential φ. Therefore, we may assume that no improper packets are
moved out of direct subtrees in the middle of the backbone P in the rest of our proof.

We consider the following cases.

Case 1. R0(t) is an nonempty block.

Since no improper packets are moved into the middle of the backbone, by Fact
2, previously stated, the last packet of Wj(t) is interchanged with the first packet
of Rj(t). These moves do not decrease f(t), the number of alternating blocks. Now
consider the endpoints r1. Since R0 is nonempty, the first red packet is moved into
its destination subtree. Thus, the number of improper packets off P , |I(t)|, decreases
by 1. If the packet swapped out is still red, then the potential φ also decreases by 1.
Otherwise, f(t) increases by 1 and the potential φ decreases by 2. At the endpoint
r2, if the packet p(r2) at r2 does not compare with the packet at vk−1 and pr2 is an
improper packet having destination in a subtree around r2, then it is moved into its
destination subtree and a packet qout is swapped out. If qout is red and improper,
then f(t) increases by 1 and |I(t)| decreases by 1. Thus, the potential φ decreases by
at least 2. If qout is blue and proper, then its destination is in the subtree T ′′r2 and
thus |I(t)| decreases by 1. So is φ. If T ′′r2 is pure, then the number of mixed, indirect
1-node subtrees around the endpoints, g1(t), decreases at least by 2 or the number

MATCHING ROUTING ON TREES 75

of mixed, indirect multinode subtrees around the endpoints, g2(t), decreases at least
by 1; thus φ decreases at least by 1. If qout is nonred and improper, the number of
improper packets off P , |I(t)|, decreases by 1. So is the potential φ.

Case 2. R0(t) is empty.

Since no improper packets are moved into the backbone, by Fact 2, mentioned
above, the last packet of Wj(t) is interchanged with the first packet of Rj(t).

If W1 is a multipacket block, f(t) does not decrease after step t+ 1. We consider
the following subcases.

Subcase 2.1. Wf(t)(t) is empty. If Rf(t)(t) is a multipacket block, the number
of alternating blocks, f , increases at least by 1, which implies that the potential φ
decreases at least by 1. If Rf(t)(t) is a singleton, then Wf(t+1)(t + 1) = 1, which
implies that max(1, |Wf |)− |Wf | decreases by 1. Since f does not decrease after step
t+ 1, φ decreases by 1.

Subcase 2.2. Wf(t)(t) is nonempty. Then the last packet p of the block Wf(t)(t)
is moved into a subtree around r2. If p is improper, then it moves into its destination
subtree by interchanging with a packet qout. The number of improper packets off P ,
|I(t)|, decreases by 1. If qout is blue or having destination in the middle subtree Tr,
then the potential φ also decreases by 1. If qout is red and improper, then f(t) increases
by 1 and max(1, |Wf |)− |Wf)| increases by 1. Thus, φ still decreases by 1. If qout is
blue and proper, then its destination is in the subtree T ′′r2 . If T ′′r2 is pure, then the
number of mixed, indirect 1-node subtrees around the endpoints, g1(t), decreases at
least by 2 or the number of mixed, indirect multinode subtrees around the endpoints,
g2(t), decreases at least by 1; thus φ decreases at least by 1. If qout is nonred and
improper, then the potential also decreases by 1 because the number of improper
packets off P , |I(t)|, decreases by 1.

If W1 is a singleton, then R0(t+ 1) is 1. Then the difference max(1, |R0|)− |R0|
decreases by 1 after step t+ 1. When Wf(t) is empty, we consider two cases.

Subcase 2.3. Bf(t)−1(t) is a multipacket block.

Then f(t) increases by at least 1 after step t+ 1, and so the potential φ decreases
at least by 1 after step t+ 1.

Subcase 2.4. Bf(t)−1(t) is a singleton.

Then Wf(t+1)(t + 1) = 1. Thus max(1, |Wf(t+1)|) − |Wf(t+1)| is 0, which implies
that φ(t + 1) < φ(t). When Wf(t) is nonempty, we consider the following cases. If
the last packet at r2 is improper, then it is moved into its destination subtree and
so I decreases 1 after t + 1. Thus, φ decreases at least by 1. If the last packet at r2

is proper and T ′′r2 is pure, then some subtrees around r2 have become pure after t.
Thus, the number of mixed, indirect multinode subtrees around the endpoints, g2(t),
decreases at least by 1 or the number of mixed, indirect 1-node subtrees around the
endpoints, g1(t), decreases at least by 2. Thus, the potential φ decreases at least by
1 after step t+ 1. This finishes the proof of Fact 3.

We have proved that the potential decreases with t before the last packet is
moved into its destination subtree. By definition, the potential φ is at most m =
n− x+ c′ + d′ + d(c− c′)/2e+ d(d− d′)/2e, where x is the number of proper packets
contained initially in all subtrees. Thus, the second phase takes at most m steps.
Since the first phase takes x steps, our greedy algorithm takes at most n + c′ + d′ +
d(c− c′)/2e+ d(d− d′)/2e steps. This completes the proof of Lemma 3.3.

We now continue to prove our theorem. Let B = c′ + d′ + (c− c′)/2 + (d− d′)/2.
Then B is bounded above by 5 + n−3M

2 .

76 LOUXIN ZHANG

Lemma 3.4. B ≤ 5 + n−3M
2 .

Proof. Let k′ = |T ′c| and k′′ = |T ′′d |. Then

M ≥ |T ′r1 | > M − k′

and

M ≥ |T ′′r2 | > M − k′′.

If M = |Tr|, then

c′ +
(c− c′)

2
≤
∑m
i=1 |T ′i | −M + k′

max{k′, 2} + 1

and

d′ +
(d− d′)

2
≤
∑n
j=1 |T ′′j | −M + k′′

max{k′′, 2} + 1.

Since n =
∑m
i=1 |T ′i |+

∑n
j=1 |T ′′j |+M ,

B ≤ n− 3M

2
+ 4.

If M = |T ′1|, then

c′ +
(c− c′)

2
=

∑m
i=1 |T ′i | − 2M + k′

max{k′, 2} + 2

and

d′ +
(d− d′)

2
≤
∑n
j=1 |T ′′j | −M + k′′

max{k′′, 2} + 1.

Thus, B ≤ 5 + n−3M
2 . The case M = |T ′′1 | is treated symmetrically. This finishes the

proof of Lemma 3.4.
Let rt(M) = max|T |≤M rt(T). Combining Lemma 3.4 and (3.9), we have

rt(π, T) ≤ n+ 2 +B + rt(M) ≤ n+ 7 +
n− 3M

2
+ rt(M).

By the induction hypothesis, we have

rt(π, T) ≤ 3

2
n+ 9 log3 n.

This completes our proof.

4. Concluding remarks. We have proved the optimal upper bound 3n
2 +O(log n)

for the routing number of n-node trees. In order to prove the result, the caterpillar
partition of trees is introduced. Such a partition is novel and may find some interesting
applications in studying open problems remaining for the subject of matching routing
(see [2]) and other combinatorial problems related to trees and graphs in general.

MATCHING ROUTING ON TREES 77

Acknowledgments. The author would like to thank J. Buss and M. Li for
helpful conversations and A. Symvonis for useful discussions and reading the first
draft of this paper. He would also like to thank the referee for helpful suggestions in
revising the paper, especially for simplifying the proof of Theorem 3.1.

REFERENCES

[1] P. Baran, On distributed communications networks, IEEE Trans. Comm. Systems, 12 (1964),
pp. 1–9.

[2] N. Alon, F. R. K. Chung, and R. L. Graham, Routing permutations on graphs via matchings,
SIAM J. Discrete Math., 7 (1994), pp. 516–530.

[3] M. Baumslag and F. Annexstein, A unified framework for off-line permutation routing in
parallel networks, Math. Systems Theory, 24 (1991), pp. 233–251.

[4] U. Feige and P. Raghaven, Exact analysis of hot potato routing, in Proc. 33rd Annual
IEEE Symposium on Foundations of Computer Science, IEEE Computer Society Press,
Los Alamitos, CA, 1992, pp. 553–562.

[5] W. Goddard, private communication, 1997.
[6] N. Haberman, Parallel Neighbor-Sort (or the Glory of the Induction Principle), Tech. report

AD-759 248, National Technical Information Services, U.S. Department of Commerce,
Springfield, VA, 1972.

[7] P. Hoyer and K. Larson, Permutation Routing via Matchings, Tech. report 96-16, Institut
for Matematik og Datalogi, Odense Universitet, Denmark, 1996.

[8] D. Krizanc and L. Zhang, Many-to-one packet routing via matching, in Proc. 3rd Annual
International Conference on Computing and Combinatorics, Shanghai, 1997, Lecture Notes
in Comput. Sci. 1276, Springer-Verlag, New York, pp. 11–17.

[9] T. Leighton, Methods for message routing in parallel machines, in Proc. 24th Annual ACM
Symposium on Theory of Computing, ACM, New York, 1992, pp. 77–96.

[10] T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hyper-
cubes, Morgan–Kaufmann, San Francisco, CA, 1992.

[11] G. Pantziou, A. Roberts, and A. Symvonis, Dynamic tree routing under the “matching
with consumption” model, in Proc. 7th International Symposium on Algorithms and Com-
putation, Osaka, 1996, Lecture Notes in Comput. Sci. 1178, Springer-Verlag, New York,
pp. 275–284.

[12] M. Ramras, Routing permutations on a graph, Networks, 23 (1993), pp. 391–398.
[13] A. Roberts, A. Symvonis, and L. Zhang, Routing on trees via matchings, in Proc. 4th

Workshop on Algorithms and Data Structures, Kingston, Ontario, Canada, 1995, Lecture
Notes in Comput. Sci. 955, Springer-Verlag, New York, pp. 251–263.

ON-LINE DIFFERENCE MAXIMIZATION∗

MING-YANG KAO† AND STEPHEN R. TATE‡

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 1, pp. 78–90

Abstract. In this paper we examine problems motivated by on-line financial problems and
stochastic games. In particular, we consider a sequence of entirely arbitrary distinct values arriving
in random order, and must devise strategies for selecting low values followed by high values in such
a way as to maximize the expected gain in rank from low values to high values.

First, we consider a scenario in which only one low value and one high value may be selected.
We give an optimal on-line algorithm for this scenario, and analyze it to show that, surprisingly,
the expected gain is n− O(1), and so differs from the best possible off-line gain by only a constant
additive term (which is, in fact, fairly small—at most 15).

In a second scenario, we allow multiple nonoverlapping low/high selections, where the total gain
for our algorithm is the sum of the individual pair gains. We also give an optimal on-line algorithm
for this problem, where the expected gain is n2/8−Θ(n logn). An analysis shows that the optimal
expected off-line gain is n2/6 + Θ(1), so the performance of our on-line algorithm is within a factor
of 3/4 of the best off-line strategy.

Key words. analysis of algorithms, on-line algorithms, financial games, secretary problem

AMS subject classifications. 68Q20, 68Q25

PII. S0895480196307445

1. Introduction. In this paper, we examine the problem of accepting values
from an on-line source and selecting values in such a way as to maximize the difference
in the ranks of the selected values. The input values can be arbitrary distinct real
numbers, and thus we cannot determine with certainty the actual ranks of any input
values until we see all of them. Since we only care about their ranks, an equivalent way
of defining the input is as a sequence of n integers x1, x2, . . . , xn, where 1 ≤ xi ≤ i for
all i ∈ {1, . . . , n}, and input xi denotes the rank of the ith input item among the first i
items. These ranks uniquely define an ordering of all n inputs, which can be specified
with a sequence of ranks r1, r2, . . . , rn, where these ranks form a permutation of the
set {1, 2, . . . , n}. We refer to the ri ranks as final ranks, since they represent the rank
of each item among the final set of n inputs. We assume that the inputs come from
a probabilistic source such that all permutations of n final ranks are equally likely.

The original motivation for this problem came from considering on-line financial
problems [2, 4, 7, 8, 9], where maximizing the difference between selected items natu-
rally corresponds to maximizing the difference between the buying and selling prices
of an investment. While we use generic terminology in order to generalize the setting
(for example, we make a “low selection” rather than pick a “buying price”), many of
the problems examined in this paper are easily understood using notions from invest-
ing. This paper is a first step in applying on-line algorithmic techniques to realistic
on-line investment problems.

While the original motivation comes from financial problems, the current input
model has little to do with realistic financial markets, and is selected for its mathe-

∗Received by the editors July 29, 1996; accepted for publication (in revised form) March 5, 1998;
published electronically January 29, 1999.

http://www.siam.org/journals/sidma/12-1/30744.html
†Department of Computer Science, Yale University, New Haven, CT 06520 (kao-ming-

yang@cs.yale.edu). The research of this author was supported in part by NSF grant CCR-9531028.
‡Department of Computer Science, University of North Texas, Denton, TX 76208 (srt@cs.

unt.edu). The research of this author was supported in part by NSF grant CCR-9409945.

78

ON-LINE DIFFERENCE MAXIMIZATION 79

matical cleanness and its relation to fundamental problems in stochastic games. The
main difference between our model and more realistic financial problems is that in
usual stock trading, optimizing rank-related quantities is not always correlated to op-
timizing profits in the dollar amount. However, there are some strong similarities as
well, such as exotic financial derivatives based on quantities similar to ranks [20].

The current formulation is closely related to an important mathematical prob-
lem known as the secretary problem [11, 6], which has become a standard textbook
example [3, 5, 19], and has been the basis for many interesting extensions (includ-
ing [1, 14, 15, 17, 18]). The secretary problem comes from the following scenario:
A set of candidates for a single secretarial position are presented in random order.
The interviewer sees the candidates one at a time, and must make a decision to hire
or not to hire immediately upon seeing each candidate. Once a candidate is passed
over, the interviewer may not go back and hire that candidate. The general goal is to
maximize either the probability of selecting the top candidate, or the expected rank of
the selected candidate. This problem has also been stated with the slightly different
story of a princess selecting a suitor [3, p. 110]. More will be made of the relationship
between our current problem and the secretary problem in section 2, and for further
reading on the secretary problem, we refer the reader to the survey by Freeman [10].

As mentioned above, we assume that the input comes from a random source in
which all permutations of final ranks 1, 2, . . . , n are equally likely. Thus, each rank
xi is uniformly distributed over the set {1, 2, . . . , i}, and all ranks are independent of
one another. In fact, this closely parallels the most popular algorithm for generating
a random permutation [13, p. 139]. A natural question to ask is, knowing the relative
rank xi of the current input, what is the expected final rank of this item (i.e., E[ri|xi])?
Due to the uniform nature of the input source, the final rank of the ith item simply
scales up with the number of items left in the input sequence, and so E[ri|xi] = n+1

i+1 xi
(a simple proof of this is given in Appendix A).

Since all input ranks xi are independent and uniformly distributed, little can
be inferred about the future inputs. We consider games in which a player watches
the stream of inputs, and can select items as they are seen; however, if an item is
passed up then it is gone for good and may not be selected later. We are interested
in strategies for two such games:

• Single pair selection: In this game, the player should make two selections, the
first being the low selection and the second being the high selection. The goal
of the player is to maximize the difference between the final ranks of these
two selections. If the player picks the low selection upon seeing input x` at
time step `, and picks the high selection as input xh at time step h, then the
profit given to the player at the end of the game is the difference in final ranks
of these items: rh − r`.
• Multiple pair selection: In this game, the player makes multiple choices of

low/high pairs. At the end of the game the difference in final ranks of each
selected pair of items is taken, and the differences for all pairs are added up
to produce the player’s final profit.

The strategies for these games share a common difficulty: If the player waits too long
to make the low selection, he risks not having enough choices for a good high selection;
however, making the low selection too early may result in an item selected before any
truly low items have been seen. The player in the second game can afford to be less
selective. If one chosen pair does not give a large difference, there may still be many
other pairs that are good enough to make up for this pair’s small difference.

80 MING-YANG KAO AND STEPHEN R. TATE

We present optimal solutions to both of the games. For the first game, where
the player makes a single low selection and a single high selection, our strategy has
expected profit n−O(1). From the derivation of our strategy, it will be clear that the
strategy is optimal. Even with full knowledge of the final ranks of all input items, the
best expected profit in this game is less than n, and so in standard terms of on-line
performance measurement [12, 16], the competitive ratio1 of our strategy is one. The
strength of our on-line strategy is rather intriguing.

For the second game, where multiple low/high pairs are selected, we provide an
optimal strategy with expected profit 1

8n
2−O(n log n). For this problem, the optimal

off-line strategy has expected profit of approximately 1
6n

2, and so the competitive
ratio of our strategy is 4

3 .

2. Single low/high selection. This section considers a scenario in which the
player may pick a single item as the low selection, and a single later item as the high
selection. If the low selection is made at time step ` and the high selection is made
at time step h, then the expected profit is E[rh − r`]. The player’s goal is to use a
strategy for picking ` and h in order to maximize this expected profit.

As mentioned in the previous section, this problem is closely related to the sec-
retary problem. A great deal of work has been done on the secretary problem and
its variations, and this problem has taken a fundamental role in the study of games
against a stochastic opponent. Our work extends the secretary problem, and gives
complete solutions to two natural variants that have not previously appeared in the
literature.

Much insight can be gained by looking at the optimal solution to the secretary
problem, so we first sketch that solution below (using terminology from our problem
about a “high selection”). To maximize the expected rank of a single high selection,
we define the optimal strategy recursively using the following two functions:

Hn(i): This is a limit such that the player selects the current item if
xi ≥ Hn(i).

Rn(i): This is the expected final rank of the high selection if the optimal
strategy is followed starting at the ith time step.

Since all permutations of the final ranks are equally likely, if the ith input item
has rank xi among the first i data items, then its expected final rank is n+1

i+1 xi. Thus,
an optimal strategy for the secretary problem is to select the ith input item if and
only if its expected final rank is better than could be obtained by passing over this
item and using the optimal strategy from step i + 1 on. In other words, select the
item at time step i < n if and only if

n+ 1

i+ 1
xi ≥ Rn(i+ 1).

If we have not made a selection before the nth step, then we must select the last item,
whose rank is uniformly distributed over the range of integers from 1 to n—and so
the expected final rank in that case is Rn(n) = n+1

2 . For i < n we can also define

Hn(i) =

⌈
i+ 1

n+ 1
Rn(i+ 1)

⌉
,

1“Competitive ratio” usually refers to the worst-case ratio of on-line to off-line cost; however,
in our case inputs are entirely probabilistic, so our “competitive ratio” refers to expected on-line to
expected off-line cost—a worst-case measure doesn’t even make sense here.

ON-LINE DIFFERENCE MAXIMIZATION 81

and to force selection at the last time step define Hn(n) = 0. Furthermore, given this
definition for Hn(i), the optimal strategy at step i depends only on the rank of the
current item (which is uniformly distributed over the range 1, . . . , i) and the optimal
strategy at time i+1. This allows us to recursively define Rn(i) as follows when i < n:

Rn(i) =
Hn(i)− 1

i
Rn(i+ 1) +

i∑
j=Hn(i)

1

i
· n+ 1

i+ 1
j

=
Hn(i)− 1

i
Rn(i+ 1) +

n+ 1

i(i+ 1)
· (i+Hn(i))(i−Hn(i) + 1)

2

=
Hn(i)− 1

i

(
Rn(i+ 1)− n+ 1

2(i+ 1)
Hn(i)

)
+
n+ 1

2
.

Since Hn(n) = 0 and Rn(n) = n+1
2 , we have a full recursive specification of both the

optimal strategy and the performance of the optimal strategy. The performance of
the optimal strategy, taken from the beginning, is Rn(1). This value can be computed
by the recursive equations, and was proved by Chow et al. to tend to n + 1 − c, for
c ≈ 3.8695, as n → ∞ [6]. Furthermore, the performance approaches this limit from
above, so for all n we have performance greater than n− 2.87.

For single pair selection, once a low selection is made we want to maximize the
expected final rank of the high selection. If we made the low selection at step i,
then we can optimally make the high selection by following the above strategy for the
secretary problem, which results in an expected high selection rank of Rn(i+1). How
do we make the low selection? We can do this optimally by extending the recursive
definitions given above with two new functions:

Ln(i): This is a limit such that the player selects the current item if
xi ≤ Ln(i).

Pn(i): This is the expected high-low difference if the optimal strategy for
making the low and high selections is followed starting at step i.

Thus, if we choose the ith input as the low selection, the expected profit is Rn(i+
1) − n+1

i+1 xi. We should select this item if that expected profit is no less than the
expected profit if we skip this item. This leads to the definition of Ln(i):

Ln(i) =

{
0 if i = n,⌊
i+1
n+1 (Rn(i+ 1)− Pn(i+ 1))

⌋
if i < n.

Using Ln(i), we derive the following profit function:

Pn(i) =

{
0 if i = n,

Pn(i+ 1) + Ln(i)
i

(
Rn(i+ 1)− Pn(i+ 1)− n+1

i+1 · Ln(i)+1
2

)
if i < n.

From the derivation, it is clear that this is the optimal strategy, and can be imple-
mented by using the recursive formulas to compute the Ln(i) values. The expected
profit of our algorithm is given by Pn(1), which is bounded in the following theorem.

Theorem 2.1. Our on-line algorithm for single low/high selection is optimal and
has expected profit n−O(1).

Proof. It suffices to prove that a certain inferior algorithm has expected profit n−
O(1). The inferior algorithm is as follows: Use the solution to the secretary problem

82 MING-YANG KAO AND STEPHEN R. TATE

to select, from the first bn/2c input items, an item with the minimum expected final
rank. Similarly, pick an item with maximum expected rank from the second dn/2e
inputs. For simplicity, we initially assume that n is even; see comments at the end of
the proof for odd n. Let ` be the time step in which the low selection is made, and
h the time step in which the high selection is made. Using the bounds from Chow et
al. [6], we can bound the expected profit of this inferior algorithm by

E[rh − r`] = E[rh]− E[rl] ≥ n+ 1

n/2 + 1
(n/2 + 1− c)− n+ 1

n/2 + 1
c

=
n+ 1

n+ 2
(n+ 2− 4c) = n+ 1− 4c+

4c

n+ 2
.

Chow et al. [6] show that c ≤ 3.87, and so the expected profit of the inferior algorithm
is at least n− 14.48. For odd n, the derivation is almost identical, with only a change
in the least significant term; specifically, the expected profit of the inferior algorithm
for odd n is n+ 1− 4c+ 4c

n+3 , which again is at least n− 14.48.

3. Multiple low/high selection. This section considers a scenario in which
the player again selects a low item followed by a high item, but may repeat this
process as often as desired. If the player makes k low and high selections at time
steps `1, `2, . . . , `k and h1, h2, . . . , hk, respectively, then we require that

1 ≤ `1 < h1 < `2 < h2 < · · · < `k < hk ≤ n.
The expected profit resulting from these selections is

E[rh1
− r`1] + E[rh2

− r`2] + · · ·+ E[rhk − r`k].

3.1. Off-line analysis. Let interval j refer to the time period between the in-
stant of input item j arriving and the instant of input item j + 1 arriving. For a
particular sequence of low and high selections, we call interval j active if `i ≤ j < hi
for some index i. We then amortize the total profit of a particular algorithm B by
defining the amortized profit AB(j) for interval j to be

AB(j) =

{
rj+1 − rj if interval j is active,
0 otherwise.

Note that for a fixed sequence of low/high selections, the sum of all amortized profits
is exactly the total profit, i.e.,

n∑
j=1

AB(j) =

h1−1∑
j=`1

(rj+1 − rj) +

h2−1∑
j=`2

(rj+1 − rj) + · · ·+
hk−1∑
j=`k

(rj+1 − rj)

= (rh1 − r`1) + (rh2 − r`2) + · · ·+ (rhk − r`k).

For an off-line algorithm to maximize the total profit we need to maximize the
amortized profit, which is done for a particular sequence of ri’s by making interval
j active if and only if rj+1 > rj . Translating this back to the original problem of
making low and high selections, this is equivalent to identifying all maximal-length
increasing intervals and selecting the beginning and ending points of these intervals
as low and high selections, respectively. These observations and some analysis give
the following lemma.

ON-LINE DIFFERENCE MAXIMIZATION 83

Lemma 3.1. The optimal off-line algorithm just described has expected profit
1
6

(
n2 − 1

)
.

Proof. This analysis is performed by examining the expected amortized profits
for individual intervals. In particular, for any interval j,

E[AOFF (j)] = Pr[rj+1 > rj] · E[Aj |rj+1 > rj] + Pr[rj+1 < rj] · E[Aj |rj+1 < rj]

=
1

2
· E[rj+1 − rj |rj+1 > rj] +

1

2
· 0

=
1

2

n−1∑
i=1

n∑
k=i+1

Pr[rj+1 = k and rj = i]

Pr[rj+1 > rj]
· (k − i)

=
1

2

n−1∑
i=1

n∑
k=i+1

2

n(n− 1)
(k − i)

=
1

2
· 2

n(n− 1)
· (n+ 1)n(n− 1)

6

=
n+ 1

6
.

Since there are n − 1 intervals and the above analysis is independent of the interval
number j, summing the amortized profit over all intervals gives the expected profit
stated in the lemma.

3.2. On-line analysis. In our on-line algorithm for multiple pair selection, there
are two possible states: free and holding. In the free state, we choose the current
item as a low selection if xi <

i+1
2 ; furthermore, if we select an item then we move

from the free state into the holding state. On the other hand, in the holding
state if the current item has xi >

i+1
2 , then we choose this item as a high selection

and move into the free state. We name this algorithm OP, which can stand for
“opportunistic” since this algorithm makes a low selection whenever the probability
is greater than 1

2 that the next input item will be greater than this one. Later we will
see that the name OP could just as well stand for “optimal,” since this algorithm is
indeed optimal.

The following lemma gives the expected profit of this algorithm. In the proof of
this lemma we use the following equality:

k∑
i=1

2i

2i+ 1
= k + 1 +

1

2
Hk −H2k+1.

Lemma 3.2. The expected profit from our on-line algorithm is

E[POP] =

n+ 1

8

(
n+Hn−2

2
− 2Hn−1

)
if n is even,

n+ 1

8

(
n+Hn−1

2
− 2Hn +

1

n

)
if n is odd.

In cleaner forms we have E[POP] = n+1
8 (n−Hn + Θ(1)) = 1

8n
2 −Θ(n log n).

Proof. Let Ri be the random variable of the final rank of the ith input item. Let
AOP (i) be the amortized cost for interval i as defined in section 3.1. Since AOP (i) is

84 MING-YANG KAO AND STEPHEN R. TATE

nonzero only when interval i is active,

E[AOP (i)] = E[AOP (i)|Interval i is active] · Prob[Interval i is active]

= E[Ri+1 −Ri|Interval i is active] · Prob[Interval i is active].

Therefore,

E[POP] =
n−1∑
i=1

E[AOP (i)]

=

n−1∑
i=1

E[Ri+1 −Ri|Interval i is active] · Prob[Interval i is active].

Under what conditions is an interval active? If xi <
i+1
2 this interval is certainly

active. If the algorithm was not in the holding state prior to this step, it would be
after seeing input xi. Similarly, if xi >

i+1
2 the algorithm must be in the free state

during this interval, and so the interval is not active. Finally, if xi = i+1
2 the state

remains what it has been for interval i− 1. Furthermore, since i must be odd for this
case to be possible, i−1 is even, and xi−1 cannot be i

2 (and thus xi−1 unambiguously
indicates whether interval i is active). In summary, determining whether interval i is
active requires looking at only xi and occasionally xi−1. Since the expected amortized
profit of step i depends on whether i is odd or even, we break the analysis up into
these two cases below.

Case 1. i is even. Note that Prob[xi <
i+1
2] = 1

2 , and xi cannot be exactly
i+1
2 , which means that with probability 1

2 interval i is active. Furthermore, Ri+1 is
independent of whether interval i is active or not, and so

E[AOP (i)|Interval i is active] = E[Ri+1]− E[Ri|Interval i is active]

=
n+ 1

2
− n+ 1

i+ 1

i/2∑
j=1

2

i
j

=
n+ 1

2
− n+ 1

i+ 1
· 2

i
· i(i+ 2)

8

=
n+ 1

4
· i

i+ 1
.

Case 2. i is odd. Since interval 1 cannot be active, we assume that i ≥ 3. We
need to consider the case in which xi = i+1

2 , and so

Prob[Interval i is active]

= Prob

[
xi <

i+ 1

2

]
+ Prob

[
xi =

i+ 1

2

]
· Prob

[
xi−1 <

i

2

]
=
i− 1

2i
+

1

i
· 1

2
=

1

2
.

Computing the expected amortized cost of interval i is slightly more complex than in
Case 1.

E[AOP (i)|Interval i is active]

= E[Ri+1]− E[Ri|Interval i is active]

ON-LINE DIFFERENCE MAXIMIZATION 85

=
n+ 1

2
− n+ 1

i+ 1

(i−1)/2∑
j=1

2

i
j +

1

i
· i+ 1

2

=
n+ 1

2
− n+ 1

i+ 1

(
2

i
· (i− 1)(i+ 1)

8
+

1

i
· i+ 1

2

)
=
n+ 1

2
− n+ 1

i+ 1
· (i+ 1)(i+ 1)

4i

=
n+ 1

4
· i− 1

i
.

Combining both cases,

E[POP] =
n−1∑
i=1

E[AOP (i)|Interval i is active] · Prob[Interval i is active]

=
n+ 1

8

b(n−2)/2c∑
k=1

2k

2k + 1
+

b(n−1)/2c∑
k=1

2k

2k + 1

 ,

where the first sum accounts for the odd terms of the original sum, and the second
sum accounts for the even terms.

When n is even this sum becomes

E[POP] =
n+ 1

8

b(n−2)/2c∑
k=1

2k

2k + 1
+

b(n−1)/2c∑
k=1

2k

2k + 1

=
n+ 1

8

2

(n−2)/2∑
k=1

2k

2k + 1

=
n+ 1

8

(
n+Hn−2

2
− 2Hn−1

)
,

which agrees with the claim in the lemma. When n is odd the sum can be simplified
as

E[POP] =
n+ 1

8

b(n−2)/2c∑
k=1

2k

2k + 1
+

b(n−1)/2c∑
k=1

2k

2k + 1

=
n+ 1

8

2

(n−1)/2∑
k=1

2k

2k + 1
− n− 1

n

=
n+ 1

8

(
n+Hn−1

2
− 2Hn +

1

n

)
,

which again agrees with the claim in the lemma. The simplified forms follow the fact
that for any odd n ≥ 3 we can bound 1

n ≤ Hn −Hn−1
2
≤ ln 2 + 1

n .

Combining this result with that of section 3.1, we see that our on-line algorithm
has expected profit 3/4 of what could be obtained with full knowledge of the future. In
terms of competitive analysis, our algorithm has competitive ratio 4/3, which means
that not knowing the future is not terribly harmful in this problem!

86 MING-YANG KAO AND STEPHEN R. TATE

3.3. Optimality of our on-line algorithm. This section proves that algo-
rithm OP is optimal. We will denote permutations by a small Greek letter with a
subscript giving the size of the permutation; in other words, a permutation on the set
{1, 2, . . . , i} may be denoted ρi or σi.

A permutation on i items describes fully the first i inputs to our problem, and
given such a permutation we can also compute the permutation described by the first
i−1 inputs (or i−2, etc.). We will use the notation σi|i−1 to denote such a restriction.
This is not just a restriction of the domain of the permutation to {1, . . . , i− 1}, since
unless σi(i) = i this simplistic restriction will not form a valid permutation.

Upon seeing the ith input, an algorithm may make one of the following moves: it
may make this input a low selection; it may make this input a high selection; or it may
simply ignore the input and wait for the next input. Therefore, any algorithm can
be entirely described by a function which maps permutations (representing inputs
of arbitrary length) into this set of moves. We denote such a move function for
algorithm B by MB , which for any permutation σi maps MB(σi) to an element of the
set {“low”“high”“wait”}. Notice that not all move functions give valid algorithms.
For example, it is possible to define a move function that makes two low selections in
a row for certain inputs, even though this is not allowed by our problem.

We define a generic holding state just as we did for our algorithm. An algorithm
is in the holding state at time i if it has made a low selection, but has not yet made a
corresponding high selection. For algorithm B we define the set LB(i) to be the set of
permutations on i items that result in the algorithm being in the holding state after
processing these i inputs. We explicitly define these sets using the move function:

LB(i) =

{σi|MB(σi) = “low”} if i = 1,

{σi|MB(σi) = “low” or
(MB(σi) = “wait” and σi|i−1 ∈ LB(i− 1))} if i > 1.

The LB(i) sets are all we need to compute the expected amortized profit for interval
i, since

E[AB(i)] = Prob[Interval i is active] · E[Ri+1 −Ri|Interval i is active]

=
|LB(i)|
i!

n+ 1

2
− n+ 1

i+ 1

∑
ρi∈LB(i)

1

|LB(i)|ρi(i)

=
n+ 1

i!

 |LB(i)|
2

− 1

i+ 1

∑
ρi∈LB(i)

ρi(i)

 .

We use the above notation and observations to prove the optimality of algorithm OP.
Theorem 3.3. Algorithm OP is an optimal algorithm for the multiple pair se-

lection problem.
Proof. Since the move functions (which define specific algorithms) work on permu-

tations, we will fix an ordering of permutations in order to compare strategies. We or-
der permutations first by their size, and then by a lexicographic ordering of the actual
permutations. When comparing two different algorithms B and C, we start enumer-
ating permutations in this order and count how many permutations cause the same
move in B and C, stopping at the first permutation σi for which MB(σi) 6= MC(σi),
i.e., the first permutation for which the algorithms make different moves. We call the

ON-LINE DIFFERENCE MAXIMIZATION 87

number of permutations that produce identical moves in this comparison process the
length of agreement between B and C.

To prove the optimality of our algorithm by contradiction, we assume that it is
not optimal, and of all the optimal algorithms let B be the algorithm with the longest
possible length of agreement with our algorithm OP. Let σk be the first permutation
in which MB(σk) 6= MOP (σk). Since B is different from OP at this point, at least
one of the following cases must hold:

(a) σk|k−1 6∈ LB(k − 1) and σk(k) < k+1
2 and MB(σk) 6= “low” (i.e., algorithm

B is not in the holding state, gets a low rank input, but does not make it a low
selection).

(b) σk|k−1 6∈ LB(k− 1) and σk(k) ≥ k+1
2 and MB(σk) 6= “wait” (i.e., algorithm

B is not in the holding state, gets a high rank input, but makes it a low selection
anyway).

(c) σk|k−1 ∈ LB(k− 1) and σk(k) > k+1
2 and MB(σk) 6= “high” (i.e., algorithm

B is in the holding state, gets a high rank input, but doesn’t make it a high selection).
(d) σk|k−1 ∈ LB(k− 1) and σk(k) ≤ k+1

2 and MB(σk) 6= “wait” (i.e., algorithm
B is in the holding state, gets a low rank input, but makes it a high selection
anyway).

In each case, we will show how to transform algorithm B into a new algorithm C
such that C performs at least as well as B, and the length of agreement between C
and OP is longer than that between B and OP. This provides the contradiction that
we need.

Case (a). Algorithm C’s move function is identical to B’s except for the following
values:

MC(σk) = “low”,

MC(ρk+1) =

 “high” if ρk+1|k = σk and MB(σk+1) = “wait”,
“wait” if ρk+1|k = σk and MB(σk+1) = “low”,
MB(ρk+1) otherwise.

In other words, algorithm C is the same as algorithm B except that we “correct B’s
error” of not having made this input a low selection. The changes of the moves on
input k+1 insures that LC(k+1) is the same as LB(k+1). It is easily verified that the
new sets LC(i) (corresponding to the holding state) are identical to the sets LB(i)
for all i 6= k. The only difference at k is the insertion of σk, i.e., LC(k) = LB(k)∪{σk}.

Let PB and PC be the profits of B and C, respectively. Since their amortized
costs differ only at interval k,

E[PC − PB]

= E[AC(k)]− E[AB(k)]

=
n+ 1

k!

 |LC(k)|
2

− 1

k + 1

∑
ρk∈LC(k)

ρk(k)

−n+ 1

k!

 |LB(k)|
2

− 1

k + 1

∑
ρk∈LB(k)

ρk(k)

=
n+ 1

k!

(
1

2
− 1

k + 1
σk(k)

)
.

88 MING-YANG KAO AND STEPHEN R. TATE

By one of the conditions of Case (a), σk(k) < k+1
2 , so we finish this derivation by

noting that

E[PC − PB] =
n+ 1

k!

(
1

2
− 1

k + 1
σk(k)

)
>
n+ 1

k!

(
1

2
− 1

k + 1
· k + 1

2

)
= 0.

Therefore, the expected profit of algorithm C is greater than that of B.
Case (b). As in Case (a) we select a move function for algorithm C that causes

only one change in the sets of holding states, having algorithm C not make input k
a low selection. In particular, these sets are identical with those of algorithm B with
the one exception that LC(k) = LB(k)− {σk}. Analysis similar to Case (a) shows

E[PC − PB] =
n+ 1

k!

(
1

k + 1
σk(k)− 1

2

)
≥ n+ 1

k!

(
1

k + 1
· k + 1

2
− 1

2

)
= 0.

Case (c). In this case we select a move function for algorithm C such that LC(k) =
LB(k)−{σk}, resulting in algorithm C selecting input k as a high selection, and giving
an expected profit gain of

E[PC − PB] =
n+ 1

k!

(
1

k + 1
σk(k)− 1

2

)
>
n+ 1

k!

(
1

k + 1
· k + 1

2
− 1

2

)
= 0.

Case (d). In this case we select a move function for algorithm C such that
LC(k) = LB(k)∪{σk}, resulting in algorithm C not taking input k as a high selection,
and giving an expected profit gain of

E[PC − PB] =
n+ 1

k!

(
1

2
− 1

k + 1
σk(k)

)
≥ n+ 1

k!

(
1

2
− 1

k + 1
· k + 1

2

)
= 0.

In each case, we transformed algorithm B into a new algorithm C that performs
at least as well (and hence must be optimal), and has a longer length of agreement
with algorithm OP than B does. This directly contradicts our selection of B as the op-
timal algorithm with the longest length of agreement with OP, and this contradiction
finishes the proof that algorithm OP is optimal.

4. Conclusion. In this paper, we examined a natural on-line problem related
to both financial games and the classic secretary problem. We select low and high
values from a randomly ordered set of values presented in an on-line fashion, with
the goal of maximizing the difference in final ranks of such low/high pairs. We con-
sidered two variations of this problem. The first allowed us to choose only a single
low value followed by a single high value from a sequence of n values, while the
second allowed selection of arbitrarily many low/high pairs. We presented provably
optimal algorithms for both variants, gave tight analyses of the performance of these
algorithms, and analyzed how well the on-line performance compares to the optimal
off-line performance.

Our paper opens up many problems. Two particularly interesting directions are
to consider more realistic input sources and to maximize quantities other than the
difference in rank.

Appendix. Proof of expected final rank. In this appendix section, we prove
that if an item has relative rank xi among the first i inputs, then its expected rank
ri among all n inputs is given by E[ri|xi] = n+1

i+1 xi.

ON-LINE DIFFERENCE MAXIMIZATION 89

Lemma A.1. If a given item has rank x from among the first i inputs, and if the
i+ 1st input is uniformly distributed over all possible rankings, then the expected rank
of the given item among the first i+ 1 inputs is i+2

i+1x.
Proof. If we let R be a random variable denoting the rank of our given item from

among the first i+ 1 inputs, then we see that the value of R depends on the rank of
the i+ 1st input. In particular, if the rank of the i+ 1st input is ≤ x (which happens
with probability x

i+1), then the new rank of our given item will be x + 1. On the
other hand, if the rank of the i + 1st input is > x (which happens with probability
i+1−x
i+1), then the rank of our given item is still x among the first i+ 1 inputs. Using

this observation, we see that

E[R] =
x

i+ 1
(x+ 1) +

i+ 1− x
i+ 1

x =
x+ 1 + i+ 1− x

i+ 1
x =

i+ 2

i+ 1
x,

which is what is claimed in the lemma.
For a fixed position i, the above extension of rank to position i+ 1 is a constant

times the rank of the item among the first i inputs. Because of this, we can simply
extend this lemma to the case where x is not a fixed rank but is a random variable,
and we know the expected rank among the first i items.

Corollary A.2. If a given item has expected rank x from among the first i
inputs, and if the i+ 1st input is uniformly distributed over all possible rankings, then
the expected rank of the given item among the first i+ 1 inputs is i+2

i+1x.
Simply multiplying together the change in expected rank from among i inputs,

to among i + 1 inputs, to among i + 2 inputs, and so on up to n inputs, we get
a telescoping product with cancellations between successive terms, resulting in the
following corollary.

Corollary A.3. If a given item has rank x from among the first i inputs, and
if the remaining inputs are uniformly distributed over all possible rankings, then the
expected rank of the given item among all n inputs is n+1

i+1 x.

REFERENCES

[1] M. Ajtai, N. Megiddo, and O. Waarts, Improved algorithms and analysis for secretary prob-
lems and generalizations, in Proc. 36th Symposium on Foundations of Computer Science,
1995, pp. 473–482.

[2] G. J. Alexander and W. F. Sharpe, Fundamentals of Investments, Prentice-Hall, Englewood
Cliffs, NJ, 1989.

[3] P. Billingsley, Probability and Measure, 2nd ed., John Wiley and Sons, New York, 1986.
[4] A. Chou, J. Cooperstock, R. El-Yaniv, M. Klugerman, and T. Leighton, The statistical

adversary allows optimal money-making trading strategies, in Proc. 6th Annual ACM-
SIAM Symposium on Discrete Algorithms, 1995, pp. 467–476.

[5] Y. Chow, H. Robbins, and D. Siegmund, Great Expectations: The Theory of Optimal Stop-
ping, Houghton Mifflin, Boston, 1971.

[6] Y. S. Chow, S. Moriguti, H. Robbins, and S. M. Samuels, Optimal selection based on
relative rank (the “secretary problem”), Israel J. Math., 2 (1964), pp. 81–90.

[7] T. M. Cover, An algorithm for maximizing expected log investment return, IEEE Trans. In-
form. Theory, IT-30 (1984), pp. 369–373.

[8] R. El-Yaniv, A. Fiat, R. Karp, and G. Turpin, Competitive analysis of financial games, in
Proc. 33rd Symposium on Foundations of Computer Science, 1992, pp. 327–333.

[9] E. F. Fama, Foundations of Finance, Basic Books, New York, 1976.
[10] P. R. Freeman, The secretary problem and its extensions: A review, Internat. Statist. Rev.,

51 (1983), pp. 189–206.
[11] M. Gardner, Mathematical games, Sci. Amer., 202 (1960), pp. 150–153.
[12] A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator, Competitive snoopy caching,

in Proc. 27th Symposium on Foundations of Computer Science, 1986, pp. 244–254.

90 MING-YANG KAO AND STEPHEN R. TATE

[13] D. E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms,
2nd ed., Addison–Wesley, Reading, MA, 1981.

[14] A. Mucci, Differential equations and optimal choice problems, Ann. Statist., 1 (1973), pp. 104–
113.

[15] W. T. Rasmussen and S. R. Pliska, Choosing the maximum from a sequence with a discount
function, Appl. Math. Optim., 2 (1976), pp. 279–289.

[16] D. D. Sleator and R. E. Tarjan, Amortized efficiency of list update and paging rules, Comm.
ACM, 28 (1985), pp. 202–208.

[17] M. H. Smith and J. J. Deely, A secretary problem with finite memory, J. Amer. Statist.
Assoc., 70 (1975), pp. 357–361.

[18] M. Tamaki, Recognizing both the maximum and the second maximum of a sequence, J. Appl.
Probab., 16 (1979), pp. 803–812.

[19] P. Whittle, Optimization Over Time: Dynamic Programming and Stochastic Control: Vol-
ume 1, John Wiley and Sons, Chichester, 1982.

[20] P. Wilmott, S. Howison, and J. Dewynne, The Mathematics of Financial Derivatives,
Cambridge University Press, Cambridge, UK, 1995.

SORTING PERMUTATIONS BY REVERSALS AND EULERIAN
CYCLE DECOMPOSITIONS∗

ALBERTO CAPRARA†

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 1, pp. 91–110

Abstract. We analyze the strong relationship among three combinatorial problems, namely,
the problem of sorting a permutation by the minimum number of reversals (MIN-SBR), the problem
of finding the maximum number of edge-disjoint alternating cycles in a breakpoint graph associated
with a given permutation (MAX-ACD), and the problem of partitioning the edge set of an Eulerian
graph into the maximum number of cycles (MAX-ECD). We first illustrate a nice characterization of
breakpoint graphs, which leads to a linear-time algorithm for their recognition. This characterization
is used to prove that MAX-ECD and MAX-ACD are equivalent, showing the latter to be NP-hard.
We then describe a transformation from MAX-ACD to MIN-SBR, which is therefore shown to be
NP-hard as well, answering an outstanding question which has been open for some years. Finally, we
derive the worst-case performance of a well-known lower bound for MIN-SBR, obtained by solving
MAX-ACD, discussing its implications on approximation algorithms for MIN-SBR.

Key words. sorting by reversals, breakpoint graph, Eulerian graph, cycle decomposition, com-
plexity

AMS subject classifications. 68Q25, 68R10, 05C45

PII. S089548019731994X

1. Introduction. Let π = (π1 . . . πn) be a permutation of {1, . . . , n}, and
denote by ι the identity permutation (1 2 . . . n−1 n). A reversal of the interval (i, j)
is an inversion of the subsequence πi . . . πj of π, represented by the permutation
ρ = (1 . . . i − 1 j . . . i j + 1 . . . n). Composition of π with ρ yields πρ =
(π1 . . . πi−1 πj . . . πi πj+1 . . . πn), where elements πi, . . . , πj have been reversed.
The problem of sorting a permutation by the minimum number of reversals (MIN-
SBR) is defined as follows.

MIN-SBR: Given a permutation π, find a shortest sequence of reversals ρ1, . . . ,
ρd(π) such that πρ1 . . . ρd(π) = ι.

The optimal solution value d(π) is called the reversal distance of π.

MIN-SBR was inspired by computational biology applications, in particular by
genome rearrangements, and has been widely studied in the last years by Kece-
cioglu and Sankoff [16, 15]; Bafna and Pevzner [1]; Hannenhalli and Pevzner [10, 11];
Caprara, Lancia, and Ng [6]; Berman and Hannenhalli [2]; Irving and Christie [13];
Tran [20]; Kaplan, Shamir, and Tarjan [14]; Christie [7]; and Caprara [5], among
others.

Until recently, most evolutionary studies in molecular biology were based on se-
quence alignment, i.e., comparison of single genes to detect local mutations in the
sequence of nucleotides. However, in the last few years, we have witnessed an increas-
ing interest in analyzing entire genomes at once, thus shifting the attention from gene
level to chromosome level (Sankoff et al. [19], Sankoff [18]). In fact, as it is often found

∗Received by the editors April 21, 1997; accepted for publication (in revised form) August 12,
1998; published electronically January 29, 1999. This research was partially supported by MURST
and CNR, Italy. A preliminary version of this paper appeared as Sorting by reversals is difficult, in
Proc. First Annual International Conference on Computational Molecular Biology, RECOMB ’97,
Santa Fe, NM, 1997.

http://www.siam.org/journals/sidma/12-1/31994.html
†DEIS, Università di Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy (acaprara@

deis.unibo.it).

91

92 ALBERTO CAPRARA

that the order of genes is preserved more easily than the DNA sequence (see [9, 21]),
looking at genes instead of DNA sequences allows one to construct some otherwise
extremely difficult evolutionary scenarios; this is particularly true for plant mito-
chondrial DNA, virology, and Drosophila genetics. Rearrangement of genomes can
occur in many different ways, among which we can number inversions, transpositions,
deletions, insertions, and duplications of fragments.

Let the order of the genes in two single-chromosome organisms be given by two
permutations π and τ of {1, . . . , n}. An inversion of the segment comprising the genes
from the ith to the jth is represented by a reversal of the interval (i, j). A shortest
sequence of reversals needed to transform π into τ is clearly equal to an optimal
solution of MIN-SBR on τ−1π. Therefore, the solution of MIN-SBR yields a possible
scenario to explain how an organism evolved from another, under the simplifying
assumptions that inversions were the only rearrangement to occur, and that evolution
required the minimum number of rearrangements. Even if these assumptions lead to
some approximation, both are well motivated. Indeed, on the one hand inversions are
by far the most frequent type of rearrangement, and on the other hand rearrangements
are very rare events.

The breakpoint graph associated with a permutation has always played a key
role in the study of MIN-SBR. In particular, the problem of finding a maximum
alternating-cycle decomposition (MAX-ACD) of a breakpoint graph, defined in the
next section, is very closely related to MIN-SBR. This strong relationship was first
pointed out by Bafna and Pevzner [1] and Kececioglu and Sankoff [16] and was later
considered by Hannenhalli and Pevzner [10, 11]. As will be clear from its definition,
MAX-ACD is very similar to the following problem, called maximum Eulerian cycle
decomposition (MAX-ECD).

MAX-ECD: Given an Eulerian graph H = (W,E), find a maximum-cardinality
cycle decomposition of H, i.e., partition E into the maximum number of cycles.

In this paper we further analyze the relationship between MIN-SBR, MAX-ACD,
and MAX-ECD, deriving several results about the three problems.

One major open question about MIN-SBR is its complexity: although the problem
was conjectured to be NP-hard back in 1993 by Kececioglu and Sankoff [16], nobody
has been able to come up with a proof of this conjecture so far. In particular, the
question appears as Problem 1 in the open problem list of Pevzner and Waterman
[17] and is mentioned in the Crescenzi–Kann list of NP-hard problems; see entry MS9
in [8]. A stronger conjecture of Kececioglu and Sankoff [16] claimed that the special
case of MIN-SBR, where, for a given π, one wants to check whether d(π) is equal to
one-half times the number of breakpoints of π (see below), was NP-complete. In fact
Irving and Christie [13] and Tran [20] recently (and independently) disproved this
latter conjecture, giving a polynomial time algorithm for solving this special case.
Our results include a proof of the NP-hardness of MIN-SBR.

The paper is organized as follows. We illustrate the basic definitions and results
from the literature in section 2. In section 3 we give a nice characterization of break-
point graphs associated with permutations, yielding a linear-time algorithm for their
recognition. We use this characterization in section 4 to prove that MAX-ACD is
equivalent to MAX-ECD and is therefore NP-hard. In section 5 we describe a poly-
nomial transformation from MAX-ACD to MIN-SBR, showing the latter is NP-hard.
Finally, in section 6 we derive the absolute and asymptotic worst-case performance
ratio of the lower bound on d(π) obtained by solving MAX-ACD and discuss its
implications on approximation algorithms for MIN-SBR.

SORTING BY REVERSALS AND CYCLE DECOMPOSITIONS 93e
e
e

ee
e

0

4

21

3

5

Fig. 1. The breakpoint graph G(π) associated with π = (4 2 1 3). Gray edges are drawn as thin
lines, black edges as thick lines.

2. Basic definitions and previous results. In this section we give the basic
definitions and previous results that we will use in what follows.

Consider a permutation π = (π1 . . . πn) of {1, . . . , n}. Following the description
in [1], define the breakpoint graph G(π) = (V,B ∪ C) of π as follows. Add to π the
elements π0 := 0 and πn+1 := n + 1, redefining π := (0 π1 . . . πn n + 1). Also,
let the inverse permutation π−1 of π be defined by π−1

πi := i for i = 0, . . . , n + 1.
Let V := {0, . . . , n + 1}, where each node v ∈ V represents an element of π. Graph
G(π) is bicolored, i.e., its edge set is partitioned into two subsets, each represented
by a different color. B is the set of black edges, each of the form (πi, πi+1), for
all i ∈ {0, . . . , n} such that |πi − πi+1| 6= 1, i.e., elements which are in consecutive
positions in π but not in the identity permutation ι. Such a pair πi, πi+1 is called a
breakpoint of π. Let b(π) := |B| be the number of breakpoints of π. C is the set of
gray edges, each of the form (i, i+1), for all i ∈ {0, . . . , n} such that |π−1

i −π−1
i+1| 6= 1,

i.e., elements which are in consecutive positions in ι but not in π. Note that each
node i ∈ V has either degree 0, 2, or 4, and has the same number of incident gray
and black edges. Therefore, |B| = |C|(= b(π)). Figure 1 depicts the breakpoint graph
associated with the permutation (4 2 1 3).

An alternating cycle of G(π) is a sequence of edges b1, c1, b2, c2, . . . , bm, cm, where
bi ∈ B, ci ∈ C for i = 1, . . . ,m; bi and cj are incident to a common node for
i = j = 1, . . . ,m and for i = j + 1, j = 1, . . . ,m (where bm+1 := b1); and
bi 6= bj , ci 6= cj for 1 ≤ i < j ≤ m. For example, edges (0, 4), (4, 3), (3, 1), (1, 0)
and (4, 2), (2, 3), (3, 5), (5, 4) form alternating cycles in the graph of Figure 1. An
alternating path is a subsequence of consecutive edges of some alternating cycle. It
is sometimes convenient to assign each edge (πi, πi+1) ∈ B an orientation from πi to
πi+1, i.e., to orient the black edges of G from the endpoint which appears first in π
to the endpoint which appears second. An alternating cycle of G(π) is then called
unoriented with respect to π if it is possible to walk along the whole cycle traversing
each black edge in the direction of its orientation, oriented with respect to π otherwise.
For example, in Figure 1 alternating cycle (4, 2), (2, 3), (3, 5), (5, 4) is unoriented with
respect to (4 2 1 3), whereas alternating cycle (0, 4), (4, 3), (3, 1), (1, 0) is oriented with
respect to (4 2 1 3).

An alternating-cycle decomposition of G(π) is a collection of edge-disjoint alter-
nating cycles, such that every edge of G is contained in exactly one cycle of the
collection. It is easy to see that G(π) always admits an alternating-cycle decom-
position. In the graph of Figure 1, alternating cycles (0, 4), (4, 3), (3, 1), (1, 0) and
(4, 2), (2, 3), (3, 5), (5, 4) form an alternating-cycle decomposition. For a given π let
c(π) be the maximum cardinality of an alternating-cycle decomposition of G(π).
Bafna and Pevzner [1] (see also Kececioglu and Sankoff [16]) proved the following
property.

94 ALBERTO CAPRARAff
f f
f f

ff

0

5

6

21

4

3

7

Fig. 2. The breakpoint graph G(~π) associated with ~π = (3 1 2), where element 3 is even and
elements 1 and 2 are odd.

Theorem 1 (See [1], [16]). For every permutation π, d(π) ≥ b(π)− c(π).

Therefore b(π)− c(π) gives a valid lower bound on the optimal solution value to
MIN-SBR. In practical cases this bound turns out to be very tight and is frequently
equal to the optimum, as confirmed by the extensive experiments of Kececioglu and
Sankoff [16] and Caprara, Lancia, and Ng [6]. This empirical observation was recently
formalized by Caprara [5], who showed that the probability that d(π) > b(π) − c(π)
for a random permutation π of n elements is O(1/n5).

The signed version of MIN-SBR is a relevant variant of the problem, which was
shown to be solvable in polynomial time by Hannenhalli and Pevzner [10]. This
variant calls for sorting a permutation by the minimum number of reversals, with
a parity assigned to each element of the permutation, specifying that, in a solution,
the number of reversals involving the element must be either even, in which case the
element is called even, or odd, in which case it is called odd. A permutation with a
parity assigned to each element is called signed and is denoted by ~π. Note that any
sequence of reversals which sorts ~π corresponds to a feasible solution of MIN-SBR on
π, the permutation obtained from ~π by neglecting the parity of the elements. Hence,
letting d(~π) denote the optimal solution value of signed MIN-SBR on ~π, one has that
d(~π) ≥ d(π).

The breakpoints and the breakpoint graph of a signed permutation ~π with n
elements correspond to those associated with the unsigned permutation ν with 2n
elements defined by ν2i−1 := 2~πi − 1, ν2i := 2~πi if element ~πi is even, ν2i−1 := 2~πi,
ν2i := 2~πi − 1 if element ~πi is odd, for i = 1, . . . , n. Accordingly, in the breakpoint
graph G(~π) associated with ~π, all nodes have degree 0 or 2; hence there is a unique
alternating-cycle decomposition whose cardinality is denoted by c(~π). Bafna and
Pevzner showed that Theorem 1 also applies to signed permutations, i.e., d(~π) ≥
b(~π) − c(~π), where b(~π) is the number of breakpoints of ~π, equal to b(ν). Figure 2
depicts the breakpoint graph associated with ~π = (3 1 2) where element 3 is even and
elements 1 and 2 are odd, hence ν = (5 6 2 1 4 3).

The following definitions follow those of Hannenhalli and Pevzner [10]. The ori-
entation of the black edges of G(~π) with respect to ~π is defined as their orientation
with respect to ν. Two gray edges (νi, νh) and (νj , νk) of G(~π) are called interleaving
if their endpoints are such that either i < j < h < k or i > j > h > k. In the example
of Figure 2, gray edges (0, 1) and (6, 7) are interleaving, while edges (6, 7) and (2, 3)
are not. Two alternating cycles A1 and A2 of G(~π) are called interleaving if there are

SORTING BY REVERSALS AND CYCLE DECOMPOSITIONS 95

two interleaving edges e1 ∈ A1 and e2 ∈ A2. The interleaving graph H(~π) associated
with ~π has one node A associated with each alternating cycle A of G(~π) and one edge
(A1, A2) associated with each pair of interleaving cycles A1 and A2. The interleaving
graph associated with the signed permutation of Figure 2 has two nodes connected
by an edge as edges (0, 1) and (6, 7) are interleaving.

Hannenhalli and Pevzner [10] define the parameters h(~π) and f(~π), both related
to the structure of H(~π). For the scope of this paper, we avoid giving the definition
of h(~π) and f(~π) but simply stress that h(~π) +f(~π) is at most equal to the number of
connected components ofH(~π) in which all nodes correspond to unoriented alternating
cycles. The main result proved by Hannenhalli and Pevzner in [10] is in the following.

Theorem 2 (See [10]). For every signed permutation ~π, d(~π) = b(~π) − c(~π) +
h(~π) + f(~π).

As a corollary, one gets that d(~π) = b(~π)− c(~π) if every alternating cycle of G(~π)
is oriented. We note that this condition is only sufficient. The above theorem leads
to a polynomial time algorithm for signed MIN-SBR. At present, the most efficient
algorithm is due to Kaplan, Shamir, and Tarjan [14].

Theorem 3 (See [14]). The signed version of MIN-SBR can be solved in O(n2)
time.

Signed permutations can be used to establish an elegant connection between
alternating-cycle decompositions and solutions of MIN-SBR, as illustrated next.

Given a (unsigned) permutation π and an alternating-cycle decomposition of G(π)
into, say, p cycles, it is easy to assign a parity to the elements of π so that the resulting
signed permutation ~π satisfies b(~π) = b(π) and c(~π) = p. The main idea is to decide
whether each element of ~π must be even or odd so as to ensure that the unique
alternating-cycle decomposition of G(~π) coincides with the given alternating-cycle
decomposition of G(π); see [11, 6] for details. For our purposes, it is important to
observe that every alternating cycle of G(~π) is oriented with respect to ~π if and only if
its counterpart in the decomposition of G(π) is oriented with respect to π. Therefore,
assuming that p = c(π), i.e., the given alternating-cycle decomposition is optimal,
and that every cycle in the decomposition is oriented with respect to π, one has

d(π) ≤ d(~π) = b(~π)− c(~π) = b(π)− c(π) ≤ d(π),

hence implying the following theorem.

Theorem 4 (See [10, 11]). For a permutation π and a maximum decomposition
of G(π) into c(π) alternating cycles, if every cycle in the decomposition is oriented
with respect to π, then d(π) = b(π)− c(π).

The above discussion motivates the study of the following MAX-ACD problem.

MAX-ACD: Given the breakpoint graph G(π) of a given permutation π, find a
maximum-cardinality alternating-cycle decomposition of G(π).

As one can observe, MAX-ACD is somehow related to MAX-ECD, defined in the
previous section. In the early 1980s Holyer [12] proved that checking whether the
edge set of a given graph H can be partitioned into cliques of size k is NP-complete
for every k ≥ 3. In particular, for k = 3 one wants to check whether the edge set of
H can be partitioned into triangles. In this case H can be assumed to be Eulerian
without loss of generality, the answer clearly being no otherwise. So the problem
of determining whether the edge set of an Eulerian graph can be partitioned into
triangles is NP-complete. This immediately implies the following theorem.

Theorem 5 (See [12]). MAX-ECD is NP-hard.

96 ALBERTO CAPRARA

3. A nice characterization of breakpoint graphs. In this section we char-
acterize the bicolored graphs which are breakpoint graphs of some permutation. In
particular, we derive a linear-time algorithm which checks whether a given bicolored
graph is a breakpoint graph and, if this is the case, yields an associated permutation.
These results will be used in the next sections.

To simplify the notation, given a (possibly bicolored) graph G = (V,E) and any
set F ⊆ {(i, j) : i, j ∈ V, i 6= j} (possibly F 6⊆ E), we let G(F) denote the subgraph of
G induced by F , defined by node set V \ I, where I is the set of nodes not contained
in any pair in F , and edge set F . Furthermore, we write G1 = G2 to indicate that
two graphs G1 and G2 are isomorphic.

Definition 1. A bicolored graph G = (V,B ∪ C) is called balanced bicolored if

(i) each connected component of the subgraphs of G induced by edge set B, G(B),
and by edge set C, G(C), is a simple path;

(ii) each node i ∈ V has the same degree (0, 1, or 2) in G(B) and G(C);
(iii) the edge sets of G(B) and G(C) are disjoint; i.e., B ∩ C = ∅.
Let G = (V,B ∪ C) be a balanced bicolored graph. For convenience, in this

section we do not address explicitly the trivial case B ∪ C = ∅. Consider the set
U of the nodes of degree 2 in G, i.e., the set of nodes of degree 1 in G(B) and
G(C). Note that |U | is even and ≥ 2. A perfect matching of the nodes in U is a
set M ⊂ {(i, j) : i, j ∈ U, i 6= j} such that every i ∈ U is contained in exactly one
pair in M . Such a perfect matching is called Hamiltonian if the graphs G(B ∪M)
and G(C ∪ M) are Hamiltonian circuits; note that M can be Hamiltonian only if
M ∩ (B ∪ C) = ∅ and that both G(B ∪M) and G(C ∪M) visit only the nodes of
degree 1 or 2 in G. The importance of Hamiltonian matchings of U is motivated by
the following property.

Lemma 1. Let G be a balanced bicolored graph and U be the set of degree-2 nodes
of G. Every Hamiltonian matching of U defines at least one permutation π such that
G(π) = G. Conversely, every π such that G(π) = G defines a Hamiltonian matching
of U .

Proof. Given a Hamiltonian matching M of U , a permutation π of |V | elements
(including the dummy elements π0 := 0 and π|V |−1 := |V | − 1) such that G(π) = G
can be constructed as follows. First of all, if G has no node of degree 0, let P :=
M . Otherwise, let i1, . . . , ik denote the nodes of degree 0 in G, arbitrarily choose
(i, j) ∈ M , and let P := (M \ {(i, j)}) ∪ {(i, i1), (i1, i2), . . . , (ik−1, ik), (ik, j)}; i.e.,
P is obtained from M by replacing edge (i, j) with the edges in a path from i to j
visiting all the nodes of degree 0 in G. Both G(B∪P) and G(C ∪P) are Hamiltonian
circuits visiting all the nodes of G. Then, choose any node i ∈ U and number it 0.
Consider the Hamiltonian circuit G(C ∪ P), and walk along it starting from i, first
traversing the gray edge incident to i. Number the nodes 1, 2, . . . , |V | − 1 according
to the order in which they are visited by the walk. Now consider the Hamiltonian
circuit G(B ∪ P), and walk along it starting from node i, letting π0 := 0, and first
traversing the black edge incident to i. Let elements π1, π2, . . . , π|V |−1 correspond to
the numbers assigned to the nodes which are in turn visited by the walk. It is easy
to verify that G(π) = G.

Conversely, for any given permutation π of {1, . . . n} such that G(π) = G, let P :=
({(i, i+1) : 0 ≤ i ≤ n}\C)∪{(0, n+1)} = ({(πi, πi+1) : 0 ≤ i ≤ n}\B)∪{(0, n+1)}.
It is easy to verify that G(P) is a set of paths whose endpoints are the nodes of degree
2 in G and whose intermediate nodes are the nodes of degree 0 in G. Moreover, the
set M containing all pairs (i, j) such that there is a maximal path from i to j in G(P)

SORTING BY REVERSALS AND CYCLE DECOMPOSITIONS 97e e

ee

0

21

5

Fig. 3. The auxiliary graph A associated with the breakpoint graph of Figure 1. Edges in E are
drawn as thin lines, edges in D as thick lines.e

e
e
e

-

e

e

e

ee
ei j

a b

c d

a b

c d

Fig. 4. The removal of nodes i and j before each recursive call of HAMILTONIAN MATCHING.

is a Hamiltonian matching of G.
For example, the Hamiltonian matching of G(π) in Figure 1 defined by π is

M = {(1, 2), (0, 5)}. Matching M is also associated with the permutation (2 4 3 1),
whose breakpoint graph is isomorphic to G(π).

Note that given a breakpoint graph G and an associated Hamiltonian matching
M , the Hamiltonian circuit G(B ∪M) uniquely determines which alternating cycles
of G are unoriented or oriented with respect to every permutation associated with G
and M .

We show that every balanced bicolored graph has a Hamiltonian matching by
giving a procedure to find such a matching. Given a balanced bicolored graph G,
construct the following auxiliary graph A = (U,D ∪ E), where nodes i, j ∈ U are
connected by a black edge d ∈ D if there is a maximal path in G(B) from i to j,
and, symmetrically, nodes i, j ∈ U are connected by a gray edge e ∈ E if there is a
maximal path in G(C) from i to j. It is easy to verify that each node of A has exactly
2 incident edges, one in D and one in E. (Note that A is not necessarily a balanced
bicolored graph, since a black edge in D and a gray edge in E might have the same
endpoints.) Figure 3 depicts the auxiliary graph associated with the breakpoint graph
of Figure 1. Consider procedure HAMILTONIAN MATCHING of Figure 5 applied
to A.

Lemma 2. The set M constructed by procedure HAMILTONIAN MATCHING
is a Hamiltonian matching.

Proof. If |U | > 2, i.e., |U | ≥ 4, there always exists a node pair i, j such that
(i, j) 6∈ D ∪ E, since each node of A has degree 2. The fact that M is a perfect
matching of the nodes of degree 2 in G such that M∩(B∪C) = ∅ is immediate. To see
that M is Hamiltonian, it is sufficient to show that G(B ∪M) and G(C ∪M) contain
no subcircuit. Indeed, in each recursive step, there is a one-to-one correspondence
between maximal paths in G(B ∪M) (resp., in G(C ∪M)) and edges in D (resp., in
E), and therefore the only way to introduce a subcircuit would be by matching two

98 ALBERTO CAPRARA

procedure HAMILTONIAN MATCHING(A,M);

input: the auxiliary graph A = (U,D ∪ E) associated with

a balanced bicolored graph G = (V,B ∪ C);

output: a Hamiltonian matching M of the nodes in U ;

begin

if |U | = 2 then

let i and j be the two nodes in U ;

let M := {i, j}
else

begin

choose any node pair i, j ∈ U such that (i, j) 6∈ D ∪ E;

comment: remove i and j (see Figure 4);

let a and b respectively be the nodes connected to i and j

by a black edge in D, and c and d respectively be the nodes

connected to i and j by a gray edge in E;

let U := U \ {i, j}, D := (D \ {(i, a), (j, b)}) ∪ {(a, b)},
E := (E \ {(i, c), (j, d)}) ∪ {(c, d)}, A := (U,D ∪ E);

call HAMILTONIAN MATCHING(A,M);

let M := M ∪ {(i, j)}
end

end.

Fig. 5. Procedure HAMILTONIAN MATCHING.

nodes connected by an edge in D (resp., in E), which is avoided.

For graph G(π) in Figure 1, M = {(1, 2), (0, 5)} is the only possible Hamiltonian
matching; see Figure 3.

From the above lemmas we get the following theorem.

Theorem 6. Every balanced bicolored graph is isomorphic to the breakpoint graph
of some permutation, and vice versa.

Proof. Every breakpoint graph satisfies, by definition, (i)–(iii) in Definition 1.
Conversely, given a balanced bicolored graph G, by Lemma 2 it is possible to find
a Hamiltonian matching of G and hence, by Lemma 1, a permutation π such that
G(π) = G.

The above discussion leads to a linear-time recognition algorithm for breakpoint
graphs.

Corollary 1. Given a bicolored graph G = (V,B ∪C), it is possible to check in
O(|V |) time whether G is a breakpoint graph, obtaining an associated permutation if
the answer is positive.

Proof. Suppose the given bicolored graph G = (V,B ∪ C) is stored using one
vector of length |V | containing the number of black and gray edges incident to each
node, and two vectors of length 2|V |, one for each edge color, where entries 2i−1 and
2i contain the nodes connected to node i by gray and black edges, respectively. (If a
node turns out to have a different number of incident gray and black edges, or more

SORTING BY REVERSALS AND CYCLE DECOMPOSITIONS 99

ee e eee
e
e - ee ee e e e e

e
e

i j i a b j

Fig. 6. The subdivision of edge (i, j).

than two incident black/gray edges, G is clearly not a breakpoint graph.) It is then
straightforward to check if G is balanced bicolored in O(|V |) time. Furthermore, the
auxiliary graph A can easily be constructed and stored in the same way as G in O(|V |)
time. With this data structure for A, it is obvious how to perform each recursive step
in HAMILTONIAN MATCHING in constant time. In particular, for any node i of
the auxiliary graph, by checking at most three other nodes it is possible to find a node
j not connected to i. Finally, the construction of a permutation associated with G
can be done in O(|V |) time if one adds to the data structure for G a vector of length
|U | storing, for each node i of degree 2 in G, the node connected to i by an edge in
the Hamiltonian matching.

Given a bicolored graph G = (V,B ∪ C), the subdivision of an edge e = (i, j) ∈
B ∪ C is obtained by adding two new nodes, say a, b, to V , and replacing e by the 3
edges (i, a), (a, b), and (b, j), where (i, a) and (b, j) have the same color as e, while
(a, b) has a different color from e; see Figure 6.

Remark 1. There is a one-to-one correspondence between alternating cycles (and
alternating-cycle decompositions) of a bicolored graph G and any bicolored graph G′

obtained from G by subdividing edges.

Edge subdivision and analogous operations in breakpoint graphs have been used
in the literature for different purposes; see, for example, [10] and [6]. In this paper,
edge subdivision plays an important role in the analysis of the complexity of MIN-SBR
in section 5.

4. The equivalence of MAX-ECD and MAX-ACD. In this section we
show that MAX-ECD and MAX-ACD can be rather easily transformed into each
other. The main implications of our constructions are that MAX-ACD is NP-hard,
that any approximation algorithm for MAX-ACD with a given worst-case performance
can be used for solving MAX-ECD with the same worst-case performance, and that
MAX-ECD is NP-hard even if restricted to Eulerian graphs with degree at most 4.

The transformation from MAX-ACD to MAX-ECD works as follows. Let G =
(V,B ∪ C) be any balanced bicolored graph. Define the Eulerian graph HG from
G by replacing every degree-4 node in V by the graph X(i) in Figure 7. Formally,
each degree-4 node i ∈ V having incident black edges (i, a) and (i, c) and incident
gray edges (i, b) and (i, d) is replaced by nodes i0, i1, i2, i3, i4, by (uncolored) edges
(i0, i1), (i0, i2), (i0, i3), (i0, i4), (i1, i2), (i2, i3), (i3, i4), (i4, i1), by black edges (i1, a),
(i3, c), and by gray edges (i2, b), (i4, d). After all the original degree-4 nodes of G
have been replaced, graph HG is obtained by simply forgetting about the color of
the edges. Note that every node of HG has degree at most 4. Letting s be the
number of degree-4 nodes in G, it would be easy to show that there is a one-to-one
correspondence between alternating-cycle decompositions of G into p cycles and cycle
decompositions of HG into p + 2s cycles, 2s of which are triangles internal to the
X(i)’s, proving the following.

Theorem 7. Given a balanced bicolored graph G, MAX-ACD on G can be solved

100 ALBERTO CAPRARA

-e
e

e

e

e
e
e
e

e

e
e

e
ee

i

a

d

b

c

a

d c

b

i0

i1 i2

i3i4

X(i)

Fig. 7. The replacement of each degree-4 node i by graph X(i) in the transformation from
MAX-ACD to MAX-ECD.

e e e e
e e e e e
e e e e
e e e e e e e e
b1 b2 b3 b4 b5 b6 b7 b8

p1 p2 p3 p4

q1 q2 q3 q4 q5

r1 r2 r3 r4

e e e e e e e et1 t2 t3 t4 t5 t6 t7 t8

Fig. 8. Graph Y (8).

by solving MAX-ECD on graph HG, whose size is linear in the size of G and where
every node has degree at most 4.

For a detailed proof, see the original technical report [3]. Unfortunately, the trans-
formation presented does not preserve approximability, since the optimal solutions of
MAX-ACD on G and MAX-ECD on HG differ by twice the number of degree-4 nodes
in G.

In order to show a polynomial transformation of MAX-ECD into MAX-ACD, we
need some preliminary definitions and lemmas.

Let d be an even integer and s := d/2. The bicolored graph Y (d) is defined by
node set {b1, . . . , bd} ∪ {p1, . . . , ps} ∪ {q1, . . . , qs+1} ∪ {r1, . . . , rs} ∪ {t1, . . . , td}, by
black edge set {(pi, qi), (pi, qi+1), i = 1, . . . , s} ∪ {(ri, t2i−1), (ri, t2i), i = 1, . . . , s}, and
by gray edge set {(b2i−1, pi), (b2i, pi), i = 1, . . . , s} ∪ {(qi, ri), (qi+1, ri), i = 1, . . . , s}.
Graph Y (8) is depicted in Figure 8.

Let Z(d,m) be the bicolored graph obtained by merging m copies of

SORTING BY REVERSALS AND CYCLE DECOMPOSITIONS 101

e e e e
e e e e e
e e e e
e e e e e e e e
p2

1 p2
2 p2

3 p2
4

q2
1 q2

2 q2
3 q2

4 q2
5 Y 2(8)

r2
1 r2

2 r2
3 r2

4

e e e e e e e et21 t22 t23 t24 t25 t26 t27 t28

e e e e
e e e e e
e e e e
e e e e e e e e
p1

1 p1
2 p1

3 p1
4

q1
1 q1

2 q1
3 q1

4 q1
5 Y 1(8)

r1
1 r1

2 r1
3 r1

4

l1
≡
b11

l2
≡
b12

l3
≡
b13

l4
≡
b14

l5
≡
b15

l6
≡
b16

l7
≡
b17

l8
≡
b18

t11
≡
b21

t12
≡
b22

t13
≡
b23

t14
≡
b24

t15
≡
b25

t16
≡
b26

t17
≡
b27

t18
≡
b28

Fig. 9. Graph Z(8, 2).

Y (d), say Y 1(d), . . . , Y m(d), as follows. For j = 1, . . . ,m−1 the t-nodes of Y j(d) and
the b-nodes of Y j+1(d) are identified; more precisely node ti in Y j(d) and node bi in
Y j+1(d) (i = 1, . . . , d) correspond to the same node in Z(d,m), connected to nodes
pdi/2e in Y j(d) and rdi/2e in Y j+1(d). Moreover, the t-nodes in Y m(d) are joined in
Z(d,m) by gray edges {(t2i−1, t2i), i = 1, . . . , s}. Graph Z(8, 2) is shown in Figure 9.

Let l1, . . . , ld represent the nodes in Z(d,m) corresponding to nodes b1, . . . , bd in
Y 1(d). Moreover, let bji , p

j
i , q

j
i , r

j
i , and tji denote, respectively, the nodes in Z(d,m)

corresponding to nodes bi, pi, qi, ri, and ti in Y j(d). In particular, for i = 1, . . . , d and
j = 1, . . . ,m− 1, nodes tji and bj+1

i coincide. Also, node sets l1, . . . , ld and b11, . . . , b
1
d

coincide. For notational convenience we represent alternating paths in Z(d,m) by the
sequence of nodes they visit. The trivial alternating path which connects nodes bm2i−1

102 ALBERTO CAPRARA

and bm2i in Z(d,m) is given by

bm2i−1, p
m
i , q

m
i , r

m
i , t

m
2i−1, t

m
2i, r

m
i , q

m
i+1, p

m
i , b

m
2i;

see Figure 9. The next lemma follows directly from the definition of Z(d,m).
Lemma 3. Z(d,m) does not contain any alternating cycle, each node in Z(d,m)

has the same number of incident gray and black edges, with the exception of l1, . . . , ld,
and any alternating path connecting two l-nodes contains exactly 8m+ 1 edges.

We are now ready to prove the key property of Z(d,m).
Lemma 4. Let τ be any partition of the node set {l1, . . . , ld} in Z(d,m) into pairs,

say τ = {(lτ1 , lτ2), . . . , (lτd−1
, lτd)}. If m ≥ 1 + s(s− 1)/2, the edge set of Z(d,m) can

be decomposed into s alternating paths, each connecting a different pair in τ .
Proof. Note that every partition τ can be obtained from the partition {(l1, l2), . . . ,

(ld−1, ld)} by performing at most s(s−1)/2 exchanges between adjacent pairs. Indeed,
with at most s − 1 exchanges one can get the first pair in τ , with at most s − 2 the
second, and so on. Our proof is by induction on the number of such exchanges.
We show that, for i = 1, . . . , s, it is possible to connect nodes lτ2i−1

and lτ2i by an
alternating path of the form lτ2i−1

, . . . , tm2i−1, t
m
2i, . . . , lτ2i .

Clearly, if τ = {(l1, l2), . . . , (ld−1, ld)}, the edge set of Z(d, 1) can be decomposed
as required by using, for i = 1, . . . , s, the trivial alternating path which connects l2i−1

to l2i.
Suppose now that τ is obtained from τ ′ by exchanging two elements in consecu-

tive pairs, and the edge set of Z(d, j) can be decomposed into s alternating paths, the
ith of the form lτ ′

2i−1
, . . . , tj2i−1, t

j
2i, . . . lτ ′2i . Then, the edge set of Z(d, j + 1) can be

decomposed into s alternating paths, the ith of the form lτ2i−1 , . . . , t
j+1
2i−1, t

j+1
2i , . . . lτ2i .

These alternating paths are obtained by taking the alternating paths in Z(d, j) corre-
sponding to τ ′ and replacing their gray edges (tj2i−1, t

j
2i), i = 1, . . . , s, by alternating

paths in Z(d, j + 1) using edges of Y j+1(d) and edges (tj+1
2i−1, t

j+1
2i), i = 1, . . . , s.

For completeness, we consider the two possible cases. In the first case, pairs
(lτ ′

2h−1
, lτ ′

2h
) and (lτ ′

2h+1
, lτ ′

2h+2
) are replaced in τ by pairs (lτ ′

2h−1
, lτ ′

2h+1
) and (lτ ′

2h
,

lτ ′
2h+2

). The alternating paths corresponding to τ are obtained from those corre-

sponding to τ ′ by replacing each edge (tj2i−1, t
j
2i) in Z(d, j), i = 1, . . . , h − 1 and

i = h + 2, . . . , s, by the trivial alternating path connecting nodes bj+1
2i−1 and bj+1

2i

in Z(d, j + 1) and by replacing edges (tj2h−1, t
j
2h) and (tj2h−1, t

j
2h) in Z(d,m) by the

alternating paths

bj+1
2h−1, p

j+1
h , qj+1

h , rj+1
h , tj+1

2h−1, t
j+1
2h , rj+1

h , qj+1
h+1, p

j+1
h+1, b

j+1
2h+1

and

bj+1
2h , pj+1

h , qj+1
h+1, r

j+1
h+1, t

j+1
2h+1, t

j+1
2h+2, r

j+1
h+1, q

j+1
h+2, p

j+1
h+1, b

j+1
2h+2.

In the second case, pairs (lτ ′
2h−1

, lτ ′
2h

) and (lτ ′
2h+1

, lτ ′
2h+2

) are replaced in τ by pairs

(lτ ′
2h−1

, lτ ′
2h+2

) and (lτ ′
2h
, lτ ′

2h+1
), and the construction is analogous to the previous one.

The proof is completed by observing that if the edge set of Z(d, j) can be de-
composed as required, the edge set of Z(d, j + 1) can as well. Indeed, it is sufficient
to replace edges (tj2i−1, t

j
2i), i = 1, . . . , s, in Z(d, j) by the trivial alternating paths

connecting nodes bj+1
2i−1 and bj+1

2i in Z(d, j + 1).
Given an even integer d, let m(d) := 1 + d/2(d/2 − 1)/2, observing that m(d) is

integer. The transformation from MAX-ECD to MAX-ACD, illustrated in Figure 10,

SORTING BY REVERSALS AND CYCLE DECOMPOSITIONS 103

e
e

e . . .

. . .

-
e ee
e

e

e
�

�

�

�

�

�

�

��

�

�

�
H GH

Z(b)

...
...

...
i

b

c

Z(c)

Z(i)

e

e

a

d

. . .

. . .

e�

�

�

�

e�
�
�
�...

Z(d)

Z(a)

Fig. 10. Outline of the transformation from MAX-ECD to MAX-ACD. The circles inside each
Z(v) represent the associated degree-1 nodes.

is then the following. Given an Eulerian graph H = (W,E), the bicolored graph GH
is obtained from H by replacing each i ∈ W , of degree di, by the graph Z(i) :=
Z(di,m(di)) and then, for each (i, j) ∈ F , by connecting two degree-1 nodes of Z(i)
and Z(j) by a black edge. This connection is easily made so that all degree-1 nodes
of Z(i), i ∈ W , have exactly one incident black edge. Note that the size of Z(i) is
proportional to d3

i . It is then clear by Lemma 4 that given a cycle decomposition of
H into p cycles we can find an alternating-cycle decomposition of GH into p cycles,
and vice versa. Finally, GH is clearly balanced bicolored.

To summarize, we have proved the following theorem.

Theorem 8. Given an Eulerian graph H, MAX-ECD on H can be solved by
solving MAX-ACD on the balanced bicolored graph GH , whose size is linear in the
size of H and in d3

H , where dH is the maximum degree of a node of H.

From Theorems 5, 6, and 8 we immediately get the following result.

Corollary 2. MAX-ACD is NP-hard.

The following remark stresses a property of the above transformation from MAX-
ECD to MAX-ACD.

Remark 2. The above transformation from MAX-ECD to MAX-ACD preserves
approximability, namely, to each solution of MAX-ECD on H there corresponds a
solution of MAX-ACD on GH of the same value, and vice versa.

Unfortunately, we are not aware of any approximability result for MAX-ACD
(and MAX-ECD); see also the next section.

We conclude this section with another NP-hardness result, which is a consequence
of Theorem 7 and Corollary 2.

Corollary 3. MAX-ECD restricted to Eulerian graphs with maximum degree 4
is NP-hard.

5. The complexity of MIN-SBR. In this section we give a transformation
from MAX-ACD to MIN-SBR, showing the latter is NP-hard. The transformation
makes extensive use of the breakpoint graph characterization illustrated in section 3.

A possible way of reading Theorem 4 is the following. Given a breakpoint graph
G(π) of some permutation π, it would be possible to compute c(π) by solving MIN-

104 ALBERTO CAPRARA

procedure DOUBLE SUBDIVISION(G,M,G∗,M∗);
input: a breakpoint graph G = (V,B ∪ C) and an associated

Hamiltonian matching M of the nodes of degree 2 in G;

output: a breakpoint graph G∗ = (V ∗, B∗ ∪ C∗) and an associated

Hamiltonian matching M∗ of the nodes of degree 2 in G∗

such that there is a one-to-one correspondence between

alternating cycles (and alternating-cycle decompositions) of G and G∗

and all alternating cycles of G∗ are oriented with respect to every

permutation π∗ associated with G∗ and M∗;
begin

initialize V ∗ := V , B∗ := B, C∗ := C, M∗ := M ;

for each r ∈ B do

begin

let i and j be the endpoints of r and e = (a, b) be any edge of M∗,
where a and b are such that the Hamiltonian circuit G∗(B∗ ∪M∗) is

the union of edge e, a path from a to i, edge r, and a path from j to b

(possibly i = a or j = b, but not both);

comment: add new nodes k1, k2, k3, k4 to V ∗, and replace edge (i, j)

by the alternating path (i, k1), (k1, k2), (k2, k3), (k3, k4), (k4, j);

let V ∗ := V ∗ ∪ {k1, k2, k3, k4},
B∗ := (B∗ \ {(i, j)}) ∪ {(i, k1), (k2, k3), (k4, j)},
C∗ := C∗ ∪ {(k1, k2), (k3, k4)};
comment: update M∗ so as to define a Hamiltonian matching on the

modified G∗, such that all alternating cycles containing the new

black edges are oriented with respect to every permutation

associated with G∗ and M∗;
let M∗ := (M∗ \ {(a, b)}) ∪ {(k1, k4), (k2, a), (k3, b)}

end

end.

Fig. 11. Procedure DOUBLE SUBDIVISION.

SBR on π if there existed an optimal alternating-cycle decomposition of G(π) made
up of oriented (with respect to π) cycles only. Unfortunately, this is not always the
case; we show how to overcome this difficulty in what follows.

Consider a breakpoint graph G(π) = (V,B∪C) associated with some permutation
π, and let M be the Hamiltonian matching of G(π) determined by π (see section 3).
Construct the breakpoint graph G∗ and its Hamiltonian matching M∗ by applying to
G(π) and M the procedure DOUBLE SUBDIVISION in Figure 11. This procedure
replaces every black edge of G by an alternating path of 5 edges, “twice” subdividing
the original edge. Figure 12 shows the effect of the replacement of the black edge
(i, j) on graphs G∗(B∗ ∪M∗) and G∗(C∗ ∪M∗).

SORTING BY REVERSALS AND CYCLE DECOMPOSITIONS 105

-

-

-

d d d d d d d d

d d

d d

d d d d

d d d d

d d d d d d d d

G∗

G∗(B∗ ∪M∗)

G∗(C∗ ∪M∗)

i j i j

k1 k2 k3 k4

i j

a b

i j

k1 k4

a b
k2 k3

a b a b

k2 k1 k4 k3

Fig. 12. The replacement of the black edge (i, j) in procedure DOUBLE SUBDIVISION. Edges
in M∗ are drawn as dotted lines, whereas the curved lines denote paths.

The following lemma follows directly from the definition of G∗ and Remark 1.

Lemma 5. The size of G∗ is linear in the size of G(π), and there is a one-to-one
correspondence between alternating cycles (and alternating-cycle decompositions) of
G(π) and G∗.

The key property of G∗ and M∗ is illustrated by the next lemma.

Lemma 6. The set M∗ is a Hamiltonian matching of G∗, and every alternating
cycle of G∗ is oriented with respect to every permutation associated with G∗ and M∗.

Proof. First of all, at the end of each execution of the for loop the updated M∗

is a Hamiltonian matching of the new G∗. The updating formula of M∗ corresponds
indeed to an insertion of the new degree-2 nodes k1, k2, k3, k4 in the previous Hamilto-
nian circuits G∗(B∗∪M∗) and G∗(C∗∪M∗). In G∗(B∗∪M∗), edges (i, j) and (a, b) are
replaced by the paths (i, k1), (k1, k4), (k4, j) and (a, k2), (k2, k3), (k3, b), respectively,
whereas in G∗(C∗ ∪M∗) edge (a, b) is replaced by the path (a, k2), (k2, k1), (k1, k4),
(k4, k3), (k3, b); see Figure 12.

Every permutation π∗ associated with G∗ and M∗ defines an orientation of the
edges in B∗. In particular, each edge is oriented according to the direction in which
it is traversed by the Hamiltonian circuit G∗(B∗ ∪M∗) starting from the node corre-
sponding to π∗0 and traversing a black edge first; see section 3.

After the replacement of edge r = (i, j), to every alternating cycle of G(π) which
contains this edge there corresponds an alternating cycle of G∗ that contains edges
(i, k1), (k1, k2), (k2, k3), (k3, k4), (k4, j). Furthermore, with respect to every π∗ associ-
ated with G∗ and M∗, either edge (i, k1) is oriented from i to k1, edge (k4, j) from k4

to j, and edge (k2, k3) from k3 to k2 or, conversely, edge (i, k1) is oriented from k1 to
i, edge (k4, j) from j to k4, and edge (k2, k3) from k2 to k3. This property is main-
tained throughout the procedure, since the new Hamiltonian circuits G∗(B∗ ∪M∗)
are obtained from the previous ones by replacing edges with paths.

The above discussion shows that at the end of the procedure, when all black

106 ALBERTO CAPRARA

edges have been replaced, every alternating cycle of G∗ is oriented with respect to
any permutation associated with G∗ and M∗.

The previous lemma leads to the main result of this section.
Theorem 9. MIN-SBR is NP-hard.
Proof. Consider a breakpoint graph G(π) associated with some permutation π,

and let M be the Hamiltonian matching of G(π) corresponding to π. Construct G∗

and M∗ from G(π) and M by applying procedure DOUBLE SUBDIVISION, and let
π∗ be any permutation associated with G∗ and M∗. By Lemmas 5 and 6 and Theorem
4, d(π∗) = b(π∗)− c(π∗), c(π) = c(π∗), and b(π∗) is trivially determined. So one can
compute the optimal value of MAX-ACD for G(π) by solving MIN-SBR on π∗, whose
size is linear in the size of G(π). The claim then follows from Corollary 2.

As one might expect, it is also easy to determine the corresponding optimal
alternating-cycle decomposition of G(π) from an optimal sequence of reversals needed
to sort π∗. In particular, for each element π∗i of π∗, consider the number of reversals in
which it is involved in the sequence. Define a signed permutation ~π∗ from π∗ by letting
element π∗i be an even (resp., odd) element if this number is even (resp., odd). As
explained in section 2, d(~π∗) = d(π∗), and the unique alternating-cycle decomposition
of G(~π∗) corresponds to an alternating-cycle decomposition of G(π∗) of cardinality
b(~π∗)− d(~π∗) = b(π∗)− d(π∗) and is therefore optimal. From this decomposition it is
straightforward to derive an optimal alternating-cycle decomposition for G(π).

We briefly discuss how this reduction from MAX-ACD to MIN-SBR could in
principle be used to derive approximation algorithms for MAX-ACD (and therefore
for MAX-ECD by Remark 2 from approximation algorithms for MIN-SBR. Let Π
denote the set of all permutations and Π∗ denote the set of permutations obtained
from some π ∈ Π by applying the transformation given above. Suppose one wants
to approximate c(π) for π ∈ Π and has an approximation algorithm for MIN-SBR,
which applied to a permutation τ ∈ Π delivers a solution of value dA(τ). As described
above, it is possible to derive π∗ from π so that c(π) = c(π∗) = b(π∗) − d(π∗).
One can then compute a solution of MIN-SBR on π∗ of value dA(π∗) and define a
signed permutation ~π∗ such that d(~π∗) = dA(π∗) and b(~π∗) = b(π∗). (In fact, it
may happen that d(~π∗) < dA(π∗), in which case the approximate solution can be
improved by optimally sorting the corresponding signed permutation. We assume
that the approximation algorithm includes this post-processing phase, so as to ensure
d(~π∗) = dA(π∗).) The approximate solution of MAX-ACD is cA(π) = cA(π∗) =

c(~π∗) = b(~π∗)−d(~π∗) = b(π∗)−dA(π∗). To guarantee that infπ∈Π
cA(π)
c(π) ≥ α for some

α > 0 (α < 1), one would need infπ∗∈Π∗
b(π∗)−dA(π∗)
b(π∗)−d(π∗) ≥ α; i.e.,

sup
π∗∈Π∗

dA(π∗)
d(π∗)

≤ α+ (1− α)
b(π∗)
d(π∗)

.

Unfortunately, no approximation algorithm for general MIN-SBR known so far guar-

antees supπ∈Π
dA(π)
d(π) ≤ α + (1 − α) b(π)

d(π) . Observe that as b(π) ≤ 2d(π), such an

algorithm should have a worst-case performance ratio of at most 2− α.
As an immediate consequence of Theorem 9, the problem of sorting words by

reversals (see [17]) is NP-hard. This latter problem calls for a shortest sequence of
reversals transforming a string w1 . . . wn, such that wi ∈ {1, . . . ,m} for i = 1, . . . , n
and n ≥ m, into a sorted string y1 . . . yn, where yi ≤ yi+1 for i = 1, . . . , n and
is therefore clearly a generalization of MIN-SBR. Other relevant generalizations of
MIN-SBR are mentioned in [4].

SORTING BY REVERSALS AND CYCLE DECOMPOSITIONS 107

f f
f f

νi

νi+1νj

νj+1

f ff f0 · · ·· · ·
2n+ 1

νj+2 νi−1

f f· · ·νj−1 νi+2

Fig. 13. Illustration of the proof of Lemma 7.

Our construction can easily be adapted to show that the circular variant of
MIN-SBR (see [15]) is NP-hard as well. In this problem, reversals of intervals of
the type (j, i), j > i, are also allowed, which transform π = (π1 . . . πn) into
(πi+j−1 . . . πj+1 πj πi+1 . . . πj−1 πi+n πi+n−1 . . . πi+j), where all indexes are
understood to be modulo n. Finally, the main ideas of the construction have been
used in [4] to prove that relevant generalizations of signed MIN-SBR are NP-hard.

6. The worst-case performance of lower bound b(π)− c(π) on d(π). In
this section we show that both the absolute and asymptotic worst-case performance
ratio of lower bound b(π)− c(π) on d(π) are equal to 3

2 .
Let Π denote the set of all permutations, and Πn the set of permutations with at

least n elements. For lower bound b(π)−c(π) on d(π) we define the absolute worst-case
performance ratio as

sup
π∈Π

d(π)

b(π)− c(π)

and the asymptotic worst-case performance ratio as

lim
n→∞ sup

π∈Πn

d(π)

b(π)− c(π)
.

To prove our result, we make use of some notions introduced in section 2, in
particular we use the interleaving graph H(~π) of a signed permutation ~π. We first
prove a technical lemma. An equivalent lemma can be found in [10]; the proof is quite
simple and hence is given explicitly below.

Lemma 7. Given a signed permutation ~π, every connected component of H(~π)
in which all nodes correspond to unoriented alternating cycles contains either at least
two alternating cycles or one alternating cycle with at least 6 edges.

Proof. Since alternating cycles have at least 4 edges, it is sufficient to prove
that there cannot exist an unoriented alternating cycle with 4 edges which is not
interleaving with any other alternating cycle. Suppose such an alternating cycle A
exists, and let n be the number of elements of ~π and ν be the unsigned permutation
corresponding to ~π, as defined in section 2. As it is unoriented, A must be of the form
(νi, νi+1), (νi+1, νj), (νj , νj+1), (νj+1, νi), where the first and third edges are black,
and the second and fourth are gray; see Figure 13. Also, j > i + 2 as i + 1 and j

108 ALBERTO CAPRARA

are connected by a gray edge, and either i > 0 or j + 1 < 2n + 1 (or both), as i
and j + 1 are connected by a gray edge. The fact that A is not interleaving with any
other alternating cycle means that no other gray edge in G(~π) is interleaving with
(νi+1, νj) or (νj+1, νi); i.e., no gray edge connects an element νk, i+ 2 ≤ k ≤ j− 1, to
an element νl, 0 ≤ l ≤ i− 1 or j + 2 ≤ l ≤ 2n+ 1. Therefore, as a gray edge connects
νi+1 to νj , for each element νk, i+ 1 ≤ k ≤ j, elements νk + 1 and νk − 1 are also in
a position between i+ 1 and j. This leads to a contradiction. Consider the minimum
and maximum elements νh and νk, i + 1 ≤ h, k ≤ j. If i > 0, element νh − 1 exists
and is not in a position between i+1 and j. Otherwise, j+1 < 2n+1, hence element
νk + 1 exists and is not in a position between i+ 1 and j.

Theorem 10. Both the absolute and asymptotic worst-case performance ratio of
lower bound b(π)− c(π) on d(π) are equal to 3

2 .

Proof. We first prove that, for any permutation π ∈ Π, d(π)
b(π)−c(π) ≤ 3

2 . Given a

permutation π, suppose an optimal decomposition of G(π) into c(π) alternating cycles
is available. As described in section 2, define from π and the given decomposition a
signed permutation ~π such that b(~π) = b(π), c(~π) = c(π), and d(~π) ≥ d(π). The proof

follows by showing that d(~π)
b(~π)−c(~π) ≤ 3

2 .

From Theorem 2, d(~π) = b(~π)− c(~π) +h(~π) + f(~π); therefore all we need to show

is that h(~π)+f(~π)
b(~π)−c(~π) ≤ 1

2 . As explained in section 2, h(~π) + f(~π) is at most equal to the

number of connected components of the interleaving graph H(~π) in which all nodes
correspond to unoriented alternating cycles. By Lemma 7, each such component
contains either at least two alternating cycles or one alternating cycle with at least 6
edges. In both cases, the contribution to b(~π) − c(~π) of the component is at least 2,

hence h(~π)+f(~π)
b(~π)−c(~π) ≤ 1

2 follows.

We conclude the proof by showing a family of permutations for which the worst
case is attained. Consider first the permutation

π = (0 5 6 3 4 1 2 7)

(where the dummy elements π0 = 0 and πn+1 = π7 = 7 have been indicated explicitly).

It is easy to check that b(π) = 4, c(π) = 2, and d(π) = 3, i.e., d(π)
b(π)−c(π) = 3

2 , hence

the absolute worst-case performance follows. Here the unique connected component
of H(~π) contains two unoriented alternating cycles of 4 edges. Furthermore, for any
integer k ≥ 1, let πk+1 denote the permutation obtained by “duplicating” π k + 1
times, which has the form

πk+1 = (0 5 6 3 4 1 2 7 (0 + 8) (5 + 8) (6 + 8) (3 + 8) (4 + 8) (1 + 8) (2 + 8) (7 + 8)

. . . (0 + 8k) (5 + 8k) (6 + 8k) (3 + 8k) (4 + 8k) (1 + 8k) (2 + 8k) (7 + 8k)).

It is easy to see that πk+1 is such that b(πk+1) = 4(k + 1) and c(πk+1) = 2(k + 1).
Furthermore, one may check that the results shown by Hannenhalli and Pevzner in
[11] guarantee that d(πk+1) = 3(k + 1). In particular, an optimal sorting of πk+1 is
obtained by applying to each subsequence (0 + 8i) (5 + 8i) (6 + 8i) (3 + 8i) (4 + 8i)
(1 + 8i) (2 + 8i) (7 + 8i) the reversals needed to sort π. This proves the asymptotic
worst-case performance.

One may prove the same theorem for signed permutations in an analogous way.
As a consequence of Theorem 10, by some straightforward algebraic computation

one gets that the availability of an approximation algorithm for MAX-ACD with

SORTING BY REVERSALS AND CYCLE DECOMPOSITIONS 109

worst-case performance ratio α = infπ∈Π
cA(π)
c(π) < 1 (where cA(π) is the value of

the approximate solution for the MAX-ACD instance defined by G(π)) would yield
an approximation algorithm for MIN-SBR with worst-case performance ratio β =

supπ∈Π
dA(π)
d(π) ≤ 3

2
b(π)−αc(π)
b(π)−c(π) ≤ 3(2−α)

2 (where dA(π) is the value of the approximate

solution for the MIN-SBR instance defined by π). The last inequality follows from the
obvious relation b(π) ≥ 2c(π). So this scheme cannot improve on the approximation
ratio of 3

2 due to Christie [7]. It is also worth noting that in order to prove that
an approximation algorithm for MIN-SBR has a worst-case performance ratio better
than 3

2 , it is not sufficient just to compare the value of the approximate solution with
the lower bound b(π)− c(π).

Acknowledgments. A preliminary version of this paper received the “Best Pa-
per by a Young Scientist Award” in the First Annual International Conference on
Computational Molecular Biology, and I would like to thank the whole conference
committee, chaired by Michael Waterman, for this award. More generally, I am really
grateful to the computational biology community for the enthusiastic reaction when I
proved that MIN-SBR was NP-hard. Finally, I would like to thank Sridhar Hannen-
halli, Jens Lagergren, Giuseppe Lancia, and Pavel Pevzner for helpful discussions on
the subject, and four anonymous referees for their valuable suggestions.

REFERENCES

[1] V. Bafna and P. A. Pevzner, Genome rearrangements and sorting by reversals, SIAM J.
Comput., 25 (1996), pp. 272–289.

[2] P. Berman and S. Hannenhalli, Fast sorting by reversal, in Proc. 7th Annual Symposium
on Combinatorial Pattern Matching, Lecture Notes in Comput. Sci. 1075, Springer-Verlag,
Berlin, 1996, pp. 168–185.

[3] A. Caprara, Sorting Permutations by Reversals and Eulerian Cycle Decompositions, Tech.
report OR/97/4 DEIS, Università di Bologna Bologna, Italy, 1997.

[4] A. Caprara, Formulations and Complexity of Multiple Sorting by Reversals, in Proc. Third
Annual international Conference on Computational Molecular Biology (RECOMB’99),
ACM Press, New York, 1999, to appear.

[5] A. Caprara, On the Tightness of the Alternating-Cycle Lower Bound for Sorting by Reversals,
J. Comb. Optim., to appear.

[6] A. Caprara, G. Lancia, and S.-K. Ng, A Column-Generation Based Branch-and-Bound
Algorithm for Sorting by Reversals, Tech. report OR/95/7 DEIS, Università di Bologna,
Bologna, Italy, 1995; to appear in DIMACS Series in Discrete Mathematics and Theoretical
Computer Science.

[7] D. A. Christie, A 3/2 approximation algorithm for sorting by reversals, in Proc. the 9th
Annual ACM-SIAM Symposium on Discrete Algorithms, ACM Press, New York, 1998,
pp. 244–252.

[8] P. Crescenzi and V. Kann, A Compendium of NP Optimization Problems, Tech. re-
port SI/RR-95/02, Dipartimento di Scienze dell’Informazione, Università di Roma “La
Sapienza,” 1995; also available online from http://www.nada.kth.se/theory/problemlist.
html.

[9] N. Franklin, Conservation of genome form but not sequence in the transcription antitermina-
tion determinants of bacteriophages λ, φ21 and P22, J. Molecular Evolution, 181 (1985),
pp. 75–84.

[10] S. Hannenhalli and P. A. Pevzner, Transforming cabbage into turnip (Polynomial algorithm
for sorting signed permutations by reversals), in Proc. 27th Annual ACM Symposium on
the Theory of Computing, ACM Press, New York, 1995, pp. 178–187.

[11] S. Hannenhalli and P. A. Pevzner, To cut . . . or not to cut (Applications of comparative
physical maps in molecular evolution), in Proc. 7th Annual ACM-SIAM Symposium on
Discrete Algorithms, ACM Press, New York, 1996, pp. 304–313.

[12] I. Holyer, The NP-completeness of some edge-partition problems, SIAM J. Comput., 10
(1981), pp. 713–717.

110 ALBERTO CAPRARA

[13] R. W. Irving and D. A. Christie, Sorting by Reversals: A Conjecture of Kececioglu and
Sankoff, Computer Science Dept. Tech report TR-1995-12, University of Glasgow, Glasgow,
1995.

[14] H. Kaplan, R. Shamir, and R. E. Tarjan, Faster and simpler algorithm for sorting signed
permutations by reversals, in Proc. 8th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, ACM Press, New York, 1997, pp. 344–351.

[15] J. Kececioglu and D. Sankoff, Efficient bounds for oriented chromosome inversion distance,
in Proc. 5th Annual Symposium on Combinatorial Pattern Matching, Lecture Notes in
Comput. Sci. 807, Springer-Verlag, New York, Berlin, 1994, pp. 307–325.

[16] J. Kececioglu and D. Sankoff, Exact and approximation algorithms for sorting by reversals,
with application to genome rearrangement, Algorithmica, 13 (1995), pp. 180–210.

[17] P. A. Pevzner and M. S. Waterman, Open combinatorial problems in computational molec-
ular biology, Proc. 3rd Israel Symposium on the Theory of Computing and Systems, IEEE
Computer Society Press, Piscataway, NJ, 1995, pp. 158–172.

[18] D. Sankoff, Analytical approaches to genomic evolution, Biochimie, 75 (1993), pp. 409–413.
[19] D. Sankoff, G. Leduc, N. Antoine, B. Paquin, B. F. Lang, and R. Cedergren, Gene

order comparisons for phylogenetic inference: Evolution of the mitochondrial genome, in
Proc. Natl. Acad. Sci. U.S.A., 89 (1992), pp. 6575–6579.

[20] N. Tran, An Easy Case of Sorting by Reversals, in Proc. 8th Annual Symposium on Com-
binatorial Pattern Matching, Lecture Notes in Comput. Sci. 1264, Springer-Verlag, New
York, Berlin, 1997, pp. 83–89.

[21] G. A. Watterson, W. J. Ewens, T. E. Hall, and A. Morgan, The chromosome inversion
problem, J. Theoret. Biology, 99 (1982), pp. 1–7.

MEDIAN GRAPHS AND TRIANGLE-FREE GRAPHS∗

WILFRIED IMRICH† , SANDI KLAVŽAR‡ , AND HENRY MARTYN MULDER§

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 1, pp. 111-118

Abstract. Let M(m,n) be the complexity of checking whether a graph G with m edges and n
vertices is a median graph. We show that the complexity of checking whether G is triangle-free is
at most O(M(m,m)). Conversely, we prove that the complexity of checking whether a given graph
is a median graph is at most O(m logn+ T (m logn, n)), where T (m,n) is the complexity of finding
all triangles of the graph. We also demonstrate that, intuitively speaking, there are as many median
graphs as there are triangle-free graphs. Finally, these results enable us to prove that the complexity
of recognizing planar median graphs is linear.

Key words. median graph, triangle-free graph, algorithm, complexity

AMS subject classifications. 68Q25, 05C12

PII. S0895480197323494

1. Introduction. All graphs considered in this paper are finite undirected
graphs without loops and multiple edges. Unless stated otherwise, for a given
graph G, n and m stand for the number of its vertices and edges, respectively.

The interval I(u, v) between vertices u and v consists of all vertices on shortest
paths between u and v. A median of a set of three vertices u, v, and w is a vertex
that lies in I(u, v)∩ I(u,w)∩ I(v, w). A connected graph G is a median graph if every
triple of its vertices has a unique median. Trees, hypercubes, and grid graphs are
prime examples of median graphs. It is easy to see that median graphs are bipartite.

By now a rich theory has been developed for median graphs. For instance, they are
shown to be the graphs of windex 2 by Chung, Graham, and Saks [8]. They constitute
the class of retracts of hypercubes (see Bandelt [5]). They have applications in location
theory and consensus theory (see, e.g., McMorris, Mulder, and Roberts [15]). They
are the underlying graphs of discrete structures from various areas, involving, e.g.,
ternary algebras, hypergraphs, convexities, semilattices, join geometries, and conflict
models. For a survey of all these aspects of median graphs, the reader is referred to
Klavžar and Mulder [14].

It is clear that median graphs can be recognized in polynomial time and a direct
approach would yield an O(n4) algorithm. Jha and Slutzki [13] followed the convex
expansion theorem of Mulder [16, 17] to obtain an O(mn) = O(n2 log n) algorithm.
A simple algorithm of the same complexity was recently proposed by Imrich and
Klavžar [11]. Currently, the fastest known algorithm for recognizing median graphs is
by Hagauer, Imrich, and Klavžar [9] and runs in O(m

√
n) = O(n3/2 log n) time. The

∗Received by the editors June 25, 1997; accepted for publication (in revised form) July 22, 1998;
published electronically January 29, 1999.

http://www.siam.org/journals/sidma/12-1/32349.html
†Department of Mathematics and Applied Geometry, Montanuniversität Leoben, A-8700 Leoben,

Austria (imrich@unileben.ac.at).
‡Department of Mathematics, PEF, University of Maribor, Koroška cesta 160, 2000 Maribor,

Slovenia (sandi.klavzar@uni-lj.si). The work of this author was supported by the Ministry of Science
and Technology of Slovenia under grant J1-0498-0101.
§Econometrisch Instituut, Erasmus Universiteit, P.O. Box 1738, 3000 DR Rotterdam, The Nether-

lands (martyn@wis.few.eur.nl). The work of this author was supported by the Ministry of Science
and Technology of Slovenia and by the NUFFIC, the Netherlands.

111

112 WILFRIED IMRICH, SANDI KLAVŽAR, AND MARTYN MULDER

last equality holds because a median graph with n vertices has at most n log n edges.
For more information on these and related algorithms, see [10].

Cartesian product graphs can be recognized in O(m log n) time by the algorithm
of Aurenhammer, Hagauer, and Imrich [3]. The simplest Cartesian product graphs
are obtained by multiplying complete graphs on two vertices and are usually called
hypercubes or n-cubes. As mentioned above, Bandelt [5] proved that median graphs
are very special subgraphs of n-cubes; namely, they are precisely the retracts of the
n-cubes. Hence, the natural question arises: Can the complexity O(m

√
n) for recog-

nizing median graphs be improved to, say, O(m logk n) for some k ≥ 1? The main
message of this paper claims that this is very unlikely.

Several algorithms are known which recognize triangle-free graphs or, more gen-
erally, find all triangles of a given graph. Clearly, a straightforward implementation
yields an algorithm of complexity O(mn). It is worthwhile to add that this simple
algorithm finds a triangle in O(n5/3) on the average (see [12]). In [12] Itai and Rodeh
show that Strassen’s algorithm for (Boolean) matrix multiplication can be used to
solve the problem in O(nlog 7) time. In addition, they also give an algorithm using
rooted spanning trees of complexity O(m3/2). The algorithm finds all triangles of
a given graph and becomes linear in the case of planar graphs. Another algorithm
which lists all the triangles of a given graph is due to Chiba and Nishizeki [7]. For a
graph G its time complexity is O(a(G)m), where a(G) denotes the arboricity of G.
They also show that a(G) ≤ O(m1/2). Thus, the algorithm of Chiba and Nishizeki is
in the worst case still of complexity O(m3/2). Recently, Alon, Yuster, and Zwick [2]
proved that deciding whether a directed or undirected graph contains a triangle, and
finding one if it does, can be done in O(m1.41) time. For related results we refer to
[1, 18].

We continue this paper as follows. We first recall several notions needed in the
rest of the paper. Then, in the next section, we introduce the main construction of
this paper which for a given triangle-free graph produces a median graph. We study
this construction and show that it can be used to deduce that, intuitively speaking,
there are as many median graphs as there are triangle-free graphs. In section 3 we use
the construction to show that recognizing triangle-free graphs is at most as difficult
as recognizing median graphs. For the converse we prove that the complexity of
checking whether a graph with m edges and n vertices is a median graph is at most
O(m log n+ T (m log n, n)), where T (m,n) is the complexity of finding all triangles of
a given graph with m edges and n vertices. A consequence of this relationship is a
linear algorithm for the recognition of planar median graphs. It exploits the fact that
the triangles of a planar graph can be found in linear time.

The eccentricity e(x) of a vertex x in a connected graph G is the maximum dis-
tance of x to any other vertex in G. The radius r(G) of G is the minimum eccentricity
in G, and a vertex x is a central vertex of G if e(x) = r(G). The periphery of G consists
of all vertices in G at distance r(G) to some central vertex in G.

For an edge e = uv in a graph G, the subdivision of e is obtained by replacing
the edge e by a new vertex adjacent to both u and v. For convenience, we denote the
new vertex by e and the new edges by ue and ev.

Let G be a graph. The simplex graph S(G) of G is the covering graph of the
partially ordered set of the family of simplices (i.e., complete subgraphs) in G ordered
by inclusion. In other words, the vertices of S(G) are the complete subgraphs of
G (including the empty one), two vertices being adjacent provided they differ in at
most one vertex. Simplex graphs were introduced by Bandelt and van de Vel [6].

MEDIAN GRAPHS AND TRIANGLE-FREE GRAPHS 113

Obviously, a simplex graph is a median graph: The median of the simplices A, B, C
is the simplex (A ∩B) ∪ (A ∩ C) ∪ (B ∩ C).

By Q−3 we denote the graph obtained from the 3-cube Q3 by deleting one vertex.
The antipodal of the deleted vertex is called the base of the Q−3 . In other words, the
base is the only vertex of Q−3 which is incident to three vertices of degree 3. Note
that the three vertices of degree 2 in Q−3 do not have a median.

Finally, the Cartesian product G H of graphs G and H is the graph with vertex
set V (G) × V (H) and (a, x)(b, y) ∈ E(G H) whenever ab ∈ E(G) and x = y, or
a = b and xy ∈ E(H).

2. Constructing median graphs from triangle-free graphs. Let G =
(V,E) be a graph with |V | = n and |E| = m. The graph G̃ = (Ṽ , Ẽ) is obtained
from G by subdividing all edges of G and adding a new vertex z joined to all
the original vertices of G. So we have Ṽ = V ∪ E ∪ {z} and

Ẽ = {zv | v ∈ V } ∪ {ue | e ∈ E, u ∈ V and u is incident with e in G} .

Note that |Ṽ | = n+m+ 1, and |Ẽ| = n+ 2m. Observe also that G̃ is connected, even
if G is not. An example for this construction is given in Fig. 2.1.

Fig. 2.1. Illustration of the construction.

Let d denote the degree function of G and d̃ that of G̃. Then we have d̃(z) = n,

and d̃(v) = d(v) + 1, for v ∈ V , and d̃(e) = 2, for e ∈ E. Note that z has maximum

degree in G̃, and that d̃(v) = n if and only if v is a dominating vertex in G, i.e., a
vertex adjacent to all other vertices in G.

Since all vertices in G̃ are at a distance of at most 2 from z, we have r(G̃) ≤ 2.

Clearly, we have r(G̃) = 2 if and only if m ≥ 1. In any case, z is a central vertex

of G̃. Note that G is disconnected if and only if z is a cut-vertex in G̃, so that G̃ is
2-connected if and only if G is nontrivial and connected.

Assume that there is an edge e = uv and a vertex w in G such that w is not
incident with e. Then, in G̃, the vertices w and e have distance 3, so neither vertex
is central in G̃. This implies the following facts: Either

(i) G = K2, and G̃ = C4 = K2 K2, and all four vertices of G̃ are central, or

(ii) G = K1,n−1 with n 6= 2, and G̃ = K2 K1,n−1, and the two vertices of

degree n in G̃ are the two central vertices of G̃ (where it is understood that
K1,0 = K1), or

(iii) G is not a star and z is the unique central vertex of G̃.

Thus, to reconstruct G from G̃, we need only to search for a central vertex; take
this to be z, take the neighbors of z to be the vertices of G, and replace the remaining
vertices, which are all of degree 2, by edges.

114 WILFRIED IMRICH, SANDI KLAVŽAR, AND MARTYN MULDER

An automorphism of a graph necessarily maps central vertices to central vertices.
So, if G = (V,E) is not a star, then each automorphism α of G̃ fixes z. Furthermore,

we have α(V) = V and α(E) = E in G̃. So, essentially, α|V ∪E is an automorphism of
G, which gives us the following result.

Proposition 2.1. Let G be a graph. If G = K2, then Aut(G̃) = Aut(C4). If

G is a star different from K2, then Aut(G̃) ∼= Z2 × Aut(G). If G is not a star, then

Aut(G̃) ∼= Aut(G).

Note that G contains a triangle if and only if G̃ contains a Q−3 , the base of which
necessarily is z.

In case that G is triangle-free, the graph G̃ is just the simplex graph of G and
hence is a median graph. Since Q−3 is a forbidden convex subgraph in a median graph,
we have as an immediate consequence the following result.

Theorem 2.2. A graph G is triangle-free if and only if its associated graph G̃ is
a median graph.

We next have a closer look at the median graphs arising in Theorem 2.2.
Let G be a triangle-free graph. Then G contains a dominating vertex if and only

if G is a star. Hence, if G is not a star, then z is not only the unique central vertex
but also the unique vertex of maximum degree in G̃. The only vertices of degree 1
in G̃ arise from components of G consisting of a single vertex. Let us ignore such
components. Then the minimum degree in G̃ is 2.

Conversely, let H be a median graph of minimum degree 2, with radius r(H) = 2,
with a unique central vertex z, which is also the unique vertex of maximum degree n.
Let p be any vertex in the periphery of H, whence at distance 2 from z. Since H is
bipartite, all neighbors of p must be adjacent to z. Since H is median, and therefore
without K2,3, it follows that p has exactly two neighbors. Let m be the number of
vertices in the periphery of H. Then H has 1 + n + m vertices and n + 2m edges.
Now we construct the graph G on the set of neighbors of z in H. We join two vertices
of G by an edge if and only if in H they have a common neighbor in the periphery.
Then G has n vertices and m edges and, clearly, we have H = G̃. Since H is Q−3 -free,
G is triangle-free.

Let Gn,m be the class of triangle-free graphs with n vertices and m edges and
without singleton components. LetHn,m be the class of median graphs with minimum
degree 2 and radius 2 and a single vertex of maximum degree n, which is also the
unique central vertex, and m vertices in the periphery. Thus, we have just proved the
following theorem.

Theorem 2.3. For each n and m the mapping G 7→ G̃ is a bijection between the
graph classes Gn,m and Hn,m.

Thus we have an injection of the class T of triangle-free graphs into the classM2

of median graphs of radius 2. Let M∗ be the class of all Q3-free median graphs and
let M be the class of all median graphs. Then we have the following situation:

M⊂ T ↪→M2 ⊂M∗ ⊂M .

Intuitively speaking, we have shown that there are as many median graphs as there
are triangle-free graphs. Thus median graphs are much less exotic than one would
expect from the definition of median graphs and the rich structure theory by now
developed for median graphs.

We conclude this section with the following observation. Let G be a triangle-free
graph. Then G̃ is a median graph and can be isometrically embedded into a hypercube
Qr. Let i(G̃) be such an embedding. Let uv be an edge of G. Then the corresponding

MEDIAN GRAPHS AND TRIANGLE-FREE GRAPHS 115

vertices ũ and ṽ lie on a 4-cycle of G̃. Since i is an isometry, it maps a 4-cycle of G̃
onto a 4-cycle of Qr. This in particular implies that d(i(ũ), i(ũ)) = 2. Hence we have
the following proposition.

Proposition 2.4. Let G be a triangle-free graph. Then there is an r and a
mapping j : V (G)→ V (Qr), such that if uv is an edge of G, then d(j(u), j(v)) = 2.

3. On the complexity of recognizing median graphs and triangle-free
graphs. In this section we will show that the complexity of recognizing median graphs
is closely related to the complexity of recognizing triangle-free graphs and to the
complexity of finding all triangles of a graph. We first have the following corollary to
Theorem 2.2.

Corollary 3.1. Let M(m,n) be the complexity of checking whether a graph G
with m edges and n vertices is median. Then the complexity of checking whether G is
triangle-free is at most O(M(m,m)).

Proof. By Theorem 2.2 a graph G is triangle-free if and only if G̃ is a median
graph. Since |E(G̃)| = 2m + n and |V (G̃)| = n + m + 1, G̃ can be checked if it is a
median graph with complexity O(M(2m+ n, n+m+ 1)) = O(M(m,m)).

We can now explain why it seems unlikely that the complexity O(m
√
n) for rec-

ognizing median graphs can be improved to O(m logk n) for some k ≥ 1. For, if
this were the case, then Corollary 3.1 would imply the existence of an algorithm for
recognizing triangle-free graphs of time complexity in O(m logkm) = O(m logk n),
thus significantly improving known algorithms for recognizing triangle-free graphs.
Note also that, by Corollary 3.1, the fastest known algorithm for recognizing median
graphs, which is of complexity O(m

√
n), yields an O(m3/2) algorithm for recognizing

triangle-free graphs.
We next consider whether algorithms for recognizing triangle-free graphs can

help us in recognizing median graphs, in particular by improving the performance of
the algorithm of Hagauer, Imrich, and Klavžar [9] of complexity O(m

√
n). As this

algorithm is rather involved, we shall not recall it here in detail but will state whatever
is needed for our construction. We refer to this algorithm as Algorithm A.

First some notation. Let G = (V,E) be a connected bipartite graph. For u ∈
V (G), let N(u) be the set of all vertices adjacent to u. For X ⊆ V (G), let 〈X〉 denote
the subgraph induced by X. A subgraph H of a graph G is an isometric subgraph, if
the distance in G between any pair of vertices u and v of H is equal to the distance
between u and v in H. For any edge ab of G, we write

Wab = {w ∈ V | d(w, a) < d(w, b)},
Wba = {w ∈ V | d(w, b) < d(w, a)},
Uab = {u ∈Wab | u is adjacent to a vertex in Wba},
Uba = {u ∈Wba | u is adjacent to a vertex in Wab},
Fab = {uv | u ∈ Uab, v ∈ Uba}.

We refer to the set F = Fab as a color. In fact, if G is a median graph, then the sets
of type F are a proper edge-coloring of G. Also, G is a median graph if and only if,
for any edge ab, the sets Uab and Uba are convex. This characterization was proved
by Bandelt [4] but also follows immediately from results in [16, 17]. The bottleneck
in testing whether G is a median graph is testing whether the sets Uab are convex.
This convexity testing can be reduced to testing condition (iii) listed below. In fact,
with one exception, all steps of Algorithm A require at most O(m log n) time, the
exception being Step 3.4, which tests condition (iii) for Uab.

116 WILFRIED IMRICH, SANDI KLAVŽAR, AND MARTYN MULDER

Theorem 3.2. Let G = (V,E) be a connected bipartite graph, and let ab ∈ E.
Suppose the following properties hold:

(i) Fab is a matching that defines an isomorphism between 〈Uab〉 and 〈Uba〉;
(ii) for any u ∈ Uab and v ∈ Uba, I(u, a) ⊆ Uab and I(v, b) ⊆ Uba, respectively;

(iii) for any u ∈Wab\Uab and v ∈Wba\Uba, |N(u)∩Uab| ≤ 1 and |N(v)∩Uba| ≤ 1.
Then G is a median graph if and only if 〈Wab〉 and 〈Wba〉 are median graphs.

As we mentioned, Algorithm A without Step 3.4 checks all conditions of Theorem
3.2 except (iii) for Uab. We first describe how Algorithm A checks this condition. It
first constructs a breadth first search tree, say T , with root a. Suppose that a vertex
x from Wab \Uab has two neighbors in Uab, say u and v. As Uab is isometric, there is
a vertex w ∈ Uab which is adjacent to both u and v. Moreover, because condition (i)
was also tested before, there are vertices u′, v′, and w′ in Uba which are adjacent to
u, v, and w, respectively, such that these six vertices together with x induce a Q−3 .

Let L0, L1, . . . be the distance levels of the tree T and assume that x ∈ Li+1.
Then we know that u and v both belong to Li as condition (ii) of Theorem 3.2 has
already been tested at this stage. Suppose that w ∈ Li+1. Then by the down-closure
there is a vertex r ∈ Li−1 adjacent to u and v. But then the vertices x,w, u, v, r
induce a K2,3, which has been tested before. Hence w ∈ Li−1. We thus have the
situation depicted in Fig. 3.1.

Fig. 3.1. Testing condition (iii).

What we need to check now is if there exists a vertex z ∈ Li+2 adjacent to x, u′,
and v′. If this is not the case, then the test of (iii) fails and G is not a median graph.
If no such situation occurs, then all the checks of Theorem 3.2 have been done and G
is recognized as a median graph. We next describe how we can do these tests using
an algorithm for listing all triangles of a given graph.

Let Hi be the graph on the vertex set Li and two vertices of Hi are adjacent,
if they have a common neighbor in Li+1. By Corollary 4.2 of [9], Hi has at most
|Li+1| log2 n edges. Thus, all the graphs Hi together have at most n log2 n edges.
Moreover, there are at most n log3 triangles in them. We now use an algorithm which
finds all triangles in the graphs Hi. For each such triangle of Hi we have only to check
whether the corresponding three vertices in Li+1 have a common neighbor z in Li+2.
This is easy, because G has already been embedded into a hypercube by the previous
steps of Algorithm A. In other words, we know precisely the colors of the possible
edges between z and the three vertices of Li+1.

MEDIAN GRAPHS AND TRIANGLE-FREE GRAPHS 117

Suppose that we have an algorithm of complexity T (m,n) which finds all triangles
in a given graph with n vertices and m edges. As we wish to test whether a given
graph G is a median graph, we have m = O(n log n). As already mentioned, all steps
of Algorithm A, except Step 3.4, require O(m log n) time. For the test of (iii) we then
follow the above approach, which takes O(n log2 n, n) time. Thus, we have proved the
following theorem.

Theorem 3.3. Let T (m,n) be the complexity of finding all triangles of a given
graph with m edges and n vertices. Then the complexity of checking whether a graph
G on n vertices and m edges is a median graph is at most O(m log n+T (m log n, n)).

As we mentioned in the introduction, the best general algorithm known for listing
all triangles of a given graph is of complexity O(m3/2). Thus, applying Theorem 3.3,
we conclude that median graphs can be recognized in O(m log n+ (m log n)3/2) time.
Since m = O(n log n) this reduces to O(n3/2 log3 n) which differs only by factor log2 n
from the complexity of Algorithm A. In special cases this complexity can be further
reduced. As an example we show that planar median graphs can be recognized in
linear time.

The arguments leading to this result rely on the observation that the factor logn
in Algorithm A without Step 3.4 is a bound on the down-degree of vertices in an
isometric subgraph of the hypercube with respect to a distance tree. To be more
precise, let x be vertex of in level Li+1 with respect to a distance tree of a graph
G. Then the number of neighbors of x in Li is at most log n if G is a subgraph of a
hypercube. This number is called the down-degree of x. See [9].

In [9] it is also shown that every vertex x of down-degree k in a median graph G
is contained in a hypercube Qk. Since Qk is nonplanar for k > 3 this implies that
the down-degrees of planar median graphs are bounded by 3 and that Algorithm A
without Step 3.4 can be executed in O(m) steps.

Corollary 3.4. Planar median graphs can be recognized in linear time.

Proof. Let G be a graph on n vertices with m edges. We wish to show that the
complexity of checking whether G is a planar median graph is O(m+n). As it is well
known that connectedness, bipartiteness, and planarity can be checked in linear time,
we can assume that G is a connected, planar, bipartite graph given by its adjacency
list and that we wish to check whether it is a median graph. We further observe that
a distance-tree can be found in linear time and that down-degrees can be found and
checked in linear time, too.

We now consider an embedding of G in the plane and the subgraph Xi spanned
by Li+1 and Li. In Li+1 there may be vertices of degree 1, 2, or 3 in Xi. Let w
be a vertex in Li+1 of degree 3 and a, b, c be its neighbors in Li. We split w into
three vertices x, y, z and replace the edges aw, bw, cw with ax, ay, by, bz, cz, cx. We do
this for every vertex of degree 3. Clearly the new graph X ′i obtained this way is still
planar. Moreover, every vertex of Xi not in Li has degree 1 or 2. We now delete the
vertices of degree 1 and replace every path x1x2x3, where x1, x3 ∈ Li and x2 ∈ Li+1,
by a single edge x1x3. This way we obtain the graph Hi from the construction in the
proof of Theorem 3.3.

Proceeding as in the proof of Theorem 3.3 we have to find the triangles in the
Hi and perform certain checks, the complexity of these operations being determined
by the complexity of finding all triangles. Now, the triangles in planar graphs can be
found in linear time; cf. [7]. Now the proof is completed by the observation that the
total number of edges in the Hi is at most 3n, where n is the number of vertices of
G.

118 WILFRIED IMRICH, SANDI KLAVŽAR, AND MARTYN MULDER

4. Concluding remark. A variant of Theorem 3.5 from [2] can be used to
further improve the recognition complexity of median graphs from O(n1.5 log n) to
O(n1.41 log2.82 n). This will be subject of a subsequent paper.

REFERENCES

[1] N. Alon, R. Yuster, and U. Zwick, Color-coding, J. Assoc. Comput. Mach., 42 (1995),
pp. 844–856.

[2] N. Alon, R. Yuster, and U. Zwick, Finding and counting given length cycles, Algorithmica,
17 (1997), pp. 209–223.

[3] F. Aurenhammer, J. Hagauer, and W. Imrich, Cartesian graph factorization at logarithmic
cost per edge, Comput. Complexity, 2 (1992), pp. 331–349.

[4] H.-J. Bandelt, Characterizing Median Graphs, manuscript, 1982.
[5] H.-J. Bandelt, Retracts of hypercubes, J. Graph Theory, 8 (1984), pp. 501–510.
[6] H.-J. Bandelt and M. van de Vel, Superextensions and the depth of median graphs, J.

Combin. Theory Ser. A, 57 (1991), pp. 187–202.
[7] N. Chiba and T. Nishizeki, Arboricity and subgraph listing algorithms, SIAM J. Comput., 14

(1985), pp. 210–223.
[8] F.R.K. Chung, R.L. Graham, and M.E. Saks, Dynamic search in graphs, in Discrete Algo-

rithms and Complexity, H. Wilf, ed., Academic Press, New York, 1987, pp. 351–387.
[9] J. Hagauer, W. Imrich, and S. Klavžar, Recognizing median graphs in subquadratic time,

Theoret. Comput. Sci., to appear.
[10] W. Imrich and S. Klavžar, On the complexity of recognizing Hamming graphs and related

classes of graphs, European J. Combin., 17 (1996), pp. 209–221.
[11] W. Imrich and S. Klavžar, A convexity lemma and expansion procedures for bipartite graphs,

European J. Combin., 19 (1998), pp. 677–686.
[12] A. Itai and M. Rodeh, Finding a minimum circuit in a graph, SIAM J. Comput., 7 (1978),

pp. 413–423.
[13] P.K. Jha and G. Slutzki, Convex-expansion algorithms for recognizing and isometric embed-

ding of median graphs, Ars Combin., 34 (1992), pp. 75–92.
[14] S. Klavžar and H.M. Mulder, Median graphs: Characterizations, location theory and related

structures, J. Combin. Math. Combin. Comput., to appear.
[15] F.R. McMorris, H.M. Mulder, and F.S. Roberts, The median procedure on median graphs,

Discrete Appl. Math., 84 (1998), pp. 165–181.
[16] H.M. Mulder, The structure of median graphs, Discrete Math., 24 (1978), pp. 197–204.
[17] H.M. Mulder, The Interval Function of a Graph, Mathematical Centre Tracts 132, Mathe-

matisch Centrum, Amsterdam, 1980.
[18] R. Yuster and U. Zwick, Finding even cycles even faster, SIAM J. Discrete Math., 10 (1997),

pp. 209–222.

CONVEXITY AND HHD-FREE GRAPHS∗

FEODOR F. DRAGAN†§ , FALK NICOLAI‡ , AND ANDREAS BRANDSTÄDT†

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 1, pp. 119–135

Abstract. It is well known that chordal graphs can be characterized via m-convexity. In this
paper we introduce the notion of m3-convexity (a relaxation of m-convexity) which is closely related
to semisimplicial orderings of graphs. We present new characterizations of HHD-free graphs via
m3-convexity and obtain some results known from [B. Jamison and S. Olariu, Adv. Appl. Math.,
9 (1988), pp. 364–376] as corollaries. Moreover, we characterize weak bipolarizable graphs as the
graphs for which the family of all m3-convex sets is a convex geometry. As an application of our
results we present a simple efficient criterion for deciding whether a HHD-free graph contains a
r-dominating clique with respect to a given vertex radius function r.

Key words. convexity, convex geometry, antimatroid, chordal graphs, HHD-free graphs, weak
bipolarizable graphs, semisimplicial ordering, lexicographic breadth first search, dominating clique
problem

AMS subject classifications. 05C65, 05C75, 68R10

PII. S0895480195321718

1. Introduction. This paper was inspired by the results of Farber and Jamison
[16] on convexity in chordal graphs and by the results of Jamison and Olariu [19] on
semisimplicial orderings of graphs produced by “lexicographic breadth first search”
(LexBFS) [25] and “maximum cardinality search” (MCS) [28].

Throughout this paper all graphs G = (V,E) are finite, undirected, and simple
(i.e., loop-free and without multiple edges). The complement of a graph G is the
graph G with the same vertex set V , where two vertices are adjacent in G iff they are
nonadjacent in G.

A path is a sequence of vertices v0, . . . , vl such that vivi+1 ∈ E for i = 0, . . . , l−1;
its length is l. An induced path is a path, where vivj ∈ E iff i = j−1 and j = 1, . . . , l.
An induced cycle is a sequence of vertices v0, . . . , vk such that v0 = vk and vivj ∈ E
iff |i − j| = 1 (modulo k). The length |C| of a cycle C is its number of vertices. Let
also |P | be the number of vertices of a path P . A hole is an induced cycle of length
at least five, whereas an antihole is the complement of a hole. By Pk we denote an
induced path on k vertices. A graph G is connected iff for any pair of vertices of G
there is a path in G joining these vertices. A set S ⊂ V is connected in G iff the
subgraph G(S) induced by S is connected.

The distance dG(u, v) between two vertices u, v is the minimum number of edges
on a path connecting these vertices, and is infinite if u and v lie in distinct connected
components of the graph G. If no confusion can arise we will omit the index G. For

∗Received by the editors June 14, 1995; accepted for publication (in revised form) February 24,
1998; published electronically January 29, 1999. Results of this paper were presented at the 5th
Internat. Colloq. on “Graphs and Combinatories,” Marseille Luminy, September 3–8, 1995.

http://www.siam.org/journals/sidma/12-1/32171.html
†Fachbereich Informatik, Universität Rostock, Lehrstuhl für Theoretische Informatik, D 18051

Rostock, Germany (dragan@informatik.uni-rostok.de, ab@informatik.uni-rostock.de). The research
of the first author was supported by DAAD
‡Gerhard-Mercator-Universität, GH Duisburg, FB Mathematik, FG Informatik, D 47048 Duis-

burg, Germany (nicolai@informatik.uni-duisburg.de). The research of this author was supported by
DFG.
§This author is on leave from the Universitatea de stat din Moldova, Chişinău.

119

120 FEODOR DRAGAN, FALK NICOLAI, AND ANDREAS BRANDSTÄDT

a vertex v ∈ V and a set S ⊆ V we denote by d(v, S) the minimum over all distances
d(v, s), s ∈ S. A subgraph H of a graph G is isometric iff the distance between any
pair of vertices in H is the same as that in G.

The kth neighborhood Nk(v) of a vertex v of G is the set of all vertices of distance
k to v, i.e.,

Nk(v) := {u ∈ V : dG(u, v) = k},
whereas the disk of radius k centered at v is the set of all vertices of distance at most
k to v:

DG(v, k) := {u ∈ V : dG(u, v) ≤ k}.
Again, if no confusion arises we will omit the index G. We also write N(v) instead of
N1(v).

The eccentricity e(v) of a vertex v ∈ V is the maximum value of d(v, x) taken
over all vertices x ∈ V . The radius rad(G) of G is the minimum eccentricity of a
vertex of G, whereas the diameter diam(G) of G is the maximum eccentricity of a
vertex of G.

Now we will give a short introduction to the theory of convex geometry re-
lated to graph theory following [16] (for more information on abstract convexity and
antimatroids the interested reader can consult [21]). Let V be a finite set and M be
a family of subsets of V . M is called alignment of V iff the family M is closed under
intersection and contains both V and the empty set. Elements of M will be considered
as convex sets. An aligned space is a pair (V,M), where M is an alignment of V .

The smallest member of M containing a given set S ⊆ V is the hull of S, denoted
by M(S). An element x of a set X ∈M is an extreme point of X iff X r {x} ∈M.

The Caratheodory number of an aligned space (V,M) is the minimum integer k
such that for all X ⊆ V , M(X) is the union of the hulls of all subsets Y of X such
that |Y | ≤ k.

A convex geometry (antimatroid) on a finite set is an aligned space satisfying the
following additional property.

Minkowski–Krein–Milman property. Every convex set is the hull of its extreme
points.

Equivalently, a convex geometry is an aligned space satisfying the following prop-
erty.

Antiexchange property. For any convex set S and two distinct points x, y /∈ S,
x ∈M(S ∪ {y}) implies y /∈M(S ∪ {x}).

For any convex geometry the following fundamental result holds.
Theorem 1.1 (see [16]). If (V,M) is a convex geometry, then S ∈ M iff is an

ordering (x1, . . . , xk) of V rS such that xi is an extreme point of S ∪{xi, . . . , xk} for
each i = 1, . . . , k.

For a given ordering (v1, . . . , vn) of the vertex set of a graph G = (V,E) let Gi :=
G({vi, . . . , vn}) be the subgraph of G induced by the set {vi, . . . , vn}, i = 1, . . . , n.

Numerous classes of graphs can be characterized in the following way. G is a
member of class G iff there is an ordering (v1, . . . , vn) of V (G) such that vi satisfies a
certain property P in the subgraph Gi, i = 1, . . . , n.

Theorem 1.1 suggests that such classes of graphs might be related to convex
geometries, and so it is natural to ask for a graph theoretical description of convex
sets of this aligned space. On the other hand, given a collection M of subsets of V (G),
one can ask when (V (G),M) is a convex geometry.

CONVEXITY AND HHD-FREE GRAPHS 121

For example, if property P means “is simplicial” then G is the class of chordal
graphs, i.e., the graphs without induced cycles of length at least four [7, 24]. A
vertex v of G is called simplicial iff D(v, 1) induces a complete subgraph of G, and
nonsimplicial otherwise. It is well known that a graph is chordal iff it has a perfect
elimination ordering, i.e., an ordering (v1, . . . , vn) of V such that vi is simplicial in
Gi for each i = 1, . . . , n (cf. [7, 24]). Moreover, there are two linear time algorithms
for computing perfect elimination orderings of chordal graphs: LexBFS [25] and MCS
[28].

Two types of convexity in graphs have been studied most extensively, namely,
monophonic (m-) convexity and geodesic (g-) convexity (see, e.g., [4, 12, 13, 14, 15,
16, 17, 20, 22, 26, 27]). A set S ⊆ V (G) is m-convex (g-convex) iff S contains every
vertex on every induced (shortest) path between vertices in S. Both types of convexity
have a relation to simplicial vertices; a vertex v is an extreme point of a m-convex
(g-convex) set S iff v is simplicial in G(S). In [16] it is shown that G is a chordal
graph iff the monophonic alignment of G is a convex geometry, while the geodesic
alignment of G is a convex geometry iff G is a chordal graph without induced 3-fan
(i.e., a P4 with an additional vertex adjacent to all vertices of P4). To prove that the
monophonic alignment of a chordal graph is a convex geometry, the authors of [16]
show the following nice result. Every nonsimplicial vertex of a chordal graph lies on
an induced path between simplicial vertices.

For any notion of convexity on the vertex set of G, at least four degrees of local
convexity may be distinguished [17]:

(1.1) D(v, 1) is convex for every vertex v of G,
(1.2) D(v, k) is convex for every vertex v of G and every k ≥ 1,

(1.3)
⋃
v∈S D(v, 1) is convex for every convex subset S ⊆ V of G,

(1.4)
⋃
v∈S D(v, k) is convex for every convex subset S ⊆ V of G and every

k ≥ 1.

In [16] it was shown that for m-convexity the conditions (1.1)–(1.4) are equivalent
and hold iff the graph is chordal. For g-convexity conditions (1.1)–(1.3) are not
equivalent (note that (1.3) implies (1.4) for any convexity in graphs [17]). Several
characterizations for graphs with property (1.1), (1.2), or (1.3) are given in [14, 17, 27].
Here we will mention only one result which clearly shows an analogy with chordal
graphs. Namely, a graph G fulfills the condition (1.3) iff G is a bridged graph, i.e., a
graph which contains no isometric cycles of length at least four.

Note that a vertex is simplicial iff it is not midpoint of a P3. Jamison and Olariu
relaxed this condition in [19] in the following way: A vertex is semisimplicial iff it is
not a midpoint of a P4, and nonsemisimplicial otherwise. An ordering (v1, . . . , vn) is
a semisimplicial ordering iff vi is semisimplicial in Gi for all i = 1, . . . , n. In [19] the
authors characterized the graphs for which every LexBFS-ordering is a semisimplicial
ordering as the HHD-free graphs, i.e., the graphs which contain no house, hole, or
domino as an induced subgraph (cf. Figure 1). Moreover, the graphs for which every
MCS-ordering of an arbitrary induced subgraph F is a semisimplicial ordering of F
are the HHP-free graphs, i.e., the graphs which contain no house, hole, or “P” as an
induced subgraph (cf. Figure 1).

If a HHD-free graph G does not contain the “A” of Figure 1 as an induced
subgraph then G is called weak bipolarizable (HHDA-free) [23].

In this paper we introduce the notion ofm3-convexity (a relaxation ofm-convexity),
which is closely related to semisimpliciality. A subset S ⊆ V is called m3-convex iff

122 FEODOR DRAGAN, FALK NICOLAI, AND ANDREAS BRANDSTÄDT

Fig. 1.

for any pair of vertices x, y of S each induced path of length at least 3 connecting
x and y is completely contained in S. Note that a m3-convex set is not necessarily
connected, and it is not difficult to see that the family of m3-convex sets is closed
under intersection. Observe also that a vertex v is an extreme point of a m3-convex
set S iff v is semisimplicial in G(S).

In this paper we present new characterizations of HHD-free and HHDA-free
graphs via m3-convexity. We show that for m3-convexity the conditions (1.1)–(1.4)
are again equivalent and hold iff the graph is HHD-free. We characterize weak bipo-
larizable graphs as the graphs for which the m3-convex alignment is a convex ge-
ometry, i.e., by Theorem 1.1, for which every m3-convex set is reachable via some
semisimplicial ordering. Again, as for chordal graphs, in weak bipolarizable graphs
every nonsemisimplicial vertex lies on an induced path of length at least 3 between
semisimplicial vertices.

Convexity in graphs is a useful tool not only for geometric characterizations of
several graph classes but also for resolving some problems related to distances in
graphs [1, 4, 5, 6, 9, 14, 22]. As an application of our results we present a simple
efficient criterion for deciding whether a HHD-free graph G = (V,E) with given
vertex radius function r : V → N has an r-dominating clique. Note that this problem
is NP-complete for weakly chordal graphs (i.e., the graphs without holes and antiholes)
[2]. From this criterion we obtain the inequality diam(G) ≥ 2rad(G)− 2 between the
diameter and radius of a HHD-free graph G. These results extend the known ones for
chordal, distance-hereditary, and house-hole-domino-sun–free graphs [3, 5, 8, 9, 10].

Thus, the results of the paper show strict analogies between these graphs and
chordal graphs. HHD-free, HHDA-free, and HHP-free graphs are three very natural
generalizations of the class of chordal graphs.

2. m3-convex sets in HHD-free graphs. In this section we characterize
HHD-free graphs as the graphs with m3-convex disks. Using m3-convexity we give
new properties of LexBFS-and MCS-orderings in HHD-free graphs and obtain known
results from [19] as corollaries.

Since a vertex v is an extreme point of a m3-convex set S iff v is semisimplicial
in G(S), we immediately conclude the following.

Lemma 2.1. An ordering (v1, . . . , vn) of the vertices of a graph G is semisimplicial
iff V (Gi) = {vi, . . . , vn} is m3-convex in G for all i = 1, . . . , n.

The following lemma will be frequently used in what follows.
Lemma 2.2 (cycle lemma for hole-free graphs). Let C be a cycle of length at

least 5 in a hole-free graph G. Then for each edge xy of C there are vertices w1, w2

in C such that xw1 ∈ E, yw2 ∈ E, and d(w1, w2) ≤ 1, i.e., each edge of a cycle is
contained in a triangle or a 4-cycle.

Proof. By induction on the length of the cycle.

CONVEXITY AND HHD-FREE GRAPHS 123

Fig. 2.

To make the paper self-contained we present the rules of the LexBFS and MCS
algorithms.

LexBFS: Order vertices of a graph by assigning numbers from n = |V | to 1. Assign
the number k to a vertex v (as yet unnumbered), which has lexically largest
vector (si : i = n, n− 1, . . . , k+ 1), where si = 1 if v is adjacent to the vertex
numbered i, and si = 0 otherwise.

MCS: Order vertices of a graph by assigning numbers from n = |V | to 1. As the
next vertex to number pick a vertex adjacent to the most numbered vertices.

Subsequently, we will write x < y whenever in a given ordering of the vertex set
of a graph G vertex x has a smaller number than vertex y.

In what follows we will often use the following properties:

(P1)
If a < b < c and ac ∈ E and bc /∈ E, then there exists a vertex d such that
c < d, db ∈ E, and da /∈ E.

(P2)
If a < b < c and ac ∈ E and bc /∈ E, then there exists a vertex d such that
b < d, db ∈ E, and da /∈ E.

Evidently, (P2) is a relaxation of (P1). It is well known that any LexBFS-ordering
has property (P1) [18] and any MCS-ordering has property (P2) [28].

Theorem 2.3.

(1) Let G be a HHD-free graph and (v1, . . . , vn) be a LexBFS-ordering of G. Then
for each i = 1, . . . , n the set V (Gi) is m3-convex in G.

(2) Let G be a HHP-free graph and (v1, . . . , vn) be a MCS-ordering of G. Then
for each i = 1, . . . , n the set V (Gi) is m3-convex in G.

Proof. We prove assertion (1) by induction on i. Assume that V (Gi) is not m3-
convex in G but V (Gj) is so for j ≥ i + 1. Then there must be a vertex y in Gi+1

and an induced path P of length at least 3 connecting vi and y, which contains some
vertices not in Gi. Choose y and P such that |P | is minimum and y is rightmost in
the LexBFS-ordering.

Case 1. The neighbor of y in P does not belong to Gi.

Let x be this neighbor of y, and let P = vi − u1 − · · · − ul − x − y, l ≥ 1. By
applying (P1) to x < vi < y, we obtain a vertex v > y adjacent to vi but not to x.

The path Q = v − vi − u1 − · · · − ul − x − y has both endpoints in Gi+1. By
the induction hypothesis V (Gi+1) is m3-convex. Thus Q cannot be induced. Since
P is induced, all possible chords of Q must be incident to v. If v is adjacent only to
y, we obtain a forbidden induced cycle of length at least 5. So let uj be the vertex
of P r {y} closest to y on the path P and adjacent to v. We immediately conclude
j = l for otherwise we have a hole. Now the m3-convexity applied to v − ul − x − y
implies vy ∈ E. Since the house and domino are forbidden subgraphs we conclude
l ≥ 3 (see Figure 2). Let j < l be the index such that vuj ∈ E, but vus /∈ E for all

124 FEODOR DRAGAN, FALK NICOLAI, AND ANDREAS BRANDSTÄDT

u

u u

u
u

vi

v

x

w

yGi+1

Fig. 3.

s = j + 1, . . . , l− 1. For j = l− 1 we have a house; for j = l− 2 we obtain a domino;
otherwise v − uj − · · · − ul − v forms a hole.

Case 2. The neighbor of y in P belongs to Gi.

By minimality of |P | we immediately conclude P = vi − x−w − y, where w, y ∈
V (Gi+1) and x /∈ V (Gi). Now (P1) applied to x < vi < w gives a vertex v > w
adjacent to vi but not to x. We may choose v with maximum number in the LexBFS-
ordering. By considering the path v − vi − x − w the m3-convexity implies vw ∈ E.
Note that vy /∈ E for otherwise we obtain a house. Therefore, we have constructed a
“P” (see Figure 3).

Case 2.1. y < v.

By applying (P1) to vi < y < v we obtain a vertex u > v adjacent to y but not
to vi. Note that w < v < u implies u 6= w. Suppose ux ∈ E. Then (P1) applied to
x < vi < u gives a vertex t > u > v adjacent to vi but not to x, a contradiction to
the maximality of v. Thus ux /∈ E. In the path v − w − y − u both endpoints have
greater numbers than y. Let y = vj for some j > i. Then the m3-convexity of Gj+1

implies uv ∈ E or uw ∈ E. If we have both edges, then we obtain a house induced
by {vi, x, v, w, u}. If uv ∈ E but uw /∈ E then we have a domino. Finally, if uw ∈ E
and uv /∈ E then we can replace y by u > y in P , a contradiction to the choice of y.

Case 2.2. y > v.

By applying (P1) to w < v < y we obtain a vertex u > y adjacent to v but not
to w. If uvi ∈ E then m3-convexity implies the edges ux and uy. So {vi, u, x, y, w}
induces a house. Thus uvi /∈ E. Moreover, with the same arguments as in Case 2.1
we show ux /∈ E. In the path u − v − w − y both endpoints have greater numbers
than v. Let v = vj for some j > i. Then the m3-convexity of Gj+1 implies uy ∈ E.
Thus we get a domino. This settles the proof of assertion (1).

Now to get a proof for assertion (2) we can repeat the arguments of the proof
above up to Cases 2.1 and 2.2 using (P2) instead of (P1).

Note that any vertex u ∈ V r V (Gi) is semisimplicial in G({u, vi, . . . , vn}) since
V (Gi) is m3-convex in G. Thus we can conclude the following.

Corollary 2.4 (see [19]).

(1) For any HHD-free graph G and any LexBFS-ordering (v1, . . . , vn) of G vertex
vi is semisimplicial in Gi, i = 1, . . . , n.

(2) For any HHP-free graph G and any MCS-ordering (v1, . . . , vn) of G vertex vi
is semisimplicial in Gi, i = 1, . . . , n.

Moreover, since there is a MCS-ordering of the “P,” which is not a semisimplicial
ordering and neither holes nor a domino contain a semisimplicial vertex we immedi-
ately conclude the following.

CONVEXITY AND HHD-FREE GRAPHS 125

u
u

uu

u
u

Fig. 4.

Theorem 2.5 (see [19]). A graph G is HHP-free iff any MCS-ordering of any
induced subgraph F of G is a semisimplicial ordering of F .

Note that in Theorem 2.5 it is necessary to consider all induced subgraphs of a
given graph, since the graph presented in Figure 4 contains a “P” but every MCS-
ordering of this graph is a semisimplicial ordering. For LexBFS it is sufficient to
consider the graph itself, since as we will show the class of graphs where any LexBFS-
ordering gives a semisimplicial ordering is a hereditary class.

A graph is called nontrivial if it has at least two vertices.
Theorem 2.6. The following conditions are equivalent for a graph G:
(1) G is HHD-free.
(2) Any LexBFS-ordering of G is a semisimplicial ordering.
(3) For any LexBFS-ordering (v1, . . . , vn) of G the set V (Gi) is m3-convex in G

for all i = 1, . . . , n.
(4) Every nontrivial induced subgraph of G has at least two semisimplicial ver-

tices.
Proof. It is easy to verify that none of a house, a domino, and holes contains

two semisimplicial vertices. We have to show (2) =⇒ (1) and (2) =⇒ (4). All other
directions are trivial or follow from Theorem 2.3.
(2) =⇒ (1) Let G be a graph such that every LexBFS-ordering is a semisimplicial

ordering. Clearly, G cannot contain a hole or a domino since these graphs do
not have a semisimplicial vertex. Assume that G contains a house induced
by {a, b, c, d, e} where b − c − d − e − b induces a C4 and a is adjacent to b
and c. We start LexBFS at vertex a. By the rules of LexBFS both vertices
d, e are smaller than the vertices b, c. Let vi be the smaller one of d and e.
Then vi is not semisimplicial in Gi. Thus G is HHD-free.

(2) =⇒ (4) Let H be a nontrivial induced subgraph of G. Since H is HHD-free by
(1) ⇐⇒ (2) there must be some semisimplicial vertex v of H. Now starting
procedure LexBFS at v gives a second semisimplicial vertex.

Corollary 2.7. Let G be a HHD-free graph and v be a vertex of G. Then there
is a semisimplicial vertex u such that d(u, v) = e(v).

Proof. We start procedure LexBFS at v. The first vertex u of the obtained
LexBFS-ordering is semisimplicial by the above theorem and fulfills d(u, v) = e(v) by
the rules of LexBFS.

We immediately conclude the following.
Corollary 2.8. In any nontrivial HHD-free graph G there is a pair of semisim-

plicial vertices u, v such that d(u, v) = diam(G).
Theorem 2.9. The following conditions are equivalent for a graph G:
(1) G is HHD-free.
(2) The disk D(v, 1) is m3-convex for all vertices v ∈ V .
(3) The disks D(v, k), k ≥ 1, are m3-convex for all vertices v ∈ V .

126 FEODOR DRAGAN, FALK NICOLAI, AND ANDREAS BRANDSTÄDT

Fig. 5.

(4) The set D(S, 1) =
⋃
v∈S D(v, 1) is m3-convex for all connected sets S ⊆ V .

(5) The sets D(S, k) =
⋃
v∈S D(v, k), k ≥ 1, are m3-convex for all connected sets

S ⊆ V .

Proof. In every forbidden subgraph there is a vertex v such that D(v, 1) is not
m3-convex. So, we have to show only (1) =⇒ (5).

Suppose that there is a connected set S such that D(S, 1) is not m3-convex. Then
there are vertices x, y in D(S, 1) and there is an induced path P = x−u1−· · ·−uk−y
such that k ≥ 2 and at least one vertex ui is not in D(S, 1). We may choose x, y, and
P such that |P | is minimal.

Case 1. P r {x, y} ⊆ V rD(S, 1).

We immediately conclude x, y /∈ S. Moreover no ui, i = 1, . . . , k, is adjacent to
some vertex of S. Let Q be a shortest path in G({x, y}∪S) connecting x and y. Since
Qr {x, y} is completely contained in S and both P and Q are induced, the cycle C
formed by P and Q is chordless. From |P | ≥ 4 we conclude |C| ≥ 5—a contradiction.

Case 2. |D(S, 1) ∩ P | ≥ 3.

By minimality of |P |, we obtain k = 3, u1, u3 /∈ D(S, 1), and u2 ∈ D(S, 1) or
k = 2, u1 /∈ D(S, 1), and u2 ∈ D(S, 1) (see Figure 5). Let Q = x−z1−· · ·−zl−y, l ≥ 1,
be a shortest path in G({x, y} ∪ S) connecting x and y and define Q′ := Qr {x, y}.

First consider the case k = 2. Note that x, u2 /∈ S, and u1 is not adjacent to any
vertex of Q′. Since the cycle x− u1 − u2 − y − zl − · · · − z1 − x is of length at least
5 the cycle lemma applied to the edge xu1 gives z1u2 ∈ E. If yz1 ∈ E then we have
a house. Hence l ≥ 2. If u2z2 ∈ E then we obtain a house. So let u2z2 /∈ E. If y is
adjacent to z2 then we have a domino. Thus l ≥ 3 and we can apply the cycle lemma
to the edge z1u2 in the cycle u2 − y − zl − · · · − z1 − u2 of length at least 5. So we
conclude u2z3 ∈ E which gives a domino.

Now consider the case k = 3. Note that x, y, u2 /∈ S. Since Q′ is completely
contained in S neither u1 nor u3 is adjacent to any vertex of Q′. On the other hand,
the cycle x − u1 − u2 − u3 − y − zl − · · · − z1 − x is of length at least 6. Thus the
cycle lemma applied to the edge u3y implies u2zl ∈ E. If zlx /∈ E we proceed as in
the case k = 2; otherwise we obtain a domino.

Thus, for every connected set S, D(S, 1) is m3-convex. It is easy to see that
D(S, 1) is connected too. Now, since D(S, k) = D(D(S, k − 1), 1), we are done by
induction on k.

Corollary 2.10. If in a HHD-free graph nonadjacent vertices x, y ∈ Nk(v) are
joined by a path P such that P r {x, y} is contained in V rD(v, k), then there is a
common neighbor of x and y in Nk+1(v) ∩ P .

3. Weak bipolarizable graphs. Here we characterize weak bipolarizable graphs
as the graphs for which the m3-convex alignment is a convex geometry. Let M3(G)

CONVEXITY AND HHD-FREE GRAPHS 127

denote the set of all m3-convex sets of a graph G. For a set S ⊆ V the m3-convex
hull m3-conv(S) is the smallest member of M3(G) containing S.

A set H ⊆ V is homogeneous iff N(x) rH = N(y) rH for any pair of vertices
x, y of H. A homogeneous set H is proper iff 1 < |H| < |V |.

The next lemma gives a nice criterion for checking the semisimpliciality of a
vertex.

Lemma 3.1. A vertex v of a graph G is semisimplicial in G iff the connected
components of the complement of G(N(v)) are homogeneous in G.

Proof. If v is not semisimplicial then there is a P4 containing v as midpoint, say
u1− v− u2− u3. Now u1 and u2 belong to a common connected component C of the
complement of G(N(v)). But C is not homogeneous in G due to u3.

To prove the converse let C be a connected component of the complement of
G(N(v)) and suppose that C is not homogeneous in G. Then there must be vertices
x, y ∈ C and a vertex z ∈ V rC such that xz ∈ E but yz /∈ E. We may choose x and
y such that their distance in the complement of G(C) is minimal. Obviously, z 6= v.
Moreover, since yz /∈ E but every vertex from N(v) r C must be adjacent to every
vertex of C, we have z /∈ N(v). Thus z ∈ N2(v). If xy /∈ E then z − x − v − y is a
P4. If xy ∈ E then let x− u1 − · · · − uk − y be a shortest path in the complement of
G(C). Thus xu1 /∈ E. The minimal distance of x, y now implies u1z /∈ E. Therefore,
z − x− v − u1 is a P4.

Theorem 3.2 ([23]). A graph G is weak bipolarizable iff each induced subgraph
F of G is chordal or contains a proper homogeneous set.

Let H be a proper homogeneous set in G and v ∈ H. Then the homogeneous
reduction HRed(G,H, v) is the graph induced by V (G)r (H r {v}). Conversely, the
homogeneous extension HExt(G, v,H) of G via a graph H in v with V (H)∩V (G) = ∅
is the graph obtained by substituting v by H such that the vertices of H have the
same neighbors outside of H as v had in G.

Lemma 3.3. Let H be a proper homogeneous set of a HHD-free graph G and
v ∈ H.

(1) If x is semisimplicial in HRed(G,H, v), but not in G, then x ∈ H, i.e., x = v.
(2) If x ∈ H is semisimplicial in H, but not in G, then no vertex of H is semisim-

plicial in G and v is not semisimplicial in HRed(G,H, v).

Proof. Since no P4 contains a proper homogeneous set, we conclude that for any
4-path P of G, either P ⊆ H or |P ∩H| ≤ 1.

(1) Since x is not semisimplicial in G it must be a midpoint of some 4-path P . If
x /∈ H then the semisimplicity of x in HRed(G,H, v) implies |P∩H| = 1. But
now we can replace the vertex of P ∩H by v obtaining a P4 in HRed(G,H, v),
which contains x as a midpoint—a contradiction. Thus x ∈ H, i.e., x = v.

(2) If x ∈ H is semisimplicial in H, but not in G, then no P4 in G containing
x as a midpoint is completely contained in H. Thus P ∩ H = {x} for any
4-path P in G with midpoint x. Since H is homogeneous we can replace x in
P by any vertex of H. Thus no vertex of H is semisimplicial in G, and v is
not semisimplicial in HRed(G,H, v).

In [16] it is proved that in a chordal graph every nonsimplicial vertex lies on an
induced path between two simplicial vertices. Next we present a stronger result which
we will subsequently use.

Lemma 3.4. Let G be a chordal graph and P = v1 − · · · − vk be an induced path
of length at least 2, i.e., k ≥ 3. Then there are vertices ui, i = 1, . . . , s and wj,
j = 1, . . . , t, such that u1, w1 are simplicial and u1 − u2 − · · · − us − v2 − · · · − vk−1 −

128 FEODOR DRAGAN, FALK NICOLAI, AND ANDREAS BRANDSTÄDT

wt − · · · − w2 − w1 is an induced path in G.

Proof. If both v1 and vk are simplicial then we are done. So suppose that v1 is
not simplicial.

Let M be the m-convex hull of {v1, . . . , vk} and S be the neighborhood of v1 in
M . Obviously, S is a v1− v3-separator in M , i.e., v1 and v3 are in different connected
components of G(M)rS. We show that S is a v1− v3-separator in G too. Assuming
the contrary there must be an induced path P in V r S joining v1 and v3. Since
S is the set of neighbors of v1 in M the neighbor of v1 in P does not belong to M .
Thus P is an induced path between vertices of M which contains vertices of V rM ,
a contradiction to the m-convexity of M . Therefore, S is a v1 − v3-separator in G.

Recall that every chordal graph is either complete or contains at least two
nonadjacent simplicial vertices [7, 24]. Thus G(M) as a chordal graph must contain
at least two simplicial vertices. Since deleting a simplicial vertex from a m-convex set
preserves m-convexity and since M is the m-convex hull of {v1, . . . , vk} we immedi-
ately conclude that v1 and vk are the only two simplicial vertices of M . Thus S is
complete.

Since v1 is not simplicial and all neighbors of v1 are contained in F := G(K ∪S),
where K is the connected component of Gr S containing v1, the chordal graph F is
not complete and hence there are two nonadjacent simplicial vertices in F . By the
completeness of S at most 1 of them is in S. Thus we have a simplicial vertex u1 in
K which is simplicial in G too. Now consider a path P connecting the vertices v1 and
u1 in K. Then no vertex up to v2 of an induced subpath u1 − · · · − us − v2 of the
path P ∪ v1v2 has a neighbor in {v3, · · · , vk}. Hence, u1 − · · · − us − v2 − · · · − vk is
an induced path. For vk we proceed analogously.

Note that every simplicial vertex is semisimplicial and thus, every nonsemisim-
plicial vertex is nonsimplicial.

Lemma 3.5. Every nonsemisimplicial vertex of a weak bipolarizable graph G lies
on an induced path of length at least 3 between two semisimplicial vertices.

Proof. We prove the assertion by induction on the size of G. The assertion holds
for all graphs with at most 4 vertices since the only graph of these sizes which contains
a nonsemisimplicial vertex is the P4. Let x be a nonsemisimplicial vertex of G, i.e., x
is a midpoint of some P4.

If G is chordal then by Lemma 3.4 there is a path P of length at least 3 con-
taining x such that both endpoints of P are simplicial and thus semisimplicial in G.
Consequently, we are done.

Now assume that G is not chordal. Hence, by Theorem 3.2, G contains a proper
homogeneous set H.

Case 1. x ∈ H.

Suppose that x is semisimplicial in HRed(G,H, x). Then by Lemma 3.3 (2),
vertex x is not semisimplicial in H. By the induction hypothesis x lies on an induced
path of length at least 3 between semisimplicial vertices y, z in H. By Lemma 3.3 (2),
both y and z must be semisimplicial in G too.

Now assume that x is not semisimplicial in HRed(G,H, x). By the induction hy-
pothesis x lies on an induced path between semisimplicial vertices y, z inHRed(G,H, x).
In particular, y, z /∈ H. Thus by Lemma 3.3 (1), both y and z must be semisimplicial
in G too.

Case 2. x /∈ H.

From Lemma 3.3 (1) we immediately conclude that x is not semisimplicial in
HRed(G,H, v), where v is a semisimplicial vertex in the weak bipolarizable graph H.

CONVEXITY AND HHD-FREE GRAPHS 129

By the induction hypothesis x lies on an induced path between semisimplicial vertices
y, z in HRed(G,H, v). Suppose that y is not semisimplicial in G. From Lemma 3.3
(1), we infer y = v. But now y = v is not semisimplicial in HRed(G,H, v) by Lemma
3.3 (2)—a contradiction. Thus both y and z are semisimplicial in G too.

To prove the next corollary we use the arguments of the proof of [16, Corollary
3.4].

Corollary 3.6. The Caratheodory number of the m3-convex alignment of a
weak bipolarizable graph is at most 2.

Proof. Let G = (V,E) be a weak bipolarizable graph and S be a subset of V .
Pick an arbitrary vertex x ∈ m3-conv(S). If x is semisimplicial in the subgraph
induced by m3-conv(S), then x ∈ S since each extreme point of m3-conv(S) is in S
by the definition of the hull of S. Otherwise, by Lemma 3.5, x lies on an induced
path of length at least 3 between semisimplicial vertices of the subgraph induced by
m3-conv(S). Hence, x is in the m3-convex hull of two extreme points of m3-conv(S).
Since each extreme point of m3-conv(S) is in S we are done.

Subsequently, we call a vertex set S of G reachable iff there is an ordering
(v1, . . . , vk) of V r S such that for each i = 1, . . . , k vertex vi is semisimplicial in
G({vi, . . . , vk} ∪ S).

Theorem 3.7. The following conditions are equivalent for a graph G:
(1) G is weak bipolarizable.
(2) In every induced subgraph F of G each nonsemisimplicial vertex lies on an

induced path of length at least 3 between semisimplicial vertices of F .
(3) Each m3-convex set of G is the hull of its semisimplicial vertices, i.e., (V (G),

M3(G)) is a convex geometry.
(4) A set S of G is m3-convex iff there is an ordering (v1, . . . , vk) of V (G)rS such

that for each i = 1, . . . , k vertex vi is semisimplicial in G({vi, . . . , vk} ∪ S),
i.e., S is reachable.

Proof. We only need to prove (4) =⇒ (1).
Claim 1. If S is a m3-convex set in F := HRed(G,H, v), where H is a proper

homogeneous set of G, then

S′ :=

{
S : v /∈ S,
S ∪H : v ∈ S

is m3-convex in G.
Suppose S′ is not m3-convex in G. Then there must be vertices x, y ∈ S′ and

an induced path P of length at least 3 joining x and y such that P r S′ 6= ∅. If
|P ∩ H| ≤ 1, then either P or (P r H) ∪ {v} is an induced path in F of length at
least 3 joining vertices of S which has at least one vertex outside S, a contradiction
to the m3-convexity of S in F . Now suppose |H ∩P | ≥ 2. Note that P rH 6= ∅. Let
P ′ = u1 − · · · − uk be a maximal by inclusion subpath of P completely contained in
H. Suppose k ≥ 2. If u1 = x then uk 6= y since P rH 6= ∅. Since H is homogeneous
u1 must be adjacent to the neighbor of uk in P r P ′—a contradiction. If u1 6= x
then the same argument can be applied to uk and the neighbor of u1 in P rP ′. Now
let k = 1. For |H ∩ P | ≥ 2 there must be a vertex z ∈ H ∩ P r N(u1). But now
N(u1)rH = N(z)rH and |P | ≥ 4 imply some chords in P , again a contradiction.
Therefore, S′ is m3-convex in G.

Claim 2. Every homogeneous set H of a graph G is m3-convex.
Let x, y be nonadjacent vertices of a homogeneous set H in G. If x has a neighbor

z outside H then yz ∈ E, and vice versa. Thus any induced path between nonadjacent

130 FEODOR DRAGAN, FALK NICOLAI, AND ANDREAS BRANDSTÄDT

vertices of H containing vertices from V rH must be of length 2. Consequently, H
is m3-convex in G.

Claim 3. Let H be a proper homogeneous set of a graph G. If S is m3-convex in
G(H) then it is so in G.

Since S is a subset of H we can use the same arguments as in the proof of
Claim 2.

Claim 4. If v is a simplicial vertex in a graph G then any m3-convex set of Gr{v}
is m3-convex in G.

Since the neighborhood of a simplicial vertex v is complete no induced path of
length at least 3 can contain v as an inner point.

Now we prove by induction on the size of G that any graph fulfilling (4) is weak
bipolarizable, i.e., HHDA-free. Since any singleton of V (G) is a m3-convex set, G
possesses a semisimplicial ordering, and thus does not contain a hole or a domino.
Let F be an induced subgraph of G isomorphic to the house and K be the 3-clique
of F . Now the m3-convex set K must be reachable, but no vertex of F r K is
semisimplicial in F—a contradiction. Therefore, G is a HHD-free graph.

Case 1. G contains a proper homogeneous set H.

Let v be a vertex of H, F := HRed(G,H, v) and S be a m3-convex set in F . Then
S′ as defined in Claim 1 is m3-convex in G and thus reachable. Hence, S is reachable
in F since each semisimplicial vertex of G is semisimplicial in every induced subgraph
containing this vertex. Therefore, F fulfills (4) and, by the induction hypothesis, is
HHDA-free. Applying the same arguments to a m3-convex set S of H and using
Claim 3 implies that H is HHDA-free. Now we conclude that G itself is HHDA-free
as the homogeneous extension of the HHDA-free graph F by the HHDA-free graph
H (see [23]).

Case 2. G has no proper homogeneous set.

Suppose G contains an “A” induced by the 4-cycle x − c − d − y − x and the
pendant vertices a, b where ax ∈ E and by ∈ E. In what follows we prove that
M := D(a, 1) ∪D(b, 1) is m3-convex in G. Thus M must be reachable, but neither c
nor d are semisimplicial in the “A”—a contradiction.

First note that every semisimplicial vertex v of G is simplicial due to Lemma
3.1. From Claim 4 we conclude that G r {v} fulfills (4) and thus, by the induction
hypothesis, is HHDA-free. Therefore, a and b are the only semisimplicial vertices of
G, and D(a, 1), D(b, 1) are complete.

• If there is a common neighbor z of a and b, then z is adjacent to all vertices
a, b, c, d, x, y.
Considering the cycle z− a− x− y− b− z implies the edges zx and zy. Now
{z, x, y, c, d} induces a house, thus zc ∈ E or zd ∈ E. Suppose zc /∈ E. Then
zd ∈ E and {a, z, x, c, d} induces a house. Hence both zc ∈ E and zd ∈ E.

• N(a) ⊆ N(c) and N(b) ⊆ N(d).
Let w be a neighbor of a and suppose wc /∈ E. Thus w 6= x, wx ∈ E, and
wb /∈ E. Since Gr{a} is HHDA-free w must be adjacent to y or d. If wy ∈ E
then the graph induced by {w, x, y, c, d} implies wd ∈ E. Hence wd ∈ E. But
now {a, x, w, c, d} induces a house.
• Every vertex of N(a) is adjacent to every vertex of N(b).

If w ∈ N(a) ∩ N(b), then w is adjacent to all vertices of N(a) ∪ N(b) since
both D(a, 1) and D(b, 1) are complete. So suppose for the contrary that there
are nonadjacent vertices z ∈ N(a)rN(b) and w ∈ N(b)rN(a). Since xy ∈ E
we have either z = x and w 6= y, z 6= x, and w = y or z 6= x and w 6= y.

CONVEXITY AND HHD-FREE GRAPHS 131

First assume z = x (analogously, w = y). The graph induced by {w, d, y, c, z}
implies wc ∈ E. But now {b, y, w, z, c} induces a house. So let x 6= z and
y 6= w. By the same arguments as above we may assume zy ∈ E and wx ∈ E.
Now considering {w, d, y, z, c} gives zd ∈ E or wc ∈ E. By symmetry, say
wc ∈ E. But this yields a house induced by {b, y, w, z, c}.

To complete the proof suppose that M = D(a, 1)∪D(b, 1) is not m3-convex in G.
Then there must be nonadjacent vertices w, z ∈M and an induced path P of length
at least 3 joining w and z such that P rM is nonempty. Since every vertex of N(a)
is adjacent to every vertex of N(b) we conclude {w, z} ∩ {a, b} 6= ∅. Say z = a. Then
w /∈ D(a, 1). Let z′ be the neighbor of z in P , i.e., z′ ∈ N(a). If w ∈ N(b) then
z′w ∈ E gives a contradiction. Hence w = b. Now consider the neighbor w′ of w in
P . From w′ ∈ N(b) we conclude z′w′ ∈ E—again a contradiction.

4. The existence of r-dominating cliques. Let r : V → N be some vertex
function defined on G. Then a set D ⊆ V r-dominates G iff for all vertices x in V rD
there is a vertex y ∈ D such that d(x, y) ≤ r(x). D is a r-dominating clique iff D is
complete and r-dominates G. Note that there are graphs and vertex functions r such
that G has no r-dominating clique. For some graph classes, such as chordal, distance-
hereditary, and HHDS-free graphs, there is an existence criterion for r-dominating
cliques [9, 8, 10]. In what follows we prove this criterion for HHD-free graphs. The
method is similar to the one used for chordal graphs in [9] and essentially exploits
m3-convexity of disks in HHD-free graphs.

Lemma 4.1. Let C be a clique in a HHD-free graph G and v be a vertex of G
such that for all vertices w of C the distance to v is k ≥ 1. Then there is a vertex u
at distance k − 1 to v which is adjacent to all vertices of C.

Proof. We prove the assertion by induction on k. For k = 1 there is nothing to
show. Let x be a vertex of Nk−1(v) adjacent to a maximal number of vertices of C.
Suppose that there is some vertex a ∈ C which is not adjacent to x, and let y be a
neighbor of a in Nk−1(v). By the choice of x there must be a vertex b ∈ C adjacent
to x but not to y. Thus we have the path x− b− a− y of length 3 between vertices
x, y of D(v, k−1), which contains vertices a, b outside of D(v, k−1). By Theorem 2.9
D(v, k − 1) is m3-convex; hence xy ∈ E. Now, by applying the induction hypothesis
to the clique {x, y} we obtain a common neighbor u of x, y in Nk−2(v). Therefore we
have constructed a house—a contradiction.

In a similar way we can prove the following lemma.

Lemma 4.2. If x, y, v are vertices of a HHD-free graph G such that d(x, v) =
d(y, v) = k and N(x)∩N(y)∩Nk+1(v) 6= ∅, then there is a vertex u ∈ N(x)∩N(y)∩
Nk−1(v).

Define the projection of a vertex v to a set S by

Proj(v, S) := {x ∈ S : d(v, x) = d(v, S)}

and the projection of a set C to a set S by Proj(C, S) :=
⋃
v∈C Proj(v, S).

Lemma 4.3. Let u, v be vertices of a HHD-free graph. Then for any vertex
x in D(v, k) there is a shortest path between u and x going through the projection
Proj(u,D(v, k)).

Proof. If d(u, v) ≤ k then Proj(u,D(v, k)) = {u} and there is nothing to show.
So let d(u, v) ≥ k + 1. Choose an arbitrary vertex w ∈ Proj(u,D(v, k)) and assume
d(u, x) < d(u,w) + d(w, x). Let P be a shortest path connecting u and x, and let
z be the vertex of V (P) ∩ D(v, k) closest to u on the path P (see Figure 6). Thus

132 FEODOR DRAGAN, FALK NICOLAI, AND ANDREAS BRANDSTÄDT

u
u

u
u

w

u

z

x D(v, k)

u
u

u
u

w

u

z

x D(v, k)

u

u

u

b

a

c

Fig. 6.

d(u, x) = d(u, z) + d(z, x). If z ∈ Proj(u,D(v, k)) then we are done. So assume
z /∈ Proj(u,D(v, k)) implying d(u, z) > d(u,w). Note that zw /∈ E for, otherwise,

d(u,w)+1+d(z, x) ≤ d(u, z)+d(z, x) = d(u, x) < d(u,w)+d(w, x) ≤ d(u,w)+d(z, x)+1

is a contradiction. Thus by Corollary 2.10 there is a common neighbor a of w and
z in Nk+1(v) ∩ P implying that d(u, z) ≤ d(u,w) + 2 and d(w, x) ≤ d(z, x) + 2.
Moreover, d(u, x) < d(u,w) + 2 + d(z, x). Therefore, d(u, z) + d(z, x) = d(u, x) <
d(u,w) + 2 + d(z, x) gives d(u, z) = d(u,w) + 1, and d(u, a) = d(u,w). Now applying
Lemma 4.2 to z, w, and v gives a common neighbor b of z, w in Nk−1(v). By distance
requirements ab /∈ E. Furthermore, Lemma 4.1, applied to {a,w} and u, yields a
common neighbor c of a,w at distance d(u,w) − 1 to u. Thus neither cz ∈ E nor
cb ∈ E. Consequently, {a, b, c, w, z} induces a house.

Let U1, U2 be subsets of V . The sets U1, U2 form a join iff any vertex of U1 is
adjacent to any vertex of U2.

Lemma 4.4. Let G be a HHD-free graph and xy be an edge outside of D(v, k).
Then Proj(x,D(v, k)) ⊆ Proj(y,D(v, k)) or Proj(y,D(v, k)) ⊆ Proj(x,D(v, k)).
Moreover, assuming Proj(x,D(v, k)) ⊆ Proj(y,D(v, k)) implies that the sets Proj
(x,D(v, k)) and Proj(y,D(v, k))r Proj(x,D(v, k)) form a join.

Proof. We will present the proof for the equidistant case, i.e., d(x, v) = d(y, v).
The cases d(x, v) = d(y, v)+1 and d(y, v) = d(x, v)+1 can be handled in a similar (even
easier) way. Let A := Proj(x,D(v, k))∩Proj(y,D(v, k)), B := Proj(x,D(v, k))rA,
and C := Proj(y,D(v, k))rA.

Suppose wx ∈ B, wy ∈ C. Since d(y, wy) = d(x,wx) = d(x, v) − k we have
d(x,wy) = d(x,wx) + 1 and d(y, wx) = d(y, wy) + 1. Now if wxwy /∈ E we get a
contradiction to Corollary 2.10. Therefore, wxwy ∈ E. Let b (c) be the neighbor of wx
(wy) in a shortest path Px (Py) between x (y) and wx (wy). Obviously, wxc, wyb /∈ E.
Lemma 2.2 applied to the edge wxwy in the cycle induced by the vertices of Px and
Py gives bc ∈ E. Thus {b, c, wx, wy, s} induces a house where s is a common neighbor
of wxwy in Nk−1(v) due to Lemma 4.1. Consequently, either B = ∅ or C = ∅.

Finally, suppose w ∈ A, wx ∈ B and wxw /∈ E. Consider the three vertices
w,wx, v. By Corollary 2.10 there is a common neighbor z of w and wx at distance
k + 1 to v and d(x,w) − 1 to x. By Lemma 4.2 there is a common neighbor u of w
and wx at distance k − 1 to v. Let t be the neighbor of w on a shortest path joining
w and y. Since wx /∈ A we have twx /∈ E. By distance requirements zu, tu /∈ E. If
tz ∈ E then {t, z, w,wx, u} induces a house. So assume tz /∈ E and consider the cycle
C formed by w and by the shortest paths joining t, y and z, x. Obviously |C| ≥ 5.
Applying the circle lemma to edge zw yields the edge ts, where s is the neighbor of

CONVEXITY AND HHD-FREE GRAPHS 133

z in the shortest path between x and z. By distance requirements {s, t, z, w,wx, u}
induces a domino. Therefore, A and B form a join.

Lemma 4.5. Let G be a HHD-free graph and C be a clique such that C r
D(v, k) 6= ∅. Then there is some vertex u ∈ Nk−1(v) adjacent to all vertices of
Proj(C,D(v, k)).

Proof. Choose a maximal clique C ′ in Proj(C,D(v, k)) containing C ∩ D(v, k).
By Lemma 4.1 there is a vertex a in Nk−1(v) adjacent to all vertices of C ′. Choose
such a vertex a with a maximal number of neighbors in Proj(C,D(v, k)) and suppose
that there is some vertex y ∈ Proj(C,D(v, k)) r C ′ nonadjacent to a. Since C ′ is
maximal there is a vertex w ∈ C ′ which is not adjacent to y. Note y /∈ C. Thus
there is a common neighbor z of y and w in Nk+1(v) (either z ∈ C or the existence
of z follows from Corollary 2.10). Now applying Lemma 4.2 to w, y gives a common
neighbor b of w and y in Nk−1(v). By distance requirements za, zb /∈ E. If ab ∈ E,
then {a, b, y, z, w} induces a house. If ab /∈ E, then we can apply Lemma 4.2 to a, b
yielding a common neighbor c of a, b in Nk−2(v). But now {c, a, b, y, w, z} induces a
domino.

Theorem 4.6. Let G be a HHD-free graph and r : V → N be a vertex function
on G. Then G has a r-dominating clique iff for all vertices x, y ∈ V , d(x, y) ≤
r(x) + r(y) + 1 holds.

Proof. Obviously, if G has a r-dominating clique then the inequality is fulfilled.
To prove the converse let (v1, . . . , vn) be any ordering of V and suppose that there is
a clique C which r-dominates {v1, . . . , vi−1} but not vi. Thus d(vi, C) ≥ r(vi) + 1.
Let B := Proj(C,D(vi, r(vi) + 1)).

Claim 1. B r-dominates {v1, . . . , vi−1}.
Let k ≤ i− 1 and consider vertex vk. Since C r-dominates {v1, . . . , vi−1} there is

some vertex c ∈ C such that d(c, vk) ≤ r(vk).
If vk ∈ D(vi, r(vi) + 1) then by Lemma 4.3 there is a shortest path joining c and

vk going through B. Thus vk is r-dominated by some vertex of B.
Now let vk ∈ V rD(vi, r(vi)+1). Since d(vk, vi) ≤ r(vk)+r(vi)+1 we may choose

a vertex xk in D(vk, r(vk)) ∩ Nr(vi)+1(vi). Again, by Lemma 4.3 there is a shortest
path joining c and xk which contains a vertex of B, say yk. If d(c, xk) ≥ 3, then
yk ∈ D(vk, r(vk)) since both c and xk are contained in the m3-convex set D(vk, r(vk)).
If cxk ∈ E then either c = yk or xk = yk and we are done since vk is r-dominated
by yk. So let d(c, xk) = 2. Again, if c = yk or xk = yk then we are done. Thus
let c − yk − xk induce a P3 and assume d(vk, yk) > r(vk). We immediately conclude
d(vk, c) = d(vk, xk) = r(vk) and d(vk, yk) = r(vk) + 1. Thus Lemma 4.2 applied to
c, xk, and vk gives a common neighbor a of c and xk at distance r(vk)−1 to vk. Since

d(vi, yk) = d(vi, xk) = d(vi, a)− 1 = d(vi, c)− 1 = r(vi) + 1

applying Lemma 4.1 to the edge xkyk and to vi yields a common neighbor b of xk and
yk at distance r(vi) to vi. By distance requirements the set {a, b, xk, yk, c} induces a
house—a contradiction. Thus yk r-dominates vk and we are done.

Let C ′′ be a maximal clique in Proj(C,D(vi, r(vi) + 1)) such that C ′′ ⊃ C ∩
D(vi, r(vi) + 1). By Lemma 4.5 there is a vertex a in Nr(vi)(vi) adjacent to all
vertices of B. Define C ′ := C ′′ ∪ {a}.

Claim 2. C ′ r-dominates {v1, . . . , vi}.
Obviously, a r-dominates vi. Suppose there is some vertex vk, k ≤ i− 1 which is

not r-dominated by C ′. By Claim 1 vk is r-dominated by B. More exactly, there is a
vertex c ∈ C and a vertex yk ∈ Proj(c,D(vi, r(vi) + 1)) ⊆ B rC ′ both r-dominating

134 FEODOR DRAGAN, FALK NICOLAI, AND ANDREAS BRANDSTÄDT

vk. Since C ′′ is maximal there must be a vertex w ∈ C ′′ nonadjacent to yk. By
Lemma 4.4 both vertices yk, w are contained in the projection of c.

Let z be a common neighbor of w and yk at distance d(c, w) − 1 to c obtained
from Lemma 4.2. If d(yk, c) ≥ 3 then the m3-convexity of D(vk, r(vk)) implies z ∈
D(vk, r(vk)). We conclude d(vk, z) = d(vk, yk) = r(vk). Now we can apply Lemma
4.1 to the edge ykz obtaining a common neighbor s of yk and z at distance r(vk)− 1
to vk. By distance requirements sw, sa, az /∈ E. Thus {s, w, a, z, yk} induces a house.
In a similar way we can handle the case c = z. So assume d(yk, c) = 2. If z ∈
D(vk, r(vk)) then we proceed as above. So by assuming d(z, vk) > r(vk) we have
d(vk, c) = d(vk, yk) = r(vk) and d(vk, z) = r(vk)+1. Now we can apply Lemma 4.2 to
c, yk obtaining a common neighbor b of c, yk at distance r(vk)− 1 to vk. By distance
requirements bw, ba /∈ E. Thus {c, b, z, yk, a, w} induces a domino.

Consequently we have constructed a clique which r-dominates {v1, . . . , vi}. In-
duction on i settles the proof.

Corollary 4.7. For a HHD-free graph G we have 2rad(G) ≥ diam(G) ≥
2(rad(G)− 1).

Proof. Suppose that diam(G) < 2(rad(G)− 1). Then by Theorem 4.6 for r(v) :=
rad(G)− 2, v ∈ V , there exists a r-dominating clique C in G. Hence, any vertex v of
C has e(v) ≤ rad(G)− 1, a contradiction to the definition of the radius.

Acknowledgments. The authors are indebted to two anonymous referees for
constructive comments improving the presentation.

REFERENCES

[1] A. Brandstädt, V.D. Chepoi, and F.F. Dragan, Perfect elimination orderings of chordal
powers of graphs, Discrete Math., 158 (1996), pp. 273–278.

[2] A. Brandstädt and D. Kratsch, Domination problems on permutation and other graphs,
Theoret. Comput. Sci., 54 (1987), pp. 181–198.

[3] G.J. Chang and G.L. Nemhauser, The k-domination and k-stability problems on sun-free
chordal graphs, SIAM J. Algebraic Discrete Meth., 5 (1984), pp. 332–345.

[4] V.D. Chepoi, d-Convex Sets in Graphs, Ph.D. dissertation, Moldova State University, Kishinev,
1986 (Russian).

[5] V.D. Chepoi, Centers of triangulated graphs, Math. Notes, 43 (1988), pp. 143–151 (Russian,
English transl.).

[6] V.D. Chepoi and F.F. Dragan, Linear-time algorithm for finding a central vertex of a chordal
graph, Algorithms – ESA’94, 2nd Annual European Symposium, Utrecht, The Netherlands,
1994 Lecture Notes in Comput. Sci. 855, Jan van Leeuwen, ed., Springer, Berlin, New York,
1994, pp. 159–170.

[7] G.A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg, 25 (1961), pp. 71–76.
[8] F.F. Dragan, Dominating cliques in distance-hereditary graphs, Algorithm Theory – SWAT’94,

4th Scandinavian Workshop on Algorithm Theory, Aarhus, Denmark, 1994, Lecture Notes
in Comput. Sci. 824, Erik M. Schmidt and Sven Skyum, eds., Springer, Berlin, New York,
1994, pp. 370–381.

[9] F.F. Dragan and A. Brandstädt, r-dominating cliques in graphs with hypertree structure,
Discrete Math., 162 (1996), pp. 93–108.

[10] F.F. Dragan and F. Nicolai, r-domination problems on homogeneously orderable graphs,
Networks, 30 (1997), pp. 121–131.

[11] F.F. Dragan, F. Nicolai, and A. Brandstädt, Convexity and HHD-free graphs, Abstracts
of the 5th Internat. Colloq. on “Graphs and Combinatorics,” Marseille Luminy, September
3–8, 1995, p. 17.

[12] P. Duchet, Convex sets in graphs II: Minimal path convexity, J. Combin. Theory Ser. B, 44
(1988), pp. 307–316.

[13] P. Duchet and H. Meyniel, Ensemble convexes dans les graphes I, European J. Combin., 4
(1983), pp. 127–132.

[14] M. Farber, Bridged graphs and geodesic convexity, Discrete Math., 66 (1987), pp. 249–257.

CONVEXITY AND HHD-FREE GRAPHS 135

[15] M. Farber, On diameters and radii of bridged graphs, Discrete Math., 73 (1989), pp. 249–260.
[16] M. Farber and R.E. Jamison, Convexity in graphs and hypergraphs, SIAM J. Algebraic Dis-

crete Meth., 7 (1986), pp. 433–444.
[17] M. Farber and R.E. Jamison, On local convexity in graphs, Discrete Math., 66 (1987), pp.

231–247.
[18] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York,

1980.
[19] B. Jamison and S. Olariu, On the semi-perfect elimination, Adv. Appl. Math., 9 (1988), pp.

364–376.
[20] R.E. Jamison, A perspective on abstract convexity: Classifying alignment by varieties, in

Convexity and Related Combinatorial Geometry, D.C. Kay and M. Breen, eds., Marcel
Dekker, New York, 1982.

[21] B. Korte, L. Lovász, and R. Schrader, Greedoids, Springer-Verlag, Berlin, Heidelberg, New
York, 1991.

[22] H.M. Mulder, The Interval Function of a Graph, preprint, Math. Centre Tracts 132, Math.
Centrum, Amsterdam, 1980.

[23] S. Olariu, Weak bipolarizable graphs, Discrete Math., 74 (1989), pp. 159–171.
[24] D. Rose, Triangulated graphs and the elimination process, J. Math. Anal. Appl., 32 (1970),

pp. 579–609.
[25] D. Rose, R.E. Tarjan, and G. Lueker, Algorithmic aspects on vertex elimination on graphs,

SIAM J. Comput., 5 (1976), pp. 266–283.
[26] V.P. Soltan, d-convexity in graphs, Soviet Math. Dokl., 28 (1983), pp. 419–421.
[27] V.P. Soltan and V.D. Chepoi, Conditions for invariance of set diameters under d-

convexification in a graph, Cybernetics, 19 (1983), pp. 750–756.
[28] R.E. Tarjan and M. Yannakakis, Simple linear time algorithms to test chordality of graphs,

test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs, SIAM J. Comput.,
3 (1984), pp. 566–579.

CONSTRAINING PLANE CONFIGURATIONS
IN COMPUTER-AIDED DESIGN:

COMBINATORICS OF DIRECTIONS AND LENGTHS ∗

BRIGITTE SERVATIUS† AND WALTER WHITELEY‡

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 1, pp. 136–153

Abstract. Configurations of points in the plane constrained by directions only or by lengths
alone lead to equivalent theories known as parallel drawings and infinitesimal rigidity of plane frame-
works. We combine these two theories by introducing a new matroid on the edge set of the complete
graph with doubled edges to describe the combinatorial properties of direction-length designs.

Key words. computer-aided design, constraint frameworks, generic rigidity, matroid, parallel
drawings, plane configurations

AMS subject classifications. Primary, 68U07, 05B35; Secondary, 05C50, 51N05, 52C25

PII. S0895480196307342

1. Introduction. A plane configuration in computer-aided design (CAD) is a
collection of geometric objects such as points, line segments, and circular arcs in the
plane, together with constraints on and between these objects [7, 13]. Naturally the
designer wants to know if a realization of the configuration exists and is uniquely deter-
mined. A realization of a plane configuration is called a plane design. Beyond simple
uniqueness of design, there are other fundamental design questions: If global unique-
ness is not achieved, is the design locally unique? If the design permits continuous
deformations, which additional constraints would give the appropriate uniqueness?
Are all constraints essential in producing the design or are there constraints which
are forced by the remaining ones?

Given a design, the constraints can be written as a system of algebraic equations
whose variables are the coordinates and parameters of the geometric objects [12,
15]. Some of the above questions may be answered by computing the rank of the
Jacobian of the system of constraint equations [13, 15]. Because of the size of the
system and possible degeneracies, computation may be slow and unstable. Therefore a
mathematical theory which answers these questions purely combinatorially is desirable
[3, 12, 18].

The classical problem of Euclidean construction may be stated in the language
of plane designs, as well as other familiar geometric problems. Much is known about
length designs, where the objects are points and the distances between certain pairs
of points are prescribed, forming the familiar mathematical model for a bar and
joint framework [8]. On the other hand, direction designs, in which the constraints
prescribe directions instead of distances between points, are also well understood as
the problem of parallel drawings [17]. We present a combinatorial solution for the
Jacobian of direction-length designs, which incorporate both of these cases.

∗Received by the editors July 26, 1996; accepted for publication (in revised form) June 9, 1998;
published electronically January 29, 1999.

http://www.siam.org/journals/sidma/12-1/30734.html
†Department of Mathematics, Worcester Polytechnic Institute, Worcester, MA 01609-2280

(bservat@wpi.edu).
‡Department of Mathematics and Statistics, York University, 4700 Keele Street, North York, ON,

M3J 1P3, Canada (whiteley@mathstat.yorku.ca). The research of this author was supported by
grants from NSERC (Canada).

136

THE COMBINATORICS OF DIRECTIONS AND LENGTHS 137

These results are a contribution to the more basic open case of lengths and angles,
a problem which arises in geodesy (making maps).

We will start out by summarizing results for frameworks and parallel drawings
in section 2, then define direction-length designs in section 3. Our main goal is to
characterize robust designs (defined in section 4), which have independent constraints
and locally unique realizations. Limiting designs are used as tools in our proofs and
are explicitly described in section 5. In section 6 we describe a direction-length con-
struction and prove that the construction produces robust designs. The converse
is demonstrated in section 6, where the combinatorial properties of direction-length
designs are explored. Finally we indicate problems arising from mixing lengths, di-
rections, and angles and outline other topics for further research.

2. Frameworks and parallel drawings.

2.1. Frameworks. Consider the set V = {1, . . . , n} and a function p from V
into R2. We call p a configuration and we will denote p(i) by pi. A configuration
p is generic if the coordinates in p are algebraically independent over the rationals.
(For convenience here, we will assume that all points in a configuration are distinct,
pi 6= pj , i 6= j. In certain limiting cases, we will bring vertices into coincidence and
redefine the associated constraint.)

If p is an embedding, we can associate with every graph G = (V,E) a framework
G(p), where the edge set E is interpreted as the collection of those pairs of vertices
whose images under p are joined by rigid bars. We call two frameworks G(p) and
G(q) equivalent if corresponding bars have the same length.

We may identify the configuration p with a point in R2n, and measure the distance
between pairs of vertices by evaluating the rigidity function ρ : R2n → Rn(n+1)/2

defined by ρ(p)i,j = (pi−pj)
2 for i < j ≤ |V |. Clearly ρ is continuously differentiable

with respect to p, and we define R(p), the rigidity matrix for the configuration p,
by ρ′(p) = 2R(p). With every framework G(p) we can associate the matrix R(G,p)
consisting of those rows of R(p) corresponding to E. A solution, u, of the system
R(G,p)u = 0 consists of vectors ui in R2, one for each point pi satisfying

(pi − pj) · (ui − uj) = 0

for each (i, j) ∈ E. u is called an infinitesimal motion of the framework. If |V | ≥
2 and R(G,p) has rank 2n − 3, or equivalently if all solutions to R(G,p)x = 0
correspond to derivatives of congruences (translations or rotations), the framework is
called infinitesimally rigid. An infinitesimally rigid framework with independent rows
of the rigidity matrix is called isostatic.

A configuration p is said to be generic if any length design whose constraints are
dependent with respect to p are in fact dependent with respect to any embedding.
It is straightforward to show that almost all embeddings are generic (see [2]). If the
coordinates of p are algebraically independent over the rational field, then p is generic.
For a generic embedding, the linear independence of the rows of the rigidity matrix
depends only on the graph whose edges correspond to the rows, and consequently, the
generic rigidity of a framework depends on the graph alone.

2.2. Parallel drawings. If u is an infinitesimal motion of R(G), ui = (ui, vi),
then u⊥i − u⊥j is parallel to pi − pj for every edge (i, j), where u⊥i = (vi,−ui); so

G(p+u⊥) is a framework whose edges are all parallel to edges in G(p) (see Figure 2.1).
G(p+u⊥) is said to be a parallel redrawing of G(p). If t is an infinitesimal translation,
then G(p + t⊥) is congruent to G(p). If r is an infinitesimal rotation, G(p + r⊥) is a

138 BRIGITTE SERVATIUS AND WALTER WHITELEY

B
B
B
B
PP

PP�
�
�
�
��u u
uu

B
B
B
B

PP
PP�

�
�
�
��u u
uu��� BBM

PPP

B
B
B
B

PP
PP�

�
�
�
��u u
uuHHY ��)

a. c.b.

Fig. 2.1. Infinitesimal motions and parallel redrawings.

Table 2.1
First order terminology.

Plane design Bar frameworks Parallel drawings
Locally unique solution rigid tight
Locally unique solution with isostatic minimally tight
independent constraints
Infinitely many nontrivial flexible loose
solutions

dilation or contraction of G(p), and if u is a nontrivial infinitesimal motion, G(p+u⊥)
will not be similar to G(p).

Conversely, every parallel redrawing of a framework in the plane induces an in-
finitesimal motion of the framework. More directly, given a graph G = (V,E), we can
interpret the edges as line segments in the plane whose direction is to be fixed and
thereby obtain the theory of parallel drawings, or direction designs, which is equiv-
alent to the linearized problem obtained from interpreting the edges of G as length
constraints. In Table 2.1 we compare the corresponding terminology used in these
two theories.

3. Direction-length designs. The equivalent theories of parallel drawings and
infinitesimal analysis of frameworks make tractable plane designs of lengths alone,
and directions alone. We now mix these two types of constraints into a single system
with an inclusive theory of designs with both kinds of constraints.

To distinguish the two kinds of constraints in figures of designs, we will follow the
convention of indicating a length constraint between two points as an ordinary edge,
and a direction constraint between two points as an edge with two arrowheads along
its interior (see Figure 3.1).

Definition 3.1. A direction-length design is a double graph FG = (V ;D,L),
where D,L are two sets of edges (no loops), and an assignment p of points pi ∈ R2

for each vertex i ∈ V . We call elements of D direction constraints and elements of L
length constraints. Together, these are written as the design FG(p).

The edges L represent pairs of points whose lengths are held fixed. The edges
D represent pairs whose directions are fixed. Since D and L need not be disjoint, a
particular pair may have both types of connections. We also speak of the direction
graph F = (V,D) and the length graph G = (V,L). We say that a direction-length
design is pure if it only has edges of one type, and mixed otherwise. Two direction-
length designs are said to be equivalent if they differ by a translation (see Figure 3.1).

We recall that for lengths the first-order constraints on “infinitesimal motions”
(derivatives of the point positions) are

(pi − pj) · (ui − uj) = 0.

THE COMBINATORICS OF DIRECTIONS AND LENGTHS 139s

s

s````̀
B
B
B
B
BB@

@
@

@
@
@

@
@

@@I

@
@
@@R

s
s
s
s

¡
¡
¡¡�
¡
¡
¡¡ª

s

s

s````̀
B
B
B
B
BB@

@
@

@
@
@

@
@

@@I

@
@
@@R

�
�
��7

T

¡
¡
¡
¡¡

Constraint Constraint Translation
Distance Direction

Fig. 3.1.

For plane directions, the constraint (qi − qj) = α(pi − pj) can also be rewritten in
derivative form. The first step is to recall that the vector (pi − pj) can be replaced
by a constant normal nij = (pi − pj)

⊥, and the equation becomes

nij · (p(t)i − p(t)j) = 0.

Taking derivatives, we obtain

nij · (ui − uj) = 0,

or equivalently

(pi − pj)
⊥ · (ui − uj) = 0.

Together, these produce a homogeneous linear system R(FG,p)×u = 0. The matrix
R(FG,p) is the constraint matrix of the design. A set of constraints is independent
if the corresponding rows of the matrix are independent. A solution to this system
of constraints is called a shake. The design (with distinct vertices) is stiff if and
only if this system has only the translations as solutions. Otherwise it is shaky . A
set of constraints is spanning on the configuration p if it creates a stiff subdesign on
these points. Equivalently, a spanning set of constraints spans the row space for the
complete design on the configuration p, with the complete graph on these vertices as
both length and direction constraints.

Example 1. Consider the simple design FG = ({1, 2}; {(1, 2)}, {(1, 2)}). The
equations

|q1 − q2| = |p1 − p2| and q1 − q2 = α(p1 − p2)

are equivalent to the matrix equation

[
x1 − x2 y1 − y2 x2 − x1 y2 − y1

y2 − y1 x1 − x2 y1 − y2 x2 − x1

]
×

u1

w1

u2

w2

 =

[
0
0

]
.

If the points are distinct, it is easy to see that this system reduces to

[
1 0 −1 0
0 1 0 −1

]
×

u1

w1

u2

w2

 =

[
0
0

]
.

140 BRIGITTE SERVATIUS AND WALTER WHITELEYu
u
u

u
u u

@
@
@

@
@R
@
@I
¡
¡¡

¡
¡�
¡
¡ª

�
����°
���

�

�
Z
Z
ZZ

Z
ZZ~
Z
ZZ}

u
u
u

u
u u

@
@
@¡
¡¡

�
��

Z
Z
ZZ

u
u
u

u
u u

@
@R
@
@I
¡
¡�
¡
¡ª

�
�°
���

�

�
Z
ZZ~
Z

ZZ}
-�

-�

-�

?

6

?

6

a. b. c.

Fig. 3.2. Three robust designs on 6 points.

Thus u1 = u2 and w1 = w2, so the infinitesimal translation (u1, w1) is the only
solution.

We are essentially interested in the rank (and independence) of the constraint
matrix. The rank of the constraint matrix depends on both the double graph FG
and the configuration p. However, all generic p give the same rank for R(FG,p),
maximal over all configurations. A set of constraints is generically independent if it is
independent for some (hence all) generic configurations. A set of edges is generically
spanning if it is spanning for some (hence all) generic configurations.

Since any nonempty design has a two-dimensional space of translations in the
plane, the maximum rank that the matrix can have is 2|V |−2. A unique solution will
therefore require 2|V | − 2 independent constraints, or equivalently 2|V | − 2 spanning
constraints. Such sets, which are independent and spanning, induce a robust design.
We may observe the following.

Lemma 3.2.
1. An independent set of |L| = 2|V | − 3 lengths plus any single direction con-

straint is an independent set of 2|V | − 2 constraints; see Figure 3.2b.
2. An independent set of |D| = 2|V | − 3 directions plus any single length con-

straint is an independent set of 2|V | − 2 constraints; see Figure 3.2c.
3. A spanning tree, used once as L for lengths and a second time as D for

directions, is a spanning set of 2|V | − 2 constraints; see Figure 3.2a.
4. If there are only length constraints, then every infinitesimal rotation is a

shake.
5. If there are only direction constraints, then any infinitesimal dilation is a

shake.
6. A spanning set of constraints must contain both direction and length con-

straints.

3.1. Swapping. The form of the constraint matrix implies that lengths and
directions play symmetric roles in the theory. In fact, we have a basic “duality”
between these two constraints.

Definition 3.3. Given a double graph FG = (V ;D,L), the swapped double
graph is FGs = GF = (V ;L,D), where the roles of lengths and directions have been
switched.

In Figure 3.2a the swapped design is identical to the original, while b swaps to c.
Theorem 3.4 (swapping theorem). A direction-length design FG(p) and the

swapped design (the swapped double graph at the same points) FGs(p) = GF (p) have
isomorphic solution spaces of shakes.

In particular, a direction-length design FG(p) is stiff (robust) if and only if the
swapped design GF (p) is stiff (robust).

THE COMBINATORICS OF DIRECTIONS AND LENGTHS 141

Proof. Consider the constraint matrix R(FG,p) for the first design. If we rotate
the design 90 degrees clockwise to form q, then the independence of any set of con-
straints is unchanged and the matrices R(FG,q) and R(FGs,p) are identical up to
the sign of the rows.

4. Robust designs. If a direction-length design has 2|V | − 2 independent con-
straints, then the design is stiff, and the removal of any constraint introduces a shake.
We called such a design robust. If a double graph FG has a configuration p for which
the design FG(p) is robust, we say the FG is robust. Equivalently, FG is robust if
FG(p) is robust for all generic configurations p.

The term robust is used to indicate that small changes in the parameters of a
design yield a “nearby” design with identical stiffness properties, which is highly de-
sirable for ease of rendering and computability. This is indeed the case for robust
double graphs, since the generic configurations comprise an open dense set of config-
urations.

5. Limiting designs. For our analysis, it is useful to expand the allowable
designs to include typical limiting cases. For a given direction-length design FG(p),
the normalized constraint matrix, Rn(FG,p), is obtained from R(FG,p) by scaling
the rows; multiplying row (i, j) by |pi − pj |−1. The advantage of the normalized
constraint matrix is that it has the same row dependencies as the original matrix,
while its entries remain finite and nonzero under the limits limpi→∞ and limpi→pj .

5.1. Vertices at infinity. Let p be a configuration of FG, and consider the

limit of Rn(FG,p) as pi
q−→ ∞ in the direction of a unit vector q. Then the limit

of a row corresponding to length constraint l(i, j) of Rn has entries q in the columns
corresponding to i, and −q in the columns corresponding to j, and the limit of a
row corresponding to direction constraint d(i, j) of Rn has entries q⊥ in the columns
corresponding to i, and −q⊥ in the columns corresponding to j.

If the vertex i has two distinct neighbors, then lim
pi

q−→∞Rn(FG,p) is not the

constraint matrix of a direction-length design, since the vertex i has no possible loca-
tion. We will indicate a vertex at infinity as in Figure 5.1.

As a vertex tends to infinity, the edges in its star tend to parallelism, and so if
a vertex has only direction constraints or only length constraints, then the limiting
design has an infinitesimal motion even if none of the ordinary direction-length designs
of the configuration do.

Example 2. Suppose we consider the complete graph on four vertices, p0 =
(−1,−1), p1 = (+1,−1), p2 = (0, 0), and p3 = (0, 1) (see Figure 5.1a). The constraint
matrix is

R(FG,p) =

0 −2 0 2 0 0 0 0
−1 −1 0 0 1 1 0 0

0 0 1 −1 −1 1 0 0
−1 −2 0 0 0 0 1 2

0 0 1 −2 0 0 −1 2
0 0 0 0 0 −1 0 1

142 BRIGITTE SERVATIUS AND WALTER WHITELEY

@
@
@@¡

¡
¡¡�
�
�
�
�
�
�A
A
A
A
A
A
A-�

t

tt
t

¡
¡
¡¡@

@
@@-�

t
t
t
t
t
tp0 p1

p2

p3

p∞3

p0 p1

p2

p∞3

p∞3

@
@
@@¡

¡
¡¡

A
A
A
A
A
A
A-�

t

tt
t

¡
¡
¡¡@

@
@@-�

t
t
t
t
t
tp0 p1

p2

p3

p∞3

p0 p1

p2

p∞3

p∞3

�
�
�
���

�
�
�
���

6?

a.

b.

Fig. 5.1. A point passing to infinity.

and the normalized matrix is

Rn(FG,p) =

0 −1 0 1 0 0 0 0
−α −α 0 0 α α 0 0

0 0 α −α −α α 0 0
−β −2β 0 0 0 0 β 2β

0 0 β −2β 0 0 −β 2β
0 0 0 0 0 −α 0 α

 ,

where α = 1√
2

and β = 1√
5
). The limit as p3

q−→∞, q = (0, 1), is the limit design on

the right, with normalized matrix

lim
p3

q−→∞
Rn(FG,p) =

0 −1 0 1 0 0 0 0
−α −α 0 0 α α 0 0

0 0 α −α −α α 0 0
0 −1 0 0 0 0 0 1
0 0 0 −1 0 0 0 1
0 0 0 0 0 −1 0 1

1

−1
1

and infinitesimal motion u3 = (1, 0) and u0 = u1 = u2 = (0, 0). The numbers to the
right of the matrix indicate the coefficients of a linear dependence of the rows.

The normalized matrix of the limit design in Figure 5.1b is

lim
p3

q−→∞
Rn(FG,p) =

0 −1 0 1 0 0 0 0
−α −α 0 0 α α 0 0

0 0 α −α −α α 0 0
0 −1 0 0 0 0 0 1
0 0 0 −1 0 0 1 0
0 0 0 0 0 −1 0 1

 ,

which allows no nontrivial motion.
Since the limit of a dependent set is a dependent set in the limit design, an inde-

pendent set in the limit design implies the nearby regular designs are also independent.
If the limit design is spanning, then the nearby designs are also spanning.

THE COMBINATORICS OF DIRECTIONS AND LENGTHS 143

@
@
@
@@

¡
¡¡�
�
�
�
�
�
�

��
��
��
�

u
uu

u
@

@
@

@@

¡
¡¡�
�
�
�
�
�
�

��
��

��
�

u
uu

u
6?

-� @
@
@I

@
@
@R

- @
@
@I?6

@
@
@R

�
¡
¡ª
¡
¡�

v
vss @

@
@

@@

@
@
@I

@
@
@R
-�

6
?

a. b. c.

0 0 01 1 1

222

3 3

3

Fig. 5.2.

5.2. Infinitesimal edges. The points in a direction-length design are assumed
to be distinct. However, it is sometimes useful to consider the limit design as one
point pi approaches another point pj in the direction of the unit vector q. The row
for a length constraint l(i, j) in the limit of the normalized constraint matrix will have
q in the columns corresponding to i and −q in the columns corresponding to j. The
row for a direction constraint d(i, j) in the limit of the normalized constraint matrix
will have q⊥ in the columns corresponding to i and −q⊥ in the columns corresponding
to j.

Example 3. Consider the designs of Figure 5.2a and b. It is straightforward to
check that both designs are generically independent.

If we take the limit as p3 approaches p0 along the direction (1, 1), Figure 5.2c,
then the limit of design 5.2a has matrix

0 −1 0 1 0 0 0 0
1 0 0 0 −1 0 0 0
0 0 α α −α −α 0 0
α α 0 0 0 0 −α −α
0 0 1 0 0 0 −1 0
0 0 0 0 0 1 0 −1

 ,

which has rank 6, while the limit of design 5.2b has matrix
0 −1 0 1 0 0 0 0
1 0 0 0 −1 0 0 0
0 0 α α −α −α 0 0
−α α 0 0 0 0 α −α

0 0 1 0 0 0 −1 0
0 0 0 0 0 1 0 −1

α
α
−1

1
α
−α

,

which has rank 5, (α = 1√
2
).

Again, the limit of a dependent set is a dependent set in the limit design and an
independent (spanning) set in the limit design implies the nearby regular designs are
also independent (spanning).

5.3. Cycles on 3 vertices. In this section we describe small cycles which will
be useful in subsequent arguments.

A cycle is a minimally dependent set of constraints. Among 3 vertices any set of
5 constraints is dependent, so the designs of Figures 5.3a and 5.3b are dependent. To
see they are cycles, we need only observe that removing any constraint yields a robust
design. These are both generic cycles. We can have a cycle on fewer than 5 edges if
the position is special.

144 BRIGITTE SERVATIUS AND WALTER WHITELEY

J
J
JJ

v
v
v-� J

JJ]
J
JĴ

J
J
JJv
v
v-� J

JJ]
J
JĴ

t vv
uu

u u ttx

t vv
uu

u u-� -� -�

�-

ttx
�

� 6? 6?

-�-�

1∞ 1∞

1∞ 1∞

a. c. e. g.

b. d. f. h.

Fig. 5.3. Cycles with 3 vertices.

The design of Figure 5.3c is clearly a cycle, with matrix 1 0 −1 0 0 0
0 0 1 0 −1 0
2 0 0 0 −2 0

 2
2
−1

and dependence given in the right column, similarly for Figure 5.3d.
The design of Figure 5.3e has point 1 approach ∞ in the vertical direction. The

matrix is 0 −1 0 1 0 0
0 1 0 0 0 1
0 0 0 1 0 −1

 1
−1

1

and similarly for Figure 5.3f.
Last, the design of Figure 5.3g has point 1 approach, point 2 in the vertical

direction (0, 1) with the direction edge d(1, 2). The matrix is −1 0 1 0 0 0
−1 0 0 0 1 0

0 0 −1 0 1 0

 1
−1

1

and similarly for Figure 5.3h with vertical length edge l(1, 2).

6. Extendability. For plane rigidity and plane directions, the simple inductive
constructions for the independent (rigid) structures are the oldest characterizations
(see [5, 16, 20]). In the proof of our broader combinatorial characterization, an induc-
tive construction for robust direction-length designs remains a key step.

6.1. 0-extensions.
Definition 6.1. Let FG = (V ;D,L) be a double graph. Let FG′ be the double

graph obtained from FG by adjoining a new vertex v whose total degree is 2. We say
that FG′ is a 0-extension of FG (see Figure 6.1a).

The neighbors of the new vertex v need not be distinct vertices if the two new
constraints at v are of a different type.

THE COMBINATORICS OF DIRECTIONS AND LENGTHS 145'

&

$

%'

&

$

%
A
AU

s
s

s
s s

'

&

$

%'

&

$

%
A
AU

s
ss

s

��
��
��X
XXX

s
s s��

��
��X
XXX b
b

b
bb

a. b.

Fig. 6.1. Extensions.

Let FG′ be a 0-extension of FG and let v be the new vertex. Then the matrix of
FG′ is in block form A 0

B
(xv − xa) (yv − ya)
(xv − xb) (yv − yb)

if the new edges are both lengths, A 0

B
−(yv − ya) (xv − xa)
−(yv − yb) (xv − xb)

if they are both directions, and A 0

B
(xv − xa) (yv − ya)
−(yv − yb) (xv − xb)

if there is one of each type. So the rows corresponding to the new constraints in the
new matrix are independent of the other rows if the new edges are not parallel, in the
first two cases, or perpendicular, in the third case, and we have the following.

Lemma 6.2. Let FG′ be a 0-extension of FG and suppose FG is independent
with respect to some configuration p. Then p may be extended to the new vertex so
that FG′ is also independent.

In particular, if FG is generically independent or robust, then any 0-extension of
FG is generically independent or robust, respectively.

6.2. 1-extensions.
Definition 6.3. Let FG = (V ;D,L) be a double graph with edge f . A 1-

extension of FG, FG′, is obtained from FG by removing the edge f and adding a new
vertex v of degree 3 so that

1. the neighbors of v include both endpoints of f ,
2. neither D nor L decrease in size.

We can think of the new edges (v, a) and (v, b) as splitting the constraint l(a, b)
or d(i, j) (see Figure 6.1b). Condition 2 is satisfied as long as a length constraint is
not replaced by three direction constraints, or vice versa. A configuration is general
if no three points are collinear.

146 BRIGITTE SERVATIUS AND WALTER WHITELEY

@
@

 @

@
�
�
��

�
�
�
�\

\
\
\
\

(((((((

@
@
�
�
��

�
�
�
�\

\
\
\
\

�
�
�

\
\
\
\
\

aaaaa
\
\
\
\
\

t
t t
t t
t t t
t t
t t t

ttt
d
d d d6?6? 6? 6?

�

�

-� -� -� -�t
Fig. 6.2. A direction-length construction.

Lemma 6.4. Let FG′ be a 1-extension of FG, and let FG be independent (span-
ning) with respect to a general configuration p. Then p can be extended so that FG′

is also independent (spanning).
Proof. By the swapping theorem (Theorem 3.4), we assume without loss of gen-

erality (w.l.o.g.) that f ∈ L.
Let {a, b} be the endpoints of f and let v denote the new vertex with new edges

(v, a), (v, b), and (v, c).
Case 1. Let l(v, a), l(v, b) ∈ L, c distinct from a and b. We can adjoin v by a

0-extension to vertices a and c with constraints l(v, a), l(v, b) with the new vertex v
placed along the segment from pa to pb. Then, since a triangle of lengths with vertices
on a line is a cycle, we can replace the constraint l(a, b) with the constraint l(v, b) so
that FG′ is independent (spanning).

Case 2. Let l(v, a) ∈ L and d(v, b) ∈ D. We can adjoin v by a 0-extension with

constraints l(v, a) and l(v, c) and take the limit pa
q−→ pb in the direction q perpen-

dicular to (a, b). Since the rows for l(a, b), l(v, a) form a cycle with the infinitesimal
direction d(v, b), we can replace l(a, b) with d(b, v) and the limiting design is indepen-
dent (spanning). Therefore any nearby generic configuration gives an independent
(spanning) design.

Case 3. Let d(v, a), d(v, b) ∈ D, c distinct from a and b. Then again adjoin v by a
0-extension, and let v approach ∞ in the direction q perpendicular to (a, b). In this
position, the rows for l(a, b), d(v, a), and d(v, b) form a cycle with (v, b), so we can
replace l(a, b) with d(b, v) and the limiting design is independent (spanning). Again,
any generic p is also independent (spanning).

Remark. Notice that the “limiting design” argument does, indeed, break down
if we try the forbidden replacements: replace a single direction with three lengths,
or replace a single length by three directions. With a limiting point “at infinity,”
all three directions (or lengths) will be parallel rows of the matrix, and the initial
0-extension will fail to be independent.

6.3. Direction-length constructions. In the spirit of the classical Henneberg
sequences, we now describe how to obtain complex robust designs from a single vertex
using only the simple extensions just developed.

Definition 6.5. A direction-length construction of the double graph FG =
(V ;D,L) is a sequence of direction-length double graphs,

FG1, FG2, . . . FG|V |,

beginning with the single vertex graph FG1, ending with FG|V | = FG, such that FGk
is a 0-extension or 1-extension of FGk−1 (see Figure 6.2).

From Lemmas 6.2 and 6.4 we have the following theorem.
Theorem 6.6. A double graph FG with a direction-length construction is gener-

ically robust.
In section 7, the converse is demonstrated. Since the class of constructions is

THE COMBINATORICS OF DIRECTIONS AND LENGTHS 147

@
@@

�
�
�
��¡
¡¡

A
A
A
AAs s
s
s

@
@@

�
�
�
��¡
¡¡

A
A
A
AA-�s s
s
s
?6

@
@@

�
�
�
��¡
¡¡
-�s s
s
s
A
A
AU
A
A
AK

@
@@

¡
¡¡
-�s s
s
s
A
A
AU
A
A
AK

�
�
��
�
�
��

¡
¡¡

A
A
A
AA-�s s
s
s

@
@@

�
�
�
��

A
A
A
AA-�s s
s
s
?6

¡
¡¡
-�s s
s
s
A
A
AU
A
A
AK

@
@@
-�s s
s
s
A
A
AU
A
A
AK

�
�
��
�
�
��
@@R
@@I ¡¡�

¡¡ª
@@

�
�
�
�
�
��
�
�
��

@@I
@@R

¡¡�

6?
¡¡ª

�
�
�
��

A
A
A
AA-�s s
s
s

A
A
A
AA-�s s
s
s
?6

-�s s
s
s
A
A
AU
A
A
AK

-�s s
s
s
A
A
AU
A
A
AK

@@R
@@I ¡¡�

¡¡ª
@@

�
�
�
�
�
��
�
�
��

@@I
@@R

¡¡�

6?
¡¡ª

�
�
��
�
�
�� @@R

@@I¡¡�
¡¡ª

�
�
��
�
�
�� @@R

@@I

?6

¡¡ª
¡¡��
�
�
��

@
@@

¡
¡¡
-�s s
s
s

�
�
��
�
�
��

A
A
A
AA¡¡�

¡¡ª

-�s s
s
s
@@R
@@I

?6

�
�
�
��A
A
AU
A
A
AK

¡
¡¡

Fig. 6.3. Generic 3-connected cycles on 4 vertices.

closed under swapping, the class of constructible designs is closed under swapping.

6.4. Generic cycles on 4 vertices. Let us enumerate the generic cycles on 4
vertices, that is, those double graphs whose edges correspond to minimally dependent
sets of constraints.

A generic cycle cannot have a vertex of total valence 2 (or less) since that would
be a 0-extension of an independent set, or a 0-extension of a smaller cycle. On the
other hand, on 4 vertices, a set of 6 directions or 6 lengths must be dependent, as well
as a set of 7 edges of mixed type. Thus a cycle on 4 vertices is either

1. a tetrahedron of lengths;
2. a tetrahedron of directions;
3. the edges of both types form a tetrahedron with a doubled edge (the graph

is vertex 3-connected);
4. the edges of both types form two attached triangles, with a doubled edge in

each (not the shared edge) (the graph is vertex 2-connected).
Moreover, the third type must have at least 2 edges of each kind, since if there was
only one, then deleting it would leave a pure tetrahedron which is dependent. Also
cycles of type 4 must have at least two edges of each kind, since there is a pair of
doubled edges.

All candidates of types 1–3 are listed in Figure 6.3. To see that the mixed graphs
are all in fact generic cycles, one may easily give a direction-length construction for
each of the graphs with any one edge deleted.

The circuits of type 4 can be constructed from two of the cycles on three vertices
by cycle exchange. Figure 6.4 illustrates this process. The single lines represent
constraints of either kind, while the double lines indicate that constraints of both
kinds are present. Altogether there are 12 circuits of type 4.

With the exception of the 2 pure cycles, all generic cycles on 4 vertices may be
obtained from the generic cycles on 3 vertices by either 1-extension or cycle-exchange.
It seems plausible that all generic cycles may be obtained from the generic cycles on 3
and 4 vertices by a sequence of extensions and cycle exchanges, but to date no proof
is known, not even in the case of pure designs.

7. The generic matroid. Consider a complete double graph K2
n = (V ;Dc, Lc)

on V = {1, . . . , n} together with a generic configuration p. Since we are interested

148 BRIGITTE SERVATIUS AND WALTER WHITELEY

@
@@
�
�
� HHH

�
�
��

s
s
s s

@
@@
�
�
�HHH

�
�
��

s
s
s ss

s
+ =�

�
�

�
�
�

@
@@
�
�
� HHH

�
�
��

s
s
s s

@
@@
�
�
�HHH

�
�
��

s
s
s ss

s
+ =�

�
�

�
�
�

HHH
HHH

�
�
��

�
�
��

Fig. 6.4. Generic 2-connected cycles on 4 vertices.

in the combinatorial properties of the matrix R(K2
n) = R(K2

n,p), we examine the
matroid CADdl(n) defined by the rows of R(K2

n), which we call the generic dl-cadroid
on n vertices. Theorem 6.6 states that every double graph on n vertices with a
direction-length construction is a basis of CADdl(n).

We know that the rank of the full constraint matrix for a generic configuration
of n points in R2 has rank 2n− 2. Also, for all k < n, CADdl(k) may be viewed as a
restriction of CADdl(n). Therefore we can offer clear necessary conditions for a basis
B of CADdl(n).

CADdl1: |B| = 2n− 2;
CADdl2: for all nonempty subsets E ⊆ B

|E| ≤ 2|V (E)| − 2;

CADdl3: for all pure nonempty subsets E ⊆ B,

|E| ≤ 2|V (E)| − 3.

Theorem 7.4 will show that these are also sufficient.
We first show that CADdl1, . . . , CADdl3 define the bases of a matroid Count(n)

on Dc ∪ Lc and then show that this matroid is isomorphic to CADdl(n).
Theorem 7.1. Let K2 = (V ;Lc, Dc) denote the complete double graph on |V |

vertices. Then the collection of subsets B ⊆ Lc∪Dc which satisfy CADdl1, . . . , CADdl3
are the bases of a matroid on Lc ∪Dc.

Proof. We will show that the collection C of minimal sets which violate CADdl1,
. . . , CADdl3 satisfy the cycle axioms for a matroid.

If C ∈ C is pure, then |C| = 2|V (C)| − 2 and |C ′| ≤ 2|V (C ′)| − 3 for all proper
nonempty subsets C ′ of C.

If C ∈ C and C is mixed, then C must contain at least two elements from both Dc

and Lc. We have |C| = 2|V (C)|−1 and all proper subsets of C must be independent,
i.e., satisfy CADdl3.

We need to show that if C1, C2 ∈ C, and x ∈ C1 ∩ C2, then there exists C3 ∈ C,
C3 ⊆ C1 ∪ C2 − x.

Let the supports of C1 and C2 have cardinalities m and n, respectively, and let
the support of C1 ∩ C2 be i.

If C1 and C2 are both mixed, then we have

|C1 ∪ C2 − e| = |C1|+ |C2| − |C1 ∩ C2| − 1

THE COMBINATORICS OF DIRECTIONS AND LENGTHS 149

≥ 2n− 1 + 2m− 1− (2i− 2)− 1 = 2(m+ n− i)− 1

= 2|V (C1 ∪ C2)| − 1,

so C1 ∪ C2 − e contains an element of C since it violates CADdl2.
If C1 is mixed and C2 is pure, then their intersection has at most 2i − 3 edges

and C2 also has one edge fewer than before, so we arrive at the following conclusion:

|C1 ∪ C2 − e| = 2(m+ n− i)− 1 = 2|V (C1 ∪ C2)| − 1.

If C1 and C2 are both pure (of the same type, since they have nonempty intersection),
then

|C1 ∪ C2 − e| = 2(m+ n− i)− 2 = 2|V (C1 ∪ C2)| − 2.

Since C1 ∪ C2 is also pure, this gives the dependence.
This result is a particular case of a more general construction of matroids from

“submodular counts” described in [23].
Observe that the generic cycles of CADdl(n) listed in Figures 5.3 and 6.3 are

also cycles in Count(n) and these cycles are in fact all the cycles of Count(n) on 3
or 4 vertices. Notice also that the symmetry of the definition of Count(n) directly
demonstrates the invariance of all matroidal properties under swapping.

We need the following lemmas.
Lemma 7.2. If B is a basis of Count(n), then the double graph induced by B is

edge 2-connected.
Proof. If B− e is disconnected with two components on k and l vertices, then the

rank of B is at most 2(k + l)− 3.
Lemma 7.3. Let I be independent in a matroid and let C be a cycle in this

matroid. Then for each element e ∈ I ∩ C there is an element f ∈ C − I so that
I − e+ f is independent.

Proof. Let e ∈ I ∩ C. Assume that for each f ∈ C − I, I − e + f is dependent.
Then C− e is a subset of the closure of I− e. Since e is in the closure of C− e, e is in
the closure of I − e. Since e ∈ I and I is independent, this is a contradiction.

Theorem 7.4. For any set B of edges in K2
n the following are equivalent:

1. B is a basis of Count(n);
2. B is a basis of CADdl(n);
3. B has a direction-length construction.

Proof. (3)⇒ (2). By Theorem 6.6, every set with a direction-length construction
is a basis of CADdl(n).

(2) ⇒ (1). Every basis of CADdl(n) satisfies CAD1, . . . , CAD3 and so is a basis
for Count(n).

(1) ⇒ (3). The proof is by induction on the number of vertices. It is trivial for 2
vertices.

Assume it is true for n−1 vertices. Since the average valence of a basis in Count(n)
is 4(1 − 1/n) < 4, there is some vertex of total valence ≤ 3. By the 2-connectivity,
this vertex must have valence either 2 or 3. If the valence is 2, then the robust set is
the 0-extension of a smaller independent set, and we are done.

Assume B has a vertex v of valence 3. If star(v), the set of constraints with
endpoint v, is mixed (has constraints of both types), we add constraints among the
neighbors of v to create a Count(k), k = 2 or 3, basis Bv for these neighbors. Adding
the three valent vertex v, we have a dependent set in Count(n) and therefore a small
cycle C containing v. We have C 6⊆ B, but star(v) ⊆ C ∩B. By Lemma 7.3, for any

150 BRIGITTE SERVATIUS AND WALTER WHITELEY

edge e in star(v), there is an f ∈ C −B such that B− e+ f is independent, in fact, a
basis, B′. Therefore, Bn−1 = B′− star(v) is a basis of Count(n−1), and by induction
it has a construction. Since every replacement of a constraint f by a mixed vertex is
a valid 1-extension, B is a 1-extension of Bn−1. Therefore B has a construction.

If star(v) is pure (say all lengths up to swapping), then it has 3 distinct neighbors.
Adding length constraints among these neighbors will produce a unique pure cycle C
– the complete graph on 4 vertices. As before, for any edge e ∈ star(v), we can find
a length constraint f ∈ C −B such that B − e+ f is independent. The replacement
of a length f in Bn−1 by the 3-lengths at v is a valid 1-extension.

This completes the induction.
Remark. The characterization of Count(n), by the count, appears to be expo-

nential: “for all subsets B′” However, by a theorem of Nash-Williams [10, 11],
independent sets are decomposable into two spanning forests with the additional con-
dition that no two subtrees that both contain only edges of D or edges of L do not
have the same span. A general matroidal algorithm by Edmonds can be used to pro-
vide such a decomposition in polynomial time. Also Sugihara [15] and Imai [6] have
general polynomial time algorithms to verify such conditions.

For length designs (and therefore also direction designs) Crapo has adapted Ed-
monds’s algorithm to also give a low degree polynomial algorithm for the tree struc-
tures which correspond to the counts 2|V (E)| − 3. It is clear that this approach
could be modified for our closely related counts, giving polynomial time algorithms to
confirm a basis (or extract a basis from a spanning set). This algorithm would have
the additional advantage that its output (the two trees mentioned above) could be
displayed for rapid visual verification.

Remark. There are some additional results on both necessary and sufficient con-
nectivity for spanning sets. All of these results are, in some form, the direct analogues
of results for length designs (plane frameworks). All of the proofs are based on the
counting properties of Count(n).

1. Circuits in CADdl(n) are vertex 2-connected and edge 3-connected.
2. All circuits of CADdl(n) are spanning on their vertices.
3. If a direction-length design is vertex 6-connected and mixed, then it is span-

ning. This is a direct analogue of a result of [9] for frameworks. Their proof
(also based on counts) extends with small modifications.

In the 5-connected 5-regular frameworks example of Lovasz and Yemini [9], we
can double one of the 5-cliques to get an example of a 5-connected double graph which
is not stiff.

8. Concluding remarks. Our entire analysis of constraints has been “local,”
with robustness guaranteeing local uniqueness for small changes in the configura-
tion, up to congruence. As we mentioned in the introduction, the problem of global
uniqueness up to congruence, for all configurations is more difficult. This is no longer
a matter of linear algebra and matroids; it is quadratic algebra with all the attendant
difficulties. For frameworks, this global uniqueness is called “global rigidity” [1]. For
pure lengths, any basis of the generic rigidity matroid will not be globally rigid, except
in special singular (nongeneric) configurations, where the design is dependent [4].

On the other hand, for pure directions, both global and local transformations are
described by linear equations, and the design is globally unique, up to translations
and dilations, if and only if it is locally unique.

For direction-length designs, we have both types of cases.
1. A robust direction-length design with one length and 2n − 3 directions will

THE COMBINATORICS OF DIRECTIONS AND LENGTHS 151

be globally unique, up to translation and dilation by −1, if and only if it is
locally unique.

2. A direction-length design with one direction and the remaining constraints
lengths will be globally unique, up to translation, dilation by −1, and re-
flection in the line of the single direction, if and only if the length design is
globally unique, up to congruence.

3. A direction-length design which is globally unique, up to translation and
dilation by −1, is 2-connected in a vertex sense. (Otherwise, we can take
the point of disconnection, and dilate one of the components by −1 in this
center.)

An inspection of a result and proof of Hendrickson [4] indicates that the following
result also holds.

Proposition 8.1. A robust direction-length design FG with more than one length
is not globally unique.

As we mentioned in the introduction, our work with lengths and directions was
motivated by a broader unsolved problem in plane CAD. Consider a design con-
strained by lengths between pairs of points and angles between lines. This angle
constraint could involve two edges sharing a vertex or simply be the angle between to
disjoint edges (“the following two lines are parallel”). The problem of a polynomial
time algorithm, or direct combinatorial algorithm, for these constraints is unsolved
and difficult [24]. (We do have the corresponding constraint matrices (which have
nonzero vector entries under up to four vertices per angle row). By using variables for
the coordinates of points, we have a well-defined generic matroid for the constraints
CADdl(n). Taking determinants, we get a superexponential “combinatorial” algorithm
to check for bases, or independence in CADdl(n).)

Writing A for the set of angle constraints (actually partially ordered triples and
quadruples), and L for the length constraints, there is a necessary set of counts for B
to be a basis of the matroid CADsfda(n):

CADsfda1: |B| = 2n− 3;
CADsfda2: for all nonempty subsets E ⊆ B

|E| ≤ 2|V (E)| − 3;

CADsfda3: for all nonempty subsets of angles E ⊆ B, E ⊆ A
|E| ≤ 2|V (E)| − 4.

The subtracted constant 3 in CADsfda(n) corresponds to the translations and rota-
tions of a robust design. The subtracted constant 4 in CADsfda3 corresponds to the
translations, rotations, and dilation permitted by a maximal pure angle design.

However, these conditions are not enough: any “polygon of angles” will be de-
pendent, and in a quadrilateral, these four angles on four points will not violate the
condition CADsfda3. Even if we carefully insert this “polygon condition” (by adding
variables directly for the edges, etc.) the added count will not be sufficient to define
a matroid (as occurred for Count(n)). In practice, the appearance of such “nonspan-
ning” circuits is a sign that the techniques employed in this paper, adapted from the
study of plane frameworks, will be inadequate.

However, if we have an angle design in which the angles are linked together as a
connected set among the attached edges (ideally a tree since any polygon is dependent;
see Figure 8.1a), the design can be analyzed with our theory. Taking any one of the
edges in these angles, and defining an arbitrary direction to it, we can work through the

152 BRIGITTE SERVATIUS AND WALTER WHITELEY

a. b. d. e.1

23

4
12

23
34

41

13
24

c.

12

23
34

41

13
24

Fig. 8.1. Generic cycles with angles.

attached angles to assign a direction constraint for each of the angle constraints. This
induces a direction-length design whose properties of robustness, independence, etc.
directly correspond to the robustness, independence, etc. of the original angle-length
design. The reader can check that, with one added direction and each angle converted
to a direction constraint, the three conditions CADsfda1, CADsfda2, CADsfda3 convert
to the axioms for Count(n). We have solved this special case of the general unsolved
problem of angle-length designs.

If the angles form a forest of several trees (see Figure 8.1), the combinatorial
analysis becomes difficult and unsolved. One key difficulty is that we do not yet
have an adequate list of inductive constructions which are guaranteed to generate all
bases of the matroid CADsfda(n). Moreover, this list will have to involve inductive
principles for vertices attached to up to 7 constraints, since each angle may involve
up to four vertices. It is unclear whether there will be any polynomial time algorithm
for general bases in CADsfda(n).

More generally, the lines could contain many points (not just two) and we would
have additional incidence constraints for vertices lying on lines. This takes us into
several other unsolved problems, both for incidences alone and for mixes of incidences,
lengths, and angles [23].

Finally, we could convert “direction constraints” into directions for lines, but
replace incidences with possibly nonzero distances from points to lines. Again certain
special cases of this can be solved [14] and other extensions are unsolved.

We have focused on constraints in plane CAD because we have some substantial
results. Many of the related problems in 3-space are substantially more difficult. For
example, the problem of independent length constraints alone in 3-space is unsolved.
While there is a corresponding matrix, and a partial list of inductive constructions,
there is no combinatorial characterization (beyond the constraint matrix with variable
entries and the associated superexponential algorithm).

For direction constraints in 3-space, there are substantial results. A “direction” for
a line segment becomes two rows in the constraint matrix, corresponding to two planes,
with assigned normals, containing the line. The entire theory of plane directions has an
appropriate extension to this “polymatroid” (two rows for each edge). This approach
is described in more detail in [17, 19, 24].

REFERENCES

[1] R. Connelly, On generic global rigidity, in Applied Geometry and Discrete Mathematics, DI-
MACS Ser. Discrete Math. Theoret. Comput. Sci. 4, AMS, Providence, RI, 1990, pp. 147–
155.

[2] J. Graver, B. Servatius, and H. Servatius, Combinatorial Rigidity, AMS, Providence, RI,
1993.

THE COMBINATORICS OF DIRECTIONS AND LENGTHS 153

[3] J. Graver, B. Servatius, and H. Servatius, Abstract rigidity in n-space, Contemp. Math.,
AMS, 178 (1994), pp. 145–151.

[4] B. Hendrickson, Conditions for unique graph realizations, SIAM J. Comput., 21 (1992),
pp. 65–84.

[5] L. Henneberg, Die graphische Statik der starren Systeme, Leipzig 1911, Johnson Reprint,
1968.

[6] M. Imai, A double-tree structured multicomputer system and its application to combinatorial
problems, Trans. IEICE, E69, 9 (1986), pp. 1002–1010.

[7] G. Kramer, Solving Geometric Constraint Systems (A case study in kinematics), MIT Press,
Cambridge, MA, 1992.

[8] G. Laman, On graphs and the rigidity of plane skeletal structures, J. Engrg. Math., 4 (1970),
pp. 331–340.

[9] L. Lovasz and Y. Yemini On generic rigidity in the plane, SIAM J. Alg. Discrete Methods, 3
(1982), pp. 91–98.

[10] C. St. J. A. Nash-Williams, Edge disjoint spanning trees of finite graphs, J. London Math.
Soc., 36 (1961), pp. 445-450.

[11] C. St. J. A. Nash-Williams, Decompositions of finite graphs in forests, J. London Math. Soc.,
39 (1964), p. 12.

[12] J. C. Owen, Algebraic solutions for geometry from dimensional constraints, in Symposium on
Solid Modeling Foundations and CAD/CAM Applications, ACM Press, New York, 1991.

[13] J. C. Owen, Constraints on Simple Geometry in Two and Three Dimensions, preprint, D-
Cubed Ltd., Cambridge, UK.

[14] J. C. Owen and W. Whiteley, Constraining Plane Geometric Configurations in CAD: Direc-
tions and Distances, preprint, Department of Mathematics and Statistics, York University,
North York, ON.

[15] K. Sugihara, Detection of structural inconsistency in systems of equations with degrees of
freedom and its applications, Discrete Appl. Math., 10 (1985), pp. 297–312.

[16] T.-S. Tay and W. Whiteley, Generating all isostatic frameworks, Structural Topology, 11
(1985), pp. 21–69.

[17] W. Whiteley, Parallel Redrawing of Configurations in 3-Space, preprint, Department of Math-
ematics and Statistics, York University, North York, ON, Canada.

[18] W. Whiteley, The union of matroids and the rigidity of frameworks, SIAM J. Algebraic
Discrete Meth., 1 (1988), pp. 237–255.

[19] W. Whiteley, Some matroids on hypergraphs with applications to scene analysis and geometry,
Discrete Comput. Geom., 4 (1988), pp. 75–95.

[20] W. Whiteley, Vertex splitting in isostatic frameworks, Structural Topology, 16 (1990), pp. 23–
30.

[21] W. Whiteley, Matroids and rigidity, in Matroid Applications, N. White, ed., Cambridge
University Press, London, Cambridge, 1993.

[22] W. Whiteley, Constraining Plane Configurations in CAD: Geometry of Directions and
Lengths, preprint, Department of Mathematics and Statistics, York University, North York,
ON, Canada.

[23] W. Whiteley, Matroids for discrete applied geometry, in Proc. AMS Conference on Matroids,
Seattle, WA, Contemp. Math., J. Bonin, J. Oxley, and B. Servatius, eds., AMS, Providence,
RI, 1995.

[24] W. Whiteley, Constraining Plane Configurations in CAD: Angles, preprint, Department of
Mathematics and Statistics, York University, North York, ON, Canada.

ON STIRLING NUMBERS FOR COMPLEX ARGUMENTS AND
HANKEL CONTOURS∗

PHILIPPE FLAJOLET† AND HELMUT PRODINGER‡

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 2, pp. 155–159

Abstract. Cauchy coefficient integrals and Hankel contours provide a natural generalization of
Stirling numbers for unrestricted complex values of their arguments. Many classical identities survive
such an extension.

Key words. Stirling numbers, complex arguments, Hankel contours

AMS subject classification. 05A10

PII. S0895480198332594

1. Introduction. Richmond and Merlini introduced in [5] an extension of Stir-
ling’s subset numbers

{
x
y

}
and cycle numbers

[
x
y

]
when x− y is an integer. They also

propose a further generalization when x−y is not an integer, but most classical prop-
erties are no longer preserved. As the authors say about their most general extension
in [5, p. 76]: “It seems to us that the ideas used to derive identities and recurrences
lead to complicated formulas in general. There are significant terms resulting from
the fact that the integrands are not single valued and also from the fact that the
contours change.”

In this note, we give an alternative and more natural extension of Stirling numbers
of complex arguments for which most classical identities are still satisfied. (We restrict
ourselves to the most common properties, leaving it to the imagination of the reader to
go further.) As in [5], our approach starts with Cauchy coefficient integrals. However,
in contrast to [5], we use a Hankel contour that has the merit of not being dependent
on particular index values. This intrinsic character of the contour precisely ensures
the permanence of identities.

Relevant references for the classical theory are [1, 2, 3, 4], the latter paper being
an excellent historical account of Stirling numbers.

2. Stirling numbers of complex index. By definition, the Stirling subset
numbers (“of the second kind”)

{
n
k

}
are for n, k ∈ N given by{

n

k

}
=
n!

k!
[zn] (ez − 1)

k

or, by Cauchy’s coefficient formula,{
n

k

}
=
n!

k!

1

2iπ

∫
γ

(ez − 1)
k dz

zn+1
,(1)

∗Received by the editors January 16, 1998; accepted for publication September 22, 1998; published
electronically April 29, 1999. This research was supported in part by the Long Term Research Project
Alcom-IT 20244 of the European Union and by the French–Austrian Cooperation Project Amadée
11j 2868/1997.

http://www.siam.org/journals/sidma/12-2/33259.html
†Algorithms Project, INRIA, F-78150 Rocquencourt, France (Philippe.Flajolet@inria.fr, http:

//www-rocq.inria.fr/algo/flajolet/index.html).
‡Centre for Applicable Analysis and Number Theory, Mathematics Department, Univer-

sity of the Witwatersrand, 2050 Johannesburg, South Africa (helmut@gauss.cam.wits.ac.za,
http://www.wits.ac.za/helmet/index.htm).

155

156 PHILIPPE FLAJOLET AND HELMUT PRODINGER

where the integration contour γ is a small contour encircling the origin. As n is
nonnegative in (1), the contour γ can be deformed into a Hankel contour H (see [6])
that starts from −∞ below the negative axis, surrounds the origin counterclockwise,
and returns to −∞ in the half plane =z > 0. Details of H are of course immaterial,
and we need only assume that it is at distance ≤ 1 from the real axis.

This suggests the following definition.

Definition 1. The Stirling numbers of complex arguments (“fractional order”)
are defined for <(x) > 0 by{

x

y

}
=
x!

y!

1

2iπ

∫
H

(ez − 1)
y dz

zx+1
,(2)

where s! = Γ(s + 1). The determination of (ez − 1)
y

is the principal determination
on the part of the contour <z > 0 extended by continuity to the whole of H.

This definition extends the Stirling subset numbers to arbitrary complex argu-
ments (x, y) satisfying <x > 0. When <(x) ≤ 0, the integral diverges. However,
through integration by parts, one finds when <(x) > 1{

x

y

}
=

(x− 1)!

(y − 1)!

1

2iπ

∫
H
ez (ez − 1)

y−1 dz

zx
.(3)

The integral in (3) now converges for all values of x and y. The variant form (3) shows
that

{
x
y

}
can be continued for <(x) ≤ 0 into a meromorphic function of x (for any

fixed y), with poles at the nonpositive integers. As a function of y (for any fixed x
not a negative integer), it is entire.

Our definition of generalized Stirling numbers in (2) and (3) coincides with that
of [5] only when x − y is an integer. It differs significantly in other cases, since
Richmond and Merlini propose to define the general form of

{
x
y

}
by means of a saddle

point circle that, contrary to H, is dependent upon the particular values of x, y.

3. Relations. As announced, we show now that the most common properties
are preserved for our generalized Stirling numbers as defined by (2) and (3).

Recurrence. In the integral representation for
{
x
y

}
, perform integration by parts.

This gives for <x > 1

1

2iπ

∫
H

(ez − 1)
y dz

zx+1
=

[
− 1

xzx
(ez − 1)

y

]
H

+
y

x

1

2iπ

∫
H

(ez − 1)
y−1

ey
dz

zx

and upon writing ey = (ey − 1) + 1,

1

2iπ

∫
H

(ez − 1)
y dz

zx+1
=
y

x

1

2iπ

∫
H

(ez − 1)
y
ey
dz

zx
+
y

x

1

2iπ

∫
H

(ez − 1)
y−1

ey
dz

zx

or in standard notation, {
x

y

}
=

{
x− 1

y − 1

}
+ y

{
x− 1

y

}
.

This relation originally established for <x > 1 persists for all complex x by uniqueness
of analytic continuation.

STIRLING NUMBERS AND HANKEL CONTOURS 157

Binomial formula. A binomial expansion of (ey−1)k yields the classical formula
(n, k ∈ N), {

n

k

}
=

1

k!

k∑
j=1

(
k

j

)
(−1)k−jjn.

This process naturally extends to complex x giving, for all k ∈ N,{
x

k

}
=

1

k!

k∑
j=1

(
k

j

)
(−1)k−jjx,

upon using the binomial expansion in (2) and appealing to Hankel’s original repre-
sentation of the gamma function [6].

Bell numbers. The Bell numbers of integral order are defined by their expo-
nential generating function

Bn = n![zn]ee
z−1,

and they satisfy the relation

Bn =

n∑
k=0

{
n

k

}
.

This suggests to define the Bell numbers of any complex order x, <x > 0, as

Bx = x!
1

2iπ

∫
H
ee
z−1 dz

zx+1
.(4)

When generalized in this way, the Bell numbers satisfy

Bx =
∞∑
k=0

{
x

k

}
,

which results from expanding the integrand of (4),

ee
z−1 =

∞∑
k=0

(ez − 1)k

k!
.

Dobinski’s formula. This classical formula [2] also generalizes. If we expand

ee
z−1 = e−1

∞∑
k=0

ekz

k!
,

we get

Bx =
x!

e

∞∑
k=0

1

k!

1

2iπ

∫
H
ekz

dz

zx+1
.

The integral can now be evaluated by the use of Hankel’s formula for the gamma
function (substitute kz = t), and

1

2iπ

∫
H
ekz

dz

zx+1
=
kx

x!
;

158 PHILIPPE FLAJOLET AND HELMUT PRODINGER

hence, we have the generalized Dobinski formula,

Bx = e−1
∞∑
k=0

kx

k!
.(5)

Bernoulli numbers. Given that their exponential generating function is z/(ez−
1), it is natural to expect Bernoulli numbers to be related to Stirling numbers of type{
x
−1

}
. Consider first the case of an integer index n. Then{

n

y − 1

}
=

n!

(y − 1)!

1

2iπ

∫
H

(ez − 1)
y−1 dz

zn+1
.

As y → 0, we have by Cauchy’s formula and the fact that (y − 1)! ∼ 1
y ,{

n

y − 1

}
∼ y · n![zn+1]

z

ez − 1
= y

Bn+1

n+ 1
.

This relation gives

d

dy

{
n

y

}∣∣∣∣
y=−1

=
Bn+1

n+ 1
= ζ(−n),

and more generally, thanks to Hankel’s representation of the ζ function (see, e.g., [6]),

d

dy

{
x

y

}∣∣∣∣
y=−1

= ζ(−x).

In other words, Bernoulli numbers of complex index that are naturally defined by
Bx+1 := (x + 1)ζ(−x) are also obtained by a simple limiting process applied to
generalized Stirling numbers of index −1:

Bx+1

x+ 1
= lim
ε→0

1

ε

{
x

−1 + ε

}
=

d

dy

{
x

y

}∣∣∣∣
y=−1

.

Stirling cycle numbers. Formula (3) and the change of variables z = log(1+w)
provide a logarithmic form of Stirling subset numbers,{

x

y

}
=

(x− 1)!

(y − 1)!

1

2iπ

∫
H?

(
log

1

1 + w

)−x−1

wy−1 dw,(6)

where H? is a “raindrop contour” that is the image of H by z 7→ w = ez − 1. (Thus,
H? starts at −1 in the lower half plane, surrounds 0 counterclockwise, and returns to
−1 in the upper half plane.)

On the other hand, Cauchy’s coefficient formula applied to the exponential gen-
erating function of Stirling cycle numbers gives[

n

k

]
= (−1)n−k

n!

k!

1

2iπ

∫
H?

(
log(1 + w)

)k dw

wn+1
.(7)

A direct consequence of (6) and (7) is that the Stirling cycle numbers of integral
arguments arise as limiting cases of generalized Stirling subset numbers as defined
in (2), (3), [

n

k

]
= lim
ε→0

{−k + ε

−n+ ε

}
.

STIRLING NUMBERS AND HANKEL CONTOURS 159

One encounters once more an instance of the duality relation
[
x
y

]
=
{−y
−x
}

that, together

with (6), confirms that Stirling numbers eventually reduce to a single family (see
[3, 4]).

REFERENCES

[1] V. Adamchik, On Stirling numbers and Euler sums, J. Comput. Appl. Math., 79 (1997), pp.
119–130.

[2] L. Comtet, Advanced Combinatorics, D. Reidel, Dordrecht, The Netherlands, 1974.
[3] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, 2nd ed., Addison

Wesley, Reading, MA, 1994.
[4] D. E. Knuth, Two notes on notation, Amer. Math. Monthly, 99 (1992), pp. 403–422.
[5] B. Richmond and D. Merlini, Stirling numbers for complex arguments, SIAM J. Discrete

Math., 10 (1997), pp. 73–82.
[6] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed., Cambridge

University Press, London, 1927 (reprinted 1973).

EDGE-CONNECTIVITY AUGMENTATION
WITH PARTITION CONSTRAINTS∗

JØRGEN BANG-JENSEN† , HAROLD N. GABOW‡ , TIBOR JORDÁN§ , AND

ZOLTÁN SZIGETI¶

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 2, pp. 160–207

Abstract. In the well-solved edge-connectivity augmentation problem we must find a minimum
cardinality set F of edges to add to a given undirected graph to make it k-edge-connected. This
paper solves the generalization where every edge of F must go between two different sets of a given
partition of the vertex set. A special case of this partition-constrained problem, previously unsolved,
is increasing the edge-connectivity of a bipartite graph to k while preserving bipartiteness. Based
on this special case we present an application of our results in statics. Our solution to the general
partition-constrained problem gives a min-max formula for |F | which includes as a special case the
original min-max formula of Cai and Sun [Networks, 19 (1989), pp. 151–172] for the problem without
partition constraints.

When k is even the min-max formula for the partition-constrained problem is a natural general-
ization of the unconstrained version. However, this generalization fails when k is odd. We show that
at most one more edge is needed when k is odd and we characterize the graphs that require such an
extra edge.

We give a strongly polynomial algorithm that solves our problem in time O(n(m+n logn) logn).
Here n and m denote the number of vertices and distinct edges of the given graph, respectively. This
bound is identical to the best-known time bound for the problem without partition constraints. Our
algorithm is based on the splitting off technique of Lovász, like several known efficient algorithms
for the unconstrained problem. However, unlike previous splitting algorithms, when k is odd our
algorithm must handle obstacles that prevent all edges from being split off. Our algorithm is of
interest even when specialized to the unconstrained problem, because it produces an asymptotically
optimum number of distinct splits.

Key words. edge-connectivity augmentation of graphs, edge splitting, connectivity, rigidity,
combinatorial algorithms

AMS subject classifications. 05C40, 05C85, 70C20, 52C25

PII. S0895480197324700

1. Introduction. In the edge-connectivity augmentation problem we are given
an undirected graph G = (V,E) and a positive integer k; the goal is to find a smallest
set F of edges on the vertex-set V for which G′ = (V,E ∪ F) is k-edge-connected.
Note that E as well as F may contain parallel edges.

This optimization problem has been extensively investigated, in part due to pos-
sible practical applications in the design of reliable networks (see [9], [21]). The first
polynomial-time algorithm solving this problem was by Watanabe and Nakamura [22].
Other approaches were later developed which led to more efficient algorithms. Cai and

∗Received by the editors July 18, 1997; accepted for publication (in revised form) September
22, 1998; published electronically April 29, 1999. A preliminary version of this paper appeared in
Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, 1998, pp. 306–315.

http://www.siam.org/journals/sidma/12-2/32470.html.
†Department of Mathematics and Computer Science, Odense University, Campusvej 55, DK-5230

Odense, Denmark (jbj@imada.ou.dk).
‡Department of Computer Science, University of Colorado at Boulder, Boulder, CO 80309-0430

(hal@cs.colorado.edu).
§Department of Mathematics and Computer Science, Odense University, Campusvej 55, DK-5230

Odense, Denmark (jordan@cs.elte.hu). The research of this author was supported in part by Danish
Natural Science Research Council grant 28808.
¶Equipe Combinatoire, Universite Paris VI, 4, place Jussieu, 75252 Paris, France (szigeti@

ecp6.jussieu.fr).

160

PARTITION CONSTRAINED CONNECTIVITY AUGMENTATION 161

Sun [3] gave a min-max characterization for the corresponding optimum value, using
the splitting off method. “Splitting off” a pair su, sv of edges means replacing su
and sv by a new edge uv. Using this method Frank [6] solved several extensions of
the problem. For example, he showed it is tractable even if local connectivity de-
mands or vertex costs are given. A different approach by Naor, Gusfield, and Martel
[19] resulted in a faster algorithm for small values of k. The currently fastest algo-
rithm was developed by Nagamochi and Ibaraki [17] and Nagamochi, Nakamura, and
Ibaraki [18]. Their algorithm, also based on the splitting off method, runs in time
O(n(m+n log n) log n). (The parameters n and m denote the number of vertices and
distinct edges of the given graph, respectively.) For further related results and the
directed- and vertex-connectivity versions of the problem see the survey paper by
Frank [7].

This paper solves a generalization of the above problem which we call edge-connec-
tivity augmentation with partition constraints. Here a partition P = {P1, . . . , Pr}
(r ≥ 2) of V is also given and the additional requirement is that each edge of the aug-
menting set F must connect different classes of P. Taking r = n gives the original (or
in other words unconstrained) edge-connectivity augmentation problem as a special
case. Another special case is the version where G is a bipartite graph with bipartition
V = (A,B) and P = {A,B}. In this problem, which was open so far and was one
of our main motivations, the goal is to increase the edge-connectivity of a bipartite
graph while preserving bipartiteness.

The first part of our solution to the augmentation problem with partition con-
straints is a min-max formula for the optimum value (i.e., the minimum size of F).
When k is even we show the optimum value equals the “deficiency” of a certain sub-
partition of V . This subpartition is either the subpartition of Cai and Sun for the
unconstrained problem or a subpartition based on the partition constraints. When
k is odd these subpartitions have deficiency equal to the optimum value for “most”
graphs but they fail for an infinite number of graphs. The following simple example
turns out to be central.

Consider the problem of augmenting a four-cycle to achieve 3-edge-connectivity.
It is easy to see that the unique optimum augmentation adds two new edges, changing
the graph into K4. Now consider augmenting a four-cycle to make it 3-edge-connected
and also preserve bipartiteness. It is easy to see that for this problem three new edges
is optimum. But we will see that the subpartitions have deficiency only two.

Our min-max theorem shows that when k is odd any graph requires at most one
more edge than the lower bounds from subpartitions. Furthermore, a graph requires
an extra edge precisely when it possesses a structure generalizing the above four-cycle
example or a structure generalizing the six-cycle. These structures, which we call C4-
and C6-configurations, can exist for any odd value k ≥ 3. A C6-configuration is more
specialized, since it exists only in graphs requiring exactly three edges to achieve k-
edge-connectivity.

The second part of our solution to the partition-constrained problem is a strongly
polynomial algorithm. It finds an optimum solution in the same time as the algo-
rithm of Nagamochi, Nakamura, and Ibaraki for the unconstrained problem, O(n(m+
n log n) log n). When specialized to the unconstrained problem our algorithm is a mod-
ified version of the splitting-off algorithm of [18]. This specialization is also of interest
because, like our general algorithm, it produces an asymptotically optimum number
of distinct splits. This improves [17], [18] by a logarithmic factor. It gives a similar
savings in space.

162 J. BANG-JENSEN, H. N. GABOW, T. JORDÁN, AND Z. SZIGETI

The splitting off method used in algorithms for edge-connectivity augmentation
and a number of other problems is based on the well-known splitting off theorem of
Lovász [14]. The partition-constrained problem requires a more powerful result: when
k is odd we must avoid certain splits that would mistakenly force an extra edge to be
added. We give a new splitting off theorem that characterizes when this can be done.

This paper also investigates an application of the problem of augmenting the con-
nectivity of a bipartite graph (preserving bipartiteness) in the field of statics. It also
shows that a variant of our problem, when the edges of the augmenting set F must
lie within classes of a given partition, is NP-hard.

We close this section by mentioning other extensions of the edge-connectivity
augmentation problem that have been investigated. Finding a k-edge-connected aug-
mentation that has minimum cost is NP-hard (even when k = 2 and there are only
two distinct edge costs); see [5]. Optimally augmenting a bipartite graph to achieve
2-vertex-connectivity while preserving bipartiteness was solved in [11]. Optimally aug-
menting to achieve k-edge-connectivity preserving simplicity of the graph is NP-hard
but polynomially solvable for fixed k; see [1] and [12]. Preserving planarity was in-
vestigated in some vertex-connectivity problems; see [13]. Other types of constraints
were also studied. In [4] an optimal augmenting set F is to be found which can be
extended to an optimal augmentation with respect to an arbitrary higher target.

Section 2 contains definitions and some basic results. Section 3 proves the new
splitting off theorem. The results on the augmentation problem are in sections 4 and
5. Our efficient algorithm is in section 6. The application to statics is in section 7,
and the NP-hardness result is in section 8.

2. Terminology and some basic results. Let G = (V,E) be an arbitrary
undirected multigraph. A subpartition of V is a collection of pairwise disjoint subsets
of V . The subgraph of G induced by a subset X of vertices is denoted G[X]. A set
consisting of a single vertex v is simply denoted by v. An edge joining vertices x and
y is denoted xy. Sometimes xy will refer to an arbitrary copy of the parallel edges
between x and y but this will not cause any confusion. Adding or deleting an edge e
from a graph G is often denoted by G + e or G − e, respectively; adding or deleting
a vertex v is similarly denoted by G+ v or G− v, respectively.

For X,Y ⊆ V , d(X,Y) denotes the number of edges with one endvertex in X−Y
and the other in Y −X. We define the degree of a subset X as d(X) = d(X,V −X).
For example, d(v) denotes the degree of vertex v. The degree-function of a graph G′

is denoted d′. A graph G = (V,E) is k-edge-connected if

d(X) ≥ k for all ∅ 6= X ⊂ V.(1)

The degree function satisfies the following two well-known equalities.
Proposition 2.1. Let H = (V,E) be a graph. For arbitrary subsets X,Y ⊆ V,

d(X) + d(Y) = d(X ∩ Y) + d(X ∪ Y) + 2d(X,Y),(2)

d(X) + d(Y) = d(X − Y) + d(Y −X) + 2d(X ∩ Y, V − (X ∪ Y)).(3)

The operation splitting off a pair of edges sv, st at a vertex s means that we
replace these two edges by a new edge vt. (In the presence of parallel edges one
splitting operation replaces only one copy of each of sv, st.) The notation Gv,t denotes
the graph obtained after splitting off the edges sv, st in G (the vertex s will always
be clear from the context). A complete splitting at a vertex s (with even degree) is a
sequence of d(s)/2 splittings of pairs of edges incident to s.

PARTITION CONSTRAINED CONNECTIVITY AUGMENTATION 163

In the rest of this section let s be a specified vertex of a graph G = (V + s,E)
with degree function d such that d(s) is even and (1) holds. We shall consider such
graphs throughout the paper. Saying (1) holds in such a graph G means it holds for
all ∅ 6= X ⊂ V . (Thus (1) can hold even when d(s) < k.) A set ∅ 6= X ⊂ V is called
dangerous if d(X) ≤ k + 1 and critical if d(X) = k. Two sets X,Y ⊆ V are crossing
if X − Y , Y −X, X ∩ Y , and V − (X ∪ Y) are all nonempty. Again these definitions
refer only to subsets of V .

Edges sv, st form an admissible pair in G if Gv,t still satisfies (1). It is easy to see
that sv, st is not admissible if and only if some dangerous set contains both t and v.

Throughout the paper we use the following basic lemmas.

Lemma 2.2. If k ≥ 3 and d(X) ≤ k+2 for some X ⊂ V , then G[X] is connected.

Proof. Let X = Y ∪ Z be any partition of X into two nonempty sets. Since G
satisfies (1) we get k + 2 ≥ d(X) = d(Y) + d(Z)− 2d(Y,Z) ≥ k + k − 2d(Y,Z). Thus
since k ≥ 3 we must have that d(Y,Z) ≥ 1 and hence the lemma follows.

Lemma 2.3. If k is odd, then no three pairwise disjoint critical sets X,Y, Z have
N(X) ⊆ Y ∪ Z.

Proof. Assume on the contrary that there exist such sets. Since k = d(X) =
d(X,Y)+d(X,Z), without loss of generality (w.l.o.g.) we may assume d(X,Y) > k/2.
It follows that d(X∪Y) = d(X)+d(Y)−2d(X,Y) < k+k−2k/2 = k, in contradiction
to (1).

Lemma 2.4. If k is odd, then the union of two disjoint critical sets is not critical.

Proof. If X and Y are disjoint critical sets then d(X ∪ Y) = d(X) + d(Y) −
2d(X,Y) = 2k − 2d(X,Y). The right-hand side does not equal k because k is
odd.

Lemma 2.5. If k is odd, then no two critical sets are crossing.

Proof. Suppose that X and Y are two crossing sets in V of degree k. Then
d(X ∩ Y) = k by (2) and d(X − Y) = k by (3). Thus X − Y and X ∩ Y contradict
Lemma 2.4.

Lemma 2.6. A maximal (with respect to inclusion) dangerous set does not cross
any critical set.

Proof. Let X be a maximal dangerous set and suppose it crosses a critical set Y .
The maximality of X shows d(X ∪ Y) ≥ k + 2. Thus k + 1 + k ≥ d(X) + d(Y) ≥
d(X ∩ Y) + d(X ∪ Y) ≥ k + k + 2, a contradiction.

Lemma 2.7. Let k be odd and let X ⊂ V be a set of degree k + 2 containing two
neighbors of s, x, and y, such that d(Z) ≥ k+2 whenever x, y ∈ Z ⊂ V . Then X does
not cross any critical set.

Proof. The hypothesis implies sx, sy is an admissible pair. Applying Lemma 2.5
to Gx,y gives the desired conclusion.

Lemma 2.8. If X is dangerous, then d(s, V −X) ≥ d(s,X).

Proof. By (1) we see that k ≤ d(V −X) = d(X) − d(s,X) + d(s, V −X). Since
d(X) ≤ k+ 1, this implies d(s, V −X) ≥ d(s,X)−1, and since d(s) is even we cannot
have equality.

Lemma 2.9. If k is even, then two maximal dangerous sets X,Y which are
crossing have d(s,X ∩ Y) = 0.

Proof. Suppose X and Y are maximal dangerous and crossing such that d(s,X ∩
Y) ≥ 1. By Proposition 2.1 and (1), we get that d(X) = k + 1, d(X − Y) = k, and
d(X∩Y) = k. It is easy to see that d(X) is congruent to d(X−Y)+d(X∩Y) modulo
2, but this contradicts the fact that d(X) is odd and each of d(X − Y), d(X ∩ Y) is
even.

164 J. BANG-JENSEN, H. N. GABOW, T. JORDÁN, AND Z. SZIGETI

Lemma 2.10. Any two crossing sets X,Y⊂V satisfy d(X)+d(Y) ≥ 2k+2d(s,X∪
Y)− d(s).

Proof. Observe that d(X ∪Y) = d(V − (X ∪Y))−d(s, V − (X ∪Y))+d(s,X ∪Y)
and d(s) = d(s,X ∪ Y) + d(s, V − (X ∪ Y)). Combining these and using (1) and (2)
gives the lemma.

Lemma 2.11. Let X be a critical set that is minimal with respect to inclusion.
Then for every edge sx, x ∈ X and every u ∈ X, G− sx+ su satisfies (1).

Proof. Suppose that for some edge e = sx, x ∈ X and some u ∈ X the graph
G− e+ f , where f = su, does not satisfy (1). Then there must be some other critical
set Y in G such that the edge sx enters Y while su does not. By the minimality of
X we get that Y − X 6= ∅. Now applying (3) we get that k + k = d(X) + d(Y) =
d(X − Y) + d(Y −X) + 2d(s,X ∩ Y) ≥ k + k + 2, a contradiction.

Throughout the rest of this paper we always assume that k ≥ 2 since the solutions
to our problems are trivial when k ≤ 1.

The following result of Lovász [14]—Theorem 2.12(a) below—turned out to be a
useful tool in augmentation problems; see [6]. Here we formulate an easy extension,
Theorem 2.12(b), which plays an important role in some of our arguments. The proof
follows from the proof of part (a) given by Frank in [6, pp. 35–36]. We assume that
the reader is familiar with this proof and give only the necessary additional details
below.

Theorem 2.12. Suppose that (1) holds in G = (V + s,E), k ≥ 2, and d(s) is
even.

(a) For every edge st there exists an edge su such that the pair st, su is admissible
[14].

(b) For every edge st the number of edges su for which the pair st, su is admissible
is at least d(s)/2 when k is even and at least d(s)/2− 1 when k is odd.

Proof of (b). In the proof of (a) in [6, pp. 35–36] it is shown that for any given edge
st, all the neighbors u of s for which the pair st, su is not admissible are contained in
the union of at most two maximal dangerous sets, each set containing t; furthermore,
when there are two such sets they are crossing.

If t is not contained in any maximal dangerous set, then st is admissible with
every other edge su. If there is a unique maximal dangerous set X containing t, then
st is admissible with every edge su, u 6∈ X. Lemma 2.8 shows there are at least d(s)/2
such edges.

The remaining case is when there are two maximal dangerous sets, say X and Y ,
that are crossing, with X ∩ Y containing t and X ∪ Y containing all neighbors u of
s for which st, su is not admissible. Lemma 2.9 shows k is odd. This implies part (b)
holds if k is even.

Continuing with the sets X and Y (and k odd), let Z = V − (X ∪ Y). Since G
satisfies (1) we get k ≤ d(Z) = d(X ∪ Y) − d(s,X ∪ Y) + d(s, Z). (2) implies that
d(X ∪ Y) = k + 2. Hence d(s, Z) ≥ d(s,X ∪ Y)− 2. This implies at least d(s)/2− 1
edges incident to s are admissible for splitting with st.

Let OPT k(G) (OPT kP(G)) denote the size of a solution to the edge-connectivity
augmentation problem (with partition constraints). Hence OPT k(G) equals the min-
imum size of a set of new edges whose addition to G results in a k-edge-connected
graph. OPT kP(G) is defined similarly with the additional stipulation that no new edge
lies inside some Pi ∈ P, where P = {P1, . . . , Pr} is a given partition of V .

Our algorithms are based on Frank’s algorithm to calculate OPT k(G) and solve
the edge-connectivity augmentation problem. Frank’s algorithm uses the splitting op-

PARTITION CONSTRAINED CONNECTIVITY AUGMENTATION 165

eration and Theorem 2.12(a) as the main tool. We now summarize Frank’s algo-
rithm [6].

Frank’s algorithm.
(PHASE 1) Starting with the given graph G = (V,E) and the integer k ≥ 2, add a
new vertex s to V and a set F of new edges between s and some vertices of V such
that

d′(X) ≥ k for all ∅ 6= X ⊂ V in G′ = (V + s,E ∪ F),(4)

F is minimal (with respect to inclusion) subject to (4).(5)

(PHASE 2) If d′(s) is odd in G′, add a new edge sv for some arbitrary v ∈ V .
(PHASE 3) Split off admissible pairs of edges incident to s in arbitrary order, main-
taining (1). When s becomes isolated, delete s.

It is clear that such an F (in the first phase) exists. It was shown in [6] that there
exists a subpartition

F = {X1, . . . , Xt} of V such that |F | =
t∑
1

(k − d(Xi)),(6)

where as usual d denotes the degree function in G. In the third phase every edge can
be split off by Theorem 2.12(a). The resulting graph is an optimal k-edge-connected

augmentation of G since after the second phase OPT k(G) ≥ |F |2 by (6).
We now focus on edge-connectivity augmentation with partition constraints. An

admissible pair sx, sy is called allowed if x and y belong to different classes of P. A
complete allowed splitting at a vertex s is a sequence of d(s)/2 splittings at s such that
the ith splitting is allowed when performed in the graph obtained after performing
the first i − 1 splittings. The following fact was also observed in [18] (in a different
context).

Lemma 2.13. Let k be even and let G = (V + s,E) be a graph satisfying (1)
with d(s) even. There exists a complete allowed splitting at vertex s if and only if
d(s, Pi) ≤ d(s)/2 for all 1 ≤ i ≤ r.

Proof. The condition d(s, Pi) ≤ d(s)/2 is necessary for a complete allowed split-
ting to exist, since a pair sx, sx is not allowed.

To prove sufficiency we argue by induction on the degree of s. Choose an index j,
1 ≤ j ≤ r, so that d(s, Pj) is maximum. Theorem 2.12(b) implies there is an allowed
pair sx, sy for any neighbor x of s belonging to Pj . Here we use the hypothesis
d(s, Pj) ≤ d(s)/2. Next we show that for G′ = Gx,y, d′(s, Pi) ≤ d′(s)/2 for all i.
This is clear for i = j. If i 6= j, then d′(s, Pi) ≤ d′(s, Pj) + 1. If equality holds, then
some index ` 6= i, j has d′(s, P`) ≥ 1, since d′(s) is even. This implies d′(s, Pi) ≤
d′(s)/2.

3. Splittings satisfying partition constraints when k is odd. Let k ≥ 3
be an odd number, let G = (V + s,E) be a graph such that (1) holds for G and d(s)
is even, and let P = {P1, P2, . . . , Pr}, 2 ≤ r ≤ |V | be a prescribed partition of V .

We begin by defining two types of “obstacles” that, we will show, preclude the
existence of a complete allowed splitting. Let S denote the set of neighbors of s and
Si := S ∩ Pi. Let di := d(s, Pi).

Definition 3.1. Let A1 ∪ A2 ∪ B1 ∪ B2 be a partition of V with the following
properties in G for some index i, 1 ≤ i ≤ r:

166 J. BANG-JENSEN, H. N. GABOW, T. JORDÁN, AND Z. SZIGETI

Fig. 1. A graph g = (V + s, E) with V partitioned into black and white vertices. The sets
A1, A2, B1, B2 form a C4-obstacle in G with respect to k = 3.

(i) d(X) = k for X = A1, A2, B1, B2;
(ii) d(X,Y) = 0 for (X,Y) = (A1, A2), (B1, B2);
(iii) S ∩X = Si for X = A1 ∪A2 or X = B1 ∪B2;
(iv) di = d(s)/2.

Such a partition is called a C4-obstacle in G. The two pairs (A1, A2) and (B1, B2)
listed in (ii) are called nonconsecutive while the other four pairs are called consecutive.
(See Figure 1.)

Note that conditions (i)–(iv) can be satisfied when k is even but a C4-obstacle
requires that k be odd. An important property of a C4-obstacle is that s has a neighbor
in each set A1, A2, B1, B2, by Lemma 2.3.

The reader will have noticed the close relation between a C4-obstacle and the ex-
ample of augmenting a four-cycle given in the introduction. The C6-obstacle defined
below has a similar motivation which we now give. Suppose we wish to augment a
six-cycle to achieve 3-edge-connectivity. This can be done by adding three new edges
to change the graph into K3,3. It is easy to see that three new edges is optimum, and
any optimum augmentation adds at least one new edge joining diametrically opposite
vertices. Now consider augmenting a six-cycle to make it 3-edge-connected with the
partition constraint imposed when P consists of the three sets of diametrically oppo-
site vertices. It is easy to see that for this problem four new edges is optimum. However,
we will see in section 5 that the subpartitions give a lower bound of only three.

Definition 3.2. Let A1 ∪ A2 ∪ B1 ∪ B2 ∪ C1 ∪ C2 be a partition of V with the
following properties in G for three distinct indices a, b, c, 1 ≤ a, b, c ≤ r:

(i′) d(X) = k for X = A1, A2, B1, B2, C1, C2;
(ii′) d(X,Y) = k−1

2 for (X,Y) = (A1, B1), (B1, C1), (C1, A2), (A2, B2), (B2, C2),
(C2, A1);

(iii′) d(X, s) = 1 for X = A1, A2, B1, B2, C1, C2;
(iv′) S ∩X = Si for (X,Si) = (A1 ∪A2, Sa), (B1 ∪B2, Sb), (C1 ∪ C2, Sc).

Such a partition is called a C6-obstacle in G. The six pairs listed in (ii′) are called
consecutive while the other nine pairs are called nonconsecutive. (See Figure 2.)

PARTITION CONSTRAINED CONNECTIVITY AUGMENTATION 167

Fig. 2. A graph G = (V + s, E) with V partitioned into black, white, and shaded vertices. The
sets A1, A2, B1, B2, C1, C2 form a C6-obstacle in G with respect to k = 3.

The first two lemmas allow us to split off most edges.
Lemma 3.3. Suppose d(s, Pi) ≤ d(s)/2 for all i = 1, . . . , r. If d(s) ≥ 6, then for

any Pi containing a neighbor of s there is an allowed pair sx, sy with x ∈ Pi.
Proof. If di < d(s)/2, then Theorem 2.12 implies there is an allowed pair sx, sy for

any neighbor x of s belonging to Pi. Hence assume di = d(s)/2. Let u be an arbitrary
neighbor of s in Pi. If there is no allowed pair for the edge su, then, as mentioned in
the proof of Theorem 2.12, there are (at most) two dangerous sets X and Y so that
u ∈ X ∩Y and X ∪Y contains all the neighbors of s not in Pi. Since di = d(s)/2 and
d(s) ≥ 6, either d(s,X − Pi) ≥ 2 or d(s, Y − Pi) ≥ 2. In both cases there is a pair
sy, sz of edges incident to s so that y, z 6∈ Pi and the edges sy, sz enter a common
dangerous set. (It is possible that y = z.) Hence sy, sz is not admissible. Theorem
2.12 shows sy is part of at least d(s)/2− 1 admissible pairs. This implies that for at
least one x ∈ Pi the pair sx, sy is an allowed splitting.

Lemma 3.4. Suppose d(s, Pi) ≤ d(s)/2 for all i = 1, . . . , r. If d(s) = 4, then there
exists a complete allowed splitting at s unless G contains a C4-obstacle. Furthermore,
if this C4-obstacle is A1, A2, B1, B2, then in graph G− s

1. d(A1) = d(A2) = d(B1) = d(B2) = k − 1,
2. d(A1 ∪B1) = d(A1 ∪B2) = k − 1.

Proof. If max di = 1, then every admissible pair is allowed and thus we are done
by Theorem 2.12. Otherwise the assumption of the lemma shows max di = 2. Assume
w.l.o.g. that d1 = 2. We may also assume that there are no parallel edges between the
edges incident to s (since in that case we would be done again, by applying Theorem
2.12 twice). Let us denote the two neighbors of s in P1 by x and y and denote the other
two neighbors of s by u and v. Assume that neither sx, su nor sx, sv is admissible. (If
either pair is admissible we are again done.) Then Lemma 2.8 implies there are two
dangerous sets X and Y so that x ∈ X∩Y, u ∈ X−Y, v ∈ Y −X, and y ∈ V −(X∪Y).

Now we show that X ∩ Y, V − (X ∪ Y), X − Y, Y − X is a C4-obstacle. Let d

168 J. BANG-JENSEN, H. N. GABOW, T. JORDÁN, AND Z. SZIGETI

denote the degree function in G. Equation (2) implies d(X∪Y) = k+2, d(X∩Y) = k,
and d(X,Y) = 0. Equation (3) (with edge sx) implies d(X −Y) = d(Y −X) = k and
d(X ∩ Y, V − (X ∪ Y)) = 0. Also d(V − (X ∪ Y)) = d(X ∪ Y)− 2 = k. We have now
shown (i) and (ii) of Definition 3.1 and (iii) and (iv) are immediate.

In the above proof both (2) and (3) imply d(X) = d(Y) = k + 1. Hence the last
part of the lemma follows if we set A1 = X ∩Y,A2 = V − (X ∪Y), B1 = X −Y,B2 =
Y −X.

We can now state a procedure to split off most edges in G. (The procedure is used
in two proofs of section 5.) Assume that every partition class Pj has d(s, Pj) ≤ d(s)/2
in G. Starting with G, repeatedly choose an index i such that d(s, Pi) is maximum
and split off an allowed pair sx, sy with x ∈ Pi. The relation d(s, Pj) ≤ d(s)/2 for all
j is maintained throughout this procedure by the argument of Lemma 2.13. Lemmas
3.3 and 3.4 show that eventually we get either a complete allowed splitting or a graph
that has a C4-obstacle and d(s) = 4.

Lemma 3.5. Suppose that the pair sx, sy is an allowed splitting and the graph
Gx,y contains a C6-obstacle. Then G contains another allowed splitting sx, sy′ (i.e.,
the split still involves edge sx) such that Gx,y′ contains no C4- or C6-obstacle.

Proof. Suppose there is a C6-obstacle A1, B1, C1, A2, B2, C2 in Gx,y. Denote the
unique neighbors of s in each of these sets by a1, b1, c1, a2, b2, c2. By the definition of
a C6-obstacle, there exist a 6= b 6= c 6= a such that a1, a2 ∈ Pa, b1, b2 ∈ Pb, c1, c2 ∈ Pc.

We distinguish two cases corresponding to whether x and y belong to the same
set or different sets of the obstacle. In the first case we may assume w.l.o.g. that
x, y ∈ A1. In the second case x and y must belong to sets that are consecutive in the
C6-obstacle, so we may assume w.l.o.g. that x ∈ A1 and y ∈ B1.

Case 1. x, y ∈ A1. At least one of c1, b2, say w.l.o.g. c1, is not from the same
partition class as x. Let y′ = c1. We claim that the pair sx, sy′ is admissible in G. For
suppose not and let Y be a maximal dangerous set containing x and y′. Since sx, sy
is an admissible pair we have y 6∈ Y .

Lemma 2.8 shows Y contains at most four neighbors of s. Thus Y ∪ D 6= V
for any set D of the obstacle. This implies Y and A1 are crossing (since y /∈ Y). It
also implies Y contains any other set of the obstacle that it shares a vertex with (by
Lemma 2.6). Since Y is connected (Lemma 2.2) and contains x and y′, we conclude
that Y ∪A1 = A1 ∪B1 ∪C1 ∪D for D = ∅, A2, or C2. Now part (ii′) of the definition
of C6-obstacle shows that in all cases for D, d(A1 ∪ Y) ≥ k−1

2 + k−1
2 + 5 = k+ 4. But

applying (2) shows (k+1)+(k+2) ≥ d(Y)+d(A1) ≥ d(Y ∩A1)+d(Y ∪A1) ≥ k+(k+4),
a contradiction. Thus Y does not exist and sx, sy′ is admissible.

Suppose Gx,y′ contains an obstacle. Call this the new obstacle, as opposed to the
original C6-obstacle. The new obstacle has sets A′1, A

′
2, B

′
1, B

′
2 and if it is a C6-obstacle,

then it has sets C ′1, C
′
2 as well.

Let D′ be any set in the new obstacle, and let D be any set in the original obstacle
except A1 (so d(D) = k). In Gx,y′ , neither D nor D′ can contain three neighbors of
s (a set in a C4-obstacle contains ≤ 2 neighbors, if d(s) = 6). Hence D ∪ D′ 6= V .
Furthermore, Lemma 2.5 implies the two sets do not cross. So D ⊆ D′ if the two
sets share a vertex. (We cannot have D′ ⊂ D since that would make D crossing with
another set of the new obstacle.) We shall use this principle frequently.

By renaming if necessary, we can assume that C1 ⊂ A′1. The inclusion is proper
since C1 has no neighbor of s in Gx,y′ .

We now show A′1 ∩A1 6= ∅. Suppose the contrary. Then A′1 has degree k in G. By
Lemma 2.2 A′1 induces a connected graph in G. Now it is easy to see (using the above

PARTITION CONSTRAINED CONNECTIVITY AUGMENTATION 169

principle) that we must have A′1 = X ∪ C1 ∪ Y , where X is either B1 or empty and
Y is either empty or one of the three sets A2, A2 ∪B2, A2 ∪B2 ∪C2. In all cases (ii′)
of Definition 3.2 implies that A′1 has degree at least k + 1 in G. This is the desired
contradiction.

We next show that A1 ∩A′1 contains no neighbor of s in Gx,y′ . Since A′1 induces
a connected graph in G (Lemma 2.2) and has at most two neighbors of s in Gx,y′ ,
our principle implies that B1 ⊂ A′1 and that B2 ∩ A′1 = ∅. Applying (2) to the sets
A1 and A′1 (of degree k+ 2 and k, respectively, in Gx,y′) we see that in Gx,y′ A

′
1 ∪A1

has degree at most k+ 2. Now it is easy to prove, by examining the neighbors of s in
Gx,y′ , that A′1 ∩C2 = A′1 ∩A2 = ∅. Hence A′1 ∪A1 = A1 ∪B1 ∪C1. Thus in Gx,y′ we
have d(A′1 −A1) = k+ 1. Then by (3), d(A1 ∩A′1, V − (A1 ∪A′1)) = 0 holds in Gx,y′ .
This implies the desired conclusion.

Suppose first that the new obstacle is a C4-obstacle. This implies two of the sets
A′2, B

′
1, B

′
2 contain exactly two neighbors of s. Lemma 2.7 shows these sets do not

cross A1. Now our principle shows at least one of these sets is the union of exactly
two sets of the original obstacle. But this contradicts Lemma 2.4.

Now suppose that the new obstacle is a C6-obstacle. Since the unique neighbor
b1 of s in A′1 in the graph Gx,y′ belongs to Pb, it follows from Definition 3.2 and
our principle that A′2 = B2. Thus Gx,y′ − s has a path from A′1 to A′2 that contains
vertices in only one other new obstacle set (namely the new obstacle set containing
A2). This contradicts the fact that in a C6-obstacle any path avoiding s from A′1 to
A′2 goes through at least two other obstacle sets.

Case 2. x ∈ A1 and y ∈ B1. As in Case 1 at least one of c1, b2 is not from the
same partition class as x. In the first case we let y′ = c1 and in the second case we let
y′ = b2. We claim that the pair sx, sy′ is admissible in G. Suppose not and let Y be a
maximal dangerous set containing x, y′ in G. Since d(A1) = k, it follows from Lemma
2.6 and Lemma 2.8 that A1 ⊂ Y . Suppose first that y′ = c1. Since Y is connected by
Lemma 2.2, we see as we did in Case 1 that either B1 ⊂ Y or A2 ∪B2 ∪C2 ⊂ Y , both
of which contradict Lemma 2.8. If y′ = b2, then the only case which does not lead to
a contradiction as above is Y = B2∪C2∪A1. But then d(Y) = k+2, a contradiction.
Hence the pair sx, sy′ is admissible for splitting.

Suppose that Gx,y′ contains a new obstacle. Assume first that y′ = c1. As in Case
1 we let A′1 be that set of the new obstacle such that C1 ⊂ A′1. The same argument as
in Case 1 shows that A′1 ∩A1 6= ∅. Lemma 2.5 (applied in Gx,y′) shows that A1 ⊂ A′1.
Now as in Case 1 we can prove that B1 ⊂ A′1. But then A′1 contains three neighbors
of s in Gx,y′ , a contradiction.

Assume finally that y′ = b2. Let A′1 be that set of the new obstacle that contains
B2. Again we deduce that A1 ⊂ A′1. Using the fact that A′1 induces a connected set in
G and has at most two neighbors of s in Gx,y′ , we get A′1 = B2∪C2∪A1. Thus A′1 has
precisely two neighbors of s. Thus the new obstacle is a C4-obstacle A′1, B

′
1, A

′
2, B

′
2. In

graph Gx,y′ , B1 contains two neighbors of s and has degree k. Hence Lemma 2.5 and
Definition 3.1 show that w.l.o.g. B′1 = B1. Now it is easy to see that each of the sets
A′1 ∪ A′2 and B′1 ∪ B′2 contains neighbors of s from two different sets of the partition
P, contradicting Definition 3.1.

Theorem 3.6. There exists a complete allowed splitting at vertex s in G if and
only if

(a) di ≤ d(s)/2 for all 1 ≤ i ≤ r,
(b) G contains no C4- or C6-obstacle.

Proof (necessity). Suppose that there exists a complete allowed splitting off at

170 J. BANG-JENSEN, H. N. GABOW, T. JORDÁN, AND Z. SZIGETI

vertex s in G. Since all the splittings are allowed, (a) is satisfied.

Suppose that G contains a C4-obstacle. By (iii) and (iv) of Definition 3.1 the same
partition remains a C4-obstacle each time a split is executed. But then after executing
all the splits the sets A1, B1, and B2 contradict Lemma 2.3.

Now suppose thatG contains a C6-obstacle. Assume that a1 is the unique neighbor
of s in A1 and suppose that the edge sa1 was split off with sx. Then x cannot lie
in A2 because the splitting is allowed. Moreover, it can be neither in B1 nor in C2

since A1 ∪ B1 and A1 ∪ C2 are dangerous sets. Thus x is in either C1 or B2, say in
C1. Let us split off the pair sa1, sx. Then A1 ∪ B1 ∪ C1, A2, B2, C2 is a C4-obstacle,
a contradiction by the above argument. Hence, if G contains a C6-obstacle, it cannot
have a complete allowed splitting at s.

Proof (sufficiency). Assume that G satisfies (a) and (b). We use induction on d(s)
to show that there exists a complete allowed splitting at vertex s in G. If d(s) = 2,
then the result clearly holds. If d(s) = 4, then the result follows from Lemma 3.4.
Hence assume that d(s) ≥ 6.

Without loss of generality assume d1 is the maximum value di. Using Lemma 3.3,
split off an allowed pair sx, sy, where x ∈ P1. Gx,y satisfies condition (a) of Theorem
3.6 (as in the proof of Lemma 2.13). If Gx,y contains no obstacle, then by induction
we are done.

Suppose Gx,y contains a C6-obstacle. It follows from Lemma 3.5 that we can
replace sx, sy by another splitting sx, sy′ such that Gx,y′ has no C4-obstacle and no
C6-obstacle. Thus we are done by induction.

The remaining case is when Gx,y contains a C4-obstacle, say A1, A2, B1, B2. Then
x and y are either in the same set or in two consecutive sets of the obstacle. Hence
we may assume w.l.o.g. that either x, y ∈ A1 (Case 1) or x ∈ A1 and y ∈ B1 (Case 2).
In both cases we shall first show the following is true (after possibly renaming the
sets A1, A2, B1, B2): There is another allowed split sx′, sy′ that shares an edge, say
sz, with sx, sy and has x′ ∈ Pj , where dj = d1. Furthermore, z ∈ A1, and choosing
vertex w′ so {x′, y′} = {w′, z}, w′ ∈ A2. Also, choose vertex w so {x, y} = {w, z}.

In Cases 1 and 2 below fix the graph as G.

Case 1. x, y ∈ A1. This means that in G, d(A1) = k + 2, d(A2) = d(B1) =
d(B2) = k.

If A2 contains a neighbor u of s not in P1, then let x′ := x and y′ := u. Otherwise,
let x′ be any neighbor of s in A2 (x′ exists by Lemma 2.3) and let y′ := y. Note that
either x = x′ or y = y′, and the two pairs sx, sy and sx′, sy′ are as desired.

Claim 3.7. sx′, sy′ is admissible.

Proof. If sx′, sy′ is not admissible, then there exists a maximal dangerous set
Y containing x′ and y′. Y does not contain vertex w because sx, sy is admissible.
Consequently A1 − Y 6= ∅. G[Y] is connected by Lemma 2.2. This implies that Y
intersects B1 ∪B2 (say B1) because there is no edge between A1 and A2. Lemma 2.6
shows that Y contains both A2 and B1.

We show that Y ∩B2 = ∅. Otherwise Lemma 2.6 shows B2 ⊆ Y . Then d(s, Y) ≥
d(s)−2

2 + 1 + 1, because d(s,B1 ∪B2) = d(s)−2
2 , d(s,A2) ≥ 1, d(s,A1 ∩ Y) ≥ 1. This is

a contradiction against Lemma 2.8.

Note that d(s,A1 ∪ Y) ≥ d(s)−2
2 + 2 + 1 = d(s)

2 + 2. Now Lemma 2.10 gives
(k + 2) + (k + 1) ≥ d(A1) + d(Y) ≥ 2k + 2d(s,A1 ∪ Y) − d(s) ≥ 2k + 4. This
contradiction shows sx′, sy′ is admissible.

Case 2. x ∈ A1 and y ∈ B1. This means that in G, d(A1) = d(A2) = d(B1) =
d(B2) = k. If A2 contains a neighbor u of s not in P1, then let x′ := x and y′ := u.

PARTITION CONSTRAINED CONNECTIVITY AUGMENTATION 171

Otherwise, A1 must contain a neighbor of s not in P1 because this partition is not
a C4-obstacle in G. Thus in the graph Gx,y all the neighbors of s in B1∪B2 belong to

the same class Pj , j 6= 1. This implies that in G, dj ≥ d(s)−2
2 and d1 ≤ d(s)−2

2 − 1 + 1.

Since d1 was maximum, it follows that d1 = dj = d(s)−2
2 in G and y /∈ Pj . In this case

let x′ be any neighbor of s in B2 (and thus x′ ∈ Pj) and y′ := y. Note that although
x′ /∈ P1 it belongs to a class Pj , where dj is also maximum. Now rename the sets
A1, A2, B1, B2 as B1, B2, A2, A1, respectively. In both cases the two pairs sx, sy and
sx′, sy′ are as desired.

Claim 3.8. sx′, sy′ is admissible.

Proof. If sx′, sy′ is not admissible, then there exists a maximal dangerous set Y
containing x′ and y′. The vertex w does not belong to Y because the pair sx, sy was
admissible. Thus B1 − Y 6= ∅. Hence Lemma 2.6 shows A1 ∪A2 ⊆ Y.

G[Y] is connected by Lemma 2.2. This implies that Y intersects B1 ∪B2 because
there is no edge between A1 and A2. If Y intersects Bi, then Lemma 2.6 shows Y
contains Bi. Hence i = 2 and B2 ⊆ Y. Then d(s, Y) ≥ d(s)/2 + 1 because d(s,A1 ∪
A2) = d(s)/2 and d(s,B2) ≥ 1 by Lemma 2.3. This contradicts Lemma 2.8.

We have now found x′, y′ as desired. As shown previously, if Gx′,y′ contains no
obstacle or contains a C6-obstacle, then we are done. The remaining possibility is when
Gx′,y′ contains a C4-obstacle. This cannot occur if the hypotheses of the theorem hold,
because of the following lemma. (The lemma will also be used for our algorithm.) Let
a C4-obstacle in Gx′,y′ be A∗1, A

∗
2, B

∗
1 , B

∗
2 , where w.l.o.g. A∗1 contains vertex z of the

common edge sz of the two splittings.

Lemma 3.9. After possibly interchanging B1 and B2, and/or B∗1 and B∗2 , the
sets A1 ∩A∗1, B∗1 , A∗2, B2, A2, B1 form a C6-obstacle in G.

Proof.

Claim 3.10. No two of the eight given obstacle sets cover V .

Proof. Let C (C∗) be any set from the four sets A1, A2, B1, B2 (A∗1, A
∗
2, B

∗
1 , B

∗
2).

Assume C∪C∗ = V. Then C (C∗) contains the other three sets from the second (first)
obstacle. By Lemma 2.3, each of the eight obstacle sets contains a neighbor of s in G.

Using this and property (iv) for both C4-obstacles we get that d(s, C−C∗) ≥ d(s)−2
2 +

1 = d(s)
2 , and equality may hold only if x′, y′ ∈ C∗. Similarly, d(s, C∗−C) ≥ d(s)/2 and

equality may hold only if x, y ∈ C. However the two splits share an edge, so if equality
holds in both relations, then d(s, C∩C∗) > 0. Thus d(s) > d(s, C−C∗)+d(s, C∗−C) ≥
d(s)/2 + d(s)/2, a contradiction.

Case A. d(A1) = d(A∗1) = k + 2. We show that the sets of Lemma 3.9 have
the properties of a C6-obstacle using the following nine claims. Note that in Case A,
z ∈ A1 ∩A∗1 and w′ ∈ A2 ∩A∗1.

Claim 3.11. A1 and A∗1 are crossing sets.

Proof. As just mentioned A∗1 ∩ A1 contains z so it is nonempty. A1 ∪ A∗1 6= V by
Claim 3.10. A∗1 6⊆ A1 because of vertex w′. Furthermore, A2 ⊆ A∗1. (This follows from

Lemma 2.7 since w′ ∈ A∗1 ∩ A2 and z ∈ A∗1−A2.) Since d(s,A1 ∪ A2) = d(s)−2
2 + 2 =

d(s,A∗1) + d(s,A∗2), we cannot also have A1 ⊆ A∗1 (since d(s,A∗2) > 0). Hence A1 and
A∗1 are indeed crossing sets.

By Lemma 2.2, G[A∗1] is connected. Thus A∗1 intersects B1 ∪ B2. We also have
that A1 intersects B∗1 ∪ B∗2 . To prove this note that Claim 3.11 shows A1 ∩ (A∗2 ∪
B∗1 ∪ B∗2) 6= ∅. If A1 ∩A∗2 6= ∅, the desired conclusion follows by applying Lemma 2.2
as above. Now w.l.o.g. assume that A1 intersects B∗1 and A∗1 intersects B1.

Claim 3.12. B1 ∪A2 ⊆ A∗1, B∗1 ∪A∗2 ⊆ A1, and B2 = B∗2 .

172 J. BANG-JENSEN, H. N. GABOW, T. JORDÁN, AND Z. SZIGETI

Proof. Since w′ ∈ A2 ∩A∗1, Lemma 2.7 shows B1 ∪A2 ⊆ A∗1. A∗1 cannot intersect
B2. (If it did, Lemma 2.7 implies B2 ⊆ A∗1. Then A1 ∪ A∗1 = V, contradicting Claim
3.10.) Hence A∗1 −A1 = B1 ∪A2.

We now show that A1 − A∗1 = B∗1 ∪ A∗2 (as claimed) by eliminating all other
possiblities. Lemma 2.7 shows thatA1 does not cross any of the setsA∗2, B

∗
1 , B

∗
2 . Recall

that B∗1 intersects A1, so B∗1 ⊆ A1−A∗1. Suppose A1−A∗1 = B∗1 . Then B2 = A∗2 ∪B∗2 ,
contradicting Lemma 2.4. Suppose A1 − A∗1 = B∗1 ∪ B∗2 . Then Lemma 2.2 shows
d(A1 −A∗1) ≥ k+ 3. But then d(s,A1 ∩A∗1) ≥ 1 and (3) give k+ 2 + k+ 2 = d(A1) +
d(A∗1) = d(A1−A∗1)+d(A∗1−A1)+2d(s,A1∩A∗1) ≥ k+3+k+2, a contradiction. Claim
3.10 shows we cannot have A∗2 ∪B∗1 ∪B∗2 ⊂ A1. We conclude that A1−A∗1 = B∗1 ∪A∗2.

The third part of the claim follows from the other two.

Note that Claim 3.12 suffices for Lemma 3.9 when there are only two partition
classes, because it shows the lemma is vacuous: (B1, B2) is a nonconsecutive pair in
A1, A2, B1, B2 so all neighbors of s in B1 and B2 are in the same partition class. But
(A∗1, B

∗
2) is a consecutive pair in the other obstacle, so all neighbors of B1 ⊆ A∗1 and

B2 ⊆ B∗2 are in different partition classes. We continue the analysis for the general
case.

Claim 3.13. d(A1−A∗1) = k+1 = d(A∗1−A1), d(s,A∗1∩A1) = 1, and d(B1, A2) =
k−1

2 = d(B∗1 , A
∗
2).

Proof. By Lemma 2.4, d(A1−A∗1) and d(A∗1−A1) are at least k+1, since they are
both the disjoint union of two sets of degree k. Then (3) and the fact that z ∈ A∗1 give
k+2+k+2 = d(A1)+d(A∗1) = d(A1−A∗1)+d(A∗1−A1)+2d(A∗1∩A1, V +s−(A∗1∪A1))
≥ k+1+k+1+2. Thus equality holds everywhere, implying that d(A1−A∗1) = k+1 =
d(A∗1 −A1) and d(A∗1 ∩A1, V + s− (A∗1 ∪A1)) = 1. In other words, d(s,A∗1 ∩A1) = 1
and d(A∗1 ∩A1, B2) = 0.

The last relation, d(B1, A2) = k−1
2 , follows from k + 1 = d(A∗1 − A1) = d(B1 ∪

A2) = d(B1) + d(A2) − 2d(B1, A2) = k + k − 2d(B1, A2). Similarly d(B∗1 , A
∗
2) =

k−1
2 .

Claim 3.14. d(A∗1 ∪A1) ≥ k + 4.

Proof. Obviously d(s,A1∪A2) = d(s,B1∪B2)+2. Thus by Lemma 2.3, d(s,A∗1∪
A1) = d(s,A1 ∪ A2 ∪ B1) ≥ d(s,A1 ∪ A2) + 1 = d(s,B1 ∪ B2) + 3 ≥ d(s,B2) + 4. So
k = d(B2) = d(A∗1 ∪A1)−d(s,A∗1 ∪A1) +d(s,B2) ≤ d(A∗1 ∪A1)−4, as desired.

Claim 3.15. d(A1 ∩A∗1) = k and d(A1, A
∗
1) = 0.

Proof. Applying (2) for A1 and A∗1 and using Claim 3.14 we have k+ 2 + k+ 2 =
d(A1) + d(A∗1) = d(A1 ∩A∗1) + d(A1 ∪A∗1) + 2d(A1, A

∗
1) ≥ k + (k + 4). Thus equality

holds everywhere and the claim follows.

Claim 3.16. d((A1 ∩A∗1) ∪B∗1) = k + 1 = d((A1 ∩A∗1) ∪B1).

Proof. Lemma 2.4 implies d((A1 ∩ A∗1) ∪ B∗1) ≥ k + 1. Thus using Claim 3.13,
k + 2 = d(A1) = d((A1 ∩ A∗1) ∪ B∗1) + d(A∗2) − 2d(A∗2, B

∗
1 ∪ (A1 ∩ A∗1)) ≥ k +

1 + k − 2k−1
2 = k + 2. This gives the first part of the claim. The second part is

similar.

Claim 3.17. d(A1∩A∗1, B∗1) = k−1
2 = d(A1∩A∗1, B1) and d(s,B∗1) = 1 = d(s,B1).

Proof. We prove both equalities for B∗1 . k + k − 2d(A1 ∩A∗1, B∗1) = d(A1 ∩A∗1) +
d(B∗1)− 2d(A1 ∩ A∗1, B∗1) = d((A1 ∩ A∗1) ∪ B∗1) = k + 1 by Claim 3.16. The first part
of the claim follows.

Now using Claim 3.13, 1 ≤ d(s,B∗1) ≤ d(B∗1) − d(A1 ∩ A∗1, B∗1) − d(A∗2, B
∗
1) =

k − k−1
2 − k−1

2 = 1. Thus d(s,B∗1) = 1.

By Claim 3.16 d((A1 ∩A∗1)∪B∗1) = k+ 1 so this set does not contain both x and
y. It follows that w ∈ A∗2. (Recall also w′ ∈ A2.)

PARTITION CONSTRAINED CONNECTIVITY AUGMENTATION 173

Let the unique neighbor of s in B∗1 (B1) belong to Pq (Pr).
Claim 3.18. d(s,A2) = 1 = d(s,A∗2) = 1.
Proof. After splitting off sx′, sy′, B1 ⊆ A∗1 and Sr ∩ B1 6= ∅. Thus Definition

3.1(iii) shows Sr ∩B∗2 = ∅. Similarly, Sq ∩B2 = ∅. By Lemma 2.3, B2 = B∗2 contains
at least one neighbor of s; thus B1 ∪ B2 intersects at least two classes of P. This

implies that after splitting off sx, sy in G, Sq = (A1 ∪ A2) ∩ S and dq = d(s)−2
2 .

However, considering again Gx′,y′ , A
∗
1 cannot intersect Sq since Sq ∩ B∗1 6= ∅. Thus

d(s,A2) = 1. Similarly, S ∩ (A∗1 ∪A∗2) = Sr and d(s,A∗2) = 1.
Claim 3.19. d(A2, B2) = k−1

2 = d(A∗2, B2) and d(s,B2) = 1.

Proof. Since d(A2, s) = 1, d(A2, B1) = k−1
2 and B1 ∪ B2 ∪ s contains all the

neighbors of A2, we see that d(A2, B2) = k−1
2 . Similarly, d(A∗2, B2) = k−1

2 . Then from
d(B2) = k we obtain that d(s,B2) = 1.

To finish showing we have a C6-obstacle we must prove (iv′) holds. It follows from
the claims that d(s) = 6. In the proof of Claim 3.18, it was shown that dq = dr =
d(s)−2

2 = 2 and S ∩ (A2 ∪ B∗1) = Sq, S ∩ (A∗2 ∪ B1) = Sr. It was also shown that
B2 ∩ (Sq ∪ Sr) = ∅. Moreover, since both splittings are allowed we have (A1 ∩ A∗1) ∩
(Sq ∪ Sr) = ∅. It remains to show that if the unique neighbor of s in B2 (in A1 ∩A∗1)
belongs to Pd (Pe) of the partition P, then d = e.

Note that x ∈ Pr∪Pe. Hence A2 contains a neighbor of s not in the same partition
class as x. Hence Case 1 chooses x′ = x = z. Since x ∈ P1, de = max dj = 2. Hence
d = e and we are done.

Case B. At least one of d(A1) and d(A∗1) is k.
Claim 3.20. The partitions of the two obstacles coincide.
Proof. All four sets of one of the obstacles have degree k in G. Claim 3.10 and

Lemmas 2.4 and 2.5 show that any set of degree k in the other obstacle equals one of
the sets in the first obstacle. Since there are at least three such sets, the fourth set of
both obstacles coincide, too.

The claim implies in particular that d(A1) = d(A∗1) = k. Recalling Case 2 we have
x ∈ A1, y ∈ B1, and w′ ∈ A2. Now it is easy to see that

(∗) (A1, A2) and (B1, B2) are both (non)consecutive pairs in the second (first)
C4-obstacle.

In Gx,y either A1∪A2 or B1∪B2 contains neighbors of s from only one class Pj of P,
by (∗) and Definition 3.1(iii). In Gx′,y′ both sets of this union contain neighbors of s
in Pj . (If the union is A1 ∪A2, Lemma 2.3 shows each obstacle set in Gx′,y′ contains
a neighbor of s.) This contradicts Definition 3.1(iii) by (∗). We conclude that Case B
cannot occur. This completes the proof of both Lemma 3.9 and Theorem 3.6.

4. Increasing the edge-connectivity to an even number with partition
constraints. Let H = (V,E) be a graph with a partition P = {P1∪. . .∪Pr}, r ≥ 2 of
V . For the rest of this paper fix Φ to be the maximum of the following r+1 quantities:

α = max

{⌈∑
X∈F (k − d(X))

2

⌉
: F a subpartition of V

}
;

βi = max

{∑
Y ∈F

(k − d(Y)) : F a subpartition of Pi

}
for i = 1, . . . , r.

Observe that for any k of arbitrary parity, OPT kP(H) ≥ Φ. In proof, clearly
OPT kP(H) ≥ OPT k(H) = α. Also, OPT kP(H) ≥ βi since we are not allowed to
add an edge inside any Pi.

174 J. BANG-JENSEN, H. N. GABOW, T. JORDÁN, AND Z. SZIGETI

Lemma 4.1. If k is even, then OPT kP(H) = Φ.

Proof. We give a constructive proof to show OPT kP(H) ≤ Φ. Steps 1 and 2 of the
proof are valid even when k is odd and will be used in the next section.

Step 1. Execute the first two phases of Frank’s algorithm (described in sec-
tion 2) with input H, k. Now there exists a subpartition F of V such that d(s)/2 =

OPT k(H) =
⌈∑

X∈F (k−d(X))

2

⌉
. In particular d(s)/2 ≤ α (actually, equality holds).

Step 2. If there is some Pi for which d(s, Pi) > d(s)/2, then repeat the following
three steps to make d(s, Pi) = d(s)/2.

Step 2(a). For each edge su, u ∈ Pi let Xu be a minimal critical set containing u.

Step 2(b). If Xu 6⊆ Pi for some u ∈ Pi, then choose any v ∈ Xu − Pi and replace
the edge su by an edge sv. Lemma 2.11 shows that the resulting graph still satisfies
(1). If we now have d(s, Pi) = d(s)/2, then Step 2 is complete, so continue to Step 3.
Otherwise (we still have d(s, Pi) > d(s)/2) go back to Step 2(a).

Step 2(c). At this pointXu ⊆ Pi for every edge su, u ∈ Pi. Let Fi be the collection
of maximal sets Xu. The same proof as [6, p. 35] shows that Fi is a subpartition of
Pi and d(s, Pi) =

∑{k−d(Y, V −Y) : Y ∈ Fi}. Now add d(s, Pi)−d(s, V −Pi) edges
from s to V − Pi arbitrarily. This makes d(s)/2 ≤ βi.

Step 3. In the current graph G, (1) holds and d(s, Pj) ≤ d(s)/2 for j = 1, . . . , r.
It follows from Lemma 2.13 that we can obtain a complete allowed splitting off at s.
This proves OPT kP(H) ≤ d(s)/2 ≤ Φ as desired.

We close this section by noting that even when k is odd, Steps 1 and 2 make Φ =
d(s)/2 ≥ d(s, Pi) for all i = 1, . . . , r. In proof, the argument above shows d(s)/2 ≤ Φ
for k odd. Step 1 sets d(s)/2 = α so the final graph has d(s)/2 ≥ α. The final graph
has d(s)/2 ≥ d(s, Pi) for all i by Step 2. Also d(s, Pi) ≥ βi since (1) holds. The desired
relations follow.

5. Increasing the edge-connectivity to an odd number with partition
constraints. This section treats the more complicated case when the target connec-
tivity is an odd number. Let H = (V,E) be a fixed graph, k ≥ 3 be an odd integer and
P = {P1, . . . , Pr} be a prescribed partition of V . Furthermore, letG = (V+s,E∪F) be
the graph obtained by executing Steps 1 and 2 of the algorithmic proof of Lemma 4.1.

We begin with a simple upper bound for partition-constrained augmentation. The
proof generalizes the fact that the four-cycle can be augmented to a 3-edge-connected
bipartite graph by duplicating three edges.

Lemma 5.1. OPT kP(H) ≤ Φ + 1.

Proof. The remark at the end of section 4 shows that every partition class Pi has
d(s, Pi) ≤ d(s)/2 in G. Now execute the procedure given after Lemma 3.4 to split off
edges of G. As remarked, eventually either (i) we get a complete allowed splitting, or
(ii) we get a C4-obstacle in the (modified) graph G having d(s) = 4.

The proof of Lemma 4.1 and its discussion shows Φ ≤ OPT kP(H) and the original
graph G has d(s)/2 = Φ. Thus in case (i) we have OPT kP(H) = Φ. In case (ii) we get
a sequence of Φ − 2 allowed splittings that add a set of Φ − 2 edges F ′ to G. Thus
it suffices to prove that we can make the graph H + F ′ k-edge-connected by adding
three edges without violating the partition constraints.

In the rest of this argument fix G as the final graph having d(s) = 4. Lemma 3.4
showsG contains a C4 obstacleA1, A2, B1, B2 such that each of the setsA1, A2, B1, B2,
A1 ∪ B1, A1 ∪ B2 have degree k − 1 in G − s. Let us denote the unique neighbor of
s in each of the four sets A1, A2, B1, B2 by a1, a2, b1, b2, respectively. Since Frank’s
algorithm makes G− s k-edge-connected by splitting off two edges of G, it must add

PARTITION CONSTRAINED CONNECTIVITY AUGMENTATION 175

the edges a1a2 and b1b2.

We show that G− s is (k − 1)-edge-connected. Suppose some Z ⊂ V has degree
at most k− 2 in G− s. We can assume a1 ∈ Z (if not, replace Z by its complement).
Then a2 /∈ Z and Z contains precisely one of b1, b2—say, b2. Thus Z forms a crossing
pair with A1 ∪ B1. Note that b1b2 does not leave either of the sets Z ∩ (A1 ∪ B1),
Z ∪ A1 ∪ B1. Hence (2) shows (k − 2) + (k − 1) ≥ d(Z) + d(A1 ∪ B1) ≥ d(Z ∩ (A1 ∪
B1)) + d(Z ∪ A1 ∪ B1) ≥ (k − 1) + (k − 1), a contradiction. We conclude that G− s
is (k − 1)-edge-connected.

A degree k − 1 set of G− s contains exactly one of the vertices a1, a2 or exactly
one of the vertices b1, b2 (by Frank’s algorithm). Now it is easy to see that adding the
edges a1b1, b1a2, a2b2 makes G− s k-edge-connected.

It is possible that our graph G = (V + s,E ∪ F) contains a C4- or C6-obstacle
and yet OPT kP(H) = Φ. This can occur when we can move certain edges incident to
s so that a complete allowed splitting exists. This motivates our next two definitions,
which identify the configurations in the given graph H that force OPT kP(H) > Φ.
(This is proved in Theorem 5.8.)

Definition 5.2. Let X1, X2, Y1, Y2 be a partition of V with the following prop-
erties in H:

(i) d(A) < k for A = X1, X2, Y1, Y2.
(ii) d(A,B) = 0 for (A,B) = (X1, X2), (Y1, Y2).
(iii) There exist subpartitions F1,F2,F ′1,F ′2 of X1, X2, Y1, Y2, respectively, such

that for A ranging over X1, X2, Y1, Y2, and F the corresponding subpartition
of A, k − d(A) =

∑
U∈F (k − d(U)). Furthermore for some i ≤ r, Pi contains

every set of either F1 ∪ F2 or F ′1 ∪ F ′2.
(iv) (k − d(X1)) + (k − d(X2)) = (k − d(Y1)) + (k − d(Y2)) = Φ.

Such a partition is called a C4-configuration of H. (See Figure 3.)

As with C4-obstacles, k must be odd in a C4-configuration.

Definition 5.3. Let X1 ∪ X2 ∪ Y1 ∪ Y2 ∪ Z1 ∪ Z2 be a partition of V with the
following properties in H:

(i′) d(A) = k − 1 for A = X1, X2, Y1, Y2, Z1, Z2.
(ii′) d(A,B) = k−1

2 for (A,B) = (X1, Y1), (Y1, Z1), (Z1, X2), (X2, Y2), (Y2, Z2),
(Z2, X1).

(iii′) For three distinct partition classes Pa, Pb, Pc there are six sets of degree k−1,
X ′1, X

′
2, Y

′
1 , Y

′
2 , Z

′
1, Z

′
2 contained in X1 ∩ Pa, X2 ∩ Pa, Y1 ∩ Pb, Y2 ∩ Pb, Z1 ∩

Pc, Z2 ∩ Pc, respectively.
(iv′) Φ = 3.

Such a partition is called a C6-configuration of H.

Lemma 5.4. If H contains a C4-configuration, then it cannot be made k-edge-
connected by adding Φ edges without violating the partition constraints.

Proof. Suppose H contains a C4-configuration X1, X2, Y1, Y2. Assume w.l.o.g.
that

⋃
U∈F1∪F2

U ⊆ Pi for some i ≤ r. (F1 and F2 are as defined in Definition 5.2.)
Suppose that we can add Φ edges to H such that the new graph H ′ becomes k-edge-
connected and no new edge is added inside some Pj ∈ P. Since (k − d(X1)) + (k −
d(X2)) = Φ our assumption shows that exactly one endvertex of each new edge is
in X1 ∪ X2. Hence no edge is added between X1 and X2. Furthermore, Definition
5.2 (iv) shows the sets X1, Y1, Y2 all have degree k in H ′. However, this contradicts
Lemma 2.3.

Lemma 5.5. If H contains a C6-configuration, then it cannot be made k-edge-
connected by adding Φ = 3 edges without violating the partition constraints.

176 J. BANG-JENSEN, H. N. GABOW, T. JORDÁN, AND Z. SZIGETI

Fig. 3. A graph H = (V,E) with V partitioned into black, white, and shaded vertices. The sets
X1, X2, Y1, Y2 form a C4-configuration in H with respect to k = 3. Subpartitions F1,F2,F ′1,F ′2 are
shown by inner circles.

Proof. Suppose that X1, X2, Y1, Y2, Z1, Z2 form a C6-configuration in H and we
can make H k-edge-connected by adding three edges. Then each of the sets X1, X2, Y1,
Y2, Z1, Z2 will be incident with one new edge. Since we use only three new edges, none
of which is added inside some class of P, it is easy to see that one of the new edges goes
between two consecutive sets, say w.l.o.g. between X1 and Y1. Then d(X1∪Y1) = k−1
in the new graph, a contradiction.

For the next two lemmas recall that G = (V + s,E ∪ F) is the graph obtained
after executing Steps 1 and 2 of the algorithmic proof of Lemma 4.1.

Lemma 5.6. Suppose A1, B1, C1, A2, B2, C2 is a C6-obstacle in G that is not a C6-
configuration in H. Then we can replace one edge incident to s by a new edge incident
to s so that the resulting graph satisfies (1) and has a complete allowed splitting.

Proof. Let S = {a1, a2, b1, b2, c1, c2} and ai ∈ Ai, bi ∈ Bi, ci ∈ Ci for i = 1, 2.
Let Pa, Pb, Pc be the distinct classes of P such that a1, a2 ∈ Pa, b1, b2 ∈ Pb, and
c1, c2 ∈ Pc. Let A′i ⊆ Ai, B′i ⊆ Bi, C ′i ⊆ Ci, i = 1, 2 be minimal subsets of degree k−1
in G − s. Since d(s) = 6, our remark at the end of section 4 shows Φ = d(s)/2 = 3.
Now since the given partition is not a C6-configuration, we can assume w.l.o.g. that
A′1 ∩ Pd 6= ∅ for some d 6= a. Let x ∈ Pd ∩ A′1 and replace the edge sa1 by the edge
sx. Denote the new graph by G′. This graph satisfies (1) by Lemma 2.11. G′ does not
contain a C6-obstacle since s has exactly one neighbor in Pa.

Suppose G′ contains a C4-obstacle A∗1, A
∗
2, B

∗
1 , B

∗
2 , where the labeling is chosen

so that s has only neighbors from one Pi ∈ P in A∗1 ∪ A∗2. Then by the definition
of a C4-obstacle, s has three neighbors in Pi. Hence x belongs to both A∗1 ∪ A∗2 and
Pb ∪ Pc, say w.l.o.g. x ∈ A∗1 ∩ Pb. By Lemma 2.5 none of the sets A∗1, A

∗
2, B

∗
1 , B

∗
2

forms a crossing pair with any of the sets A1, B1, C1, A2, B2, C2. There are no two
sets Z ∈ {A1, B1, C1, A2, B2, C2} and W ∈ {A∗1, A∗2, B∗1 , B∗2} such that Z ∪W = V

PARTITION CONSTRAINED CONNECTIVITY AUGMENTATION 177

since Z contains only one neighbor of s. This implies that A∗1 ∪ A∗2 = A1 ∪ B1 ∪ B2.
But Lemma 2.4 implies this is impossible since all five sets have degree k. Hence G′

contains no C4-obstacle.
Now Theorem 3.6 shows G′ has a complete allowed splitting at s.
We say that a subpartition F of V is irreducible if every X ∈ F has d(X) < k.
Lemma 5.7. Suppose A1, B1, A2, B2 is a C4-obstacle in G that is not a C4-

configuration in H. Then either we can replace one edge incident to s by a new edge,
or we can replace two edges incident to s by two new edges, so that the resulting graph
satisfies (1), has no C4-obstacle, and satisfies d(s, Pi) ≤ d(s)/2 for all 1 ≤ i ≤ r.

Proof. Choose the labeling of A1, B1, A2, B2 so all neighbors of s in A1∪A2 belong
to one Pi. Let F1,F2,F ′1,F ′2 be arbitrary irreducible subpartitions of A1, A2, B1, B2,
respectively, such that in H, k− d(A1) =

∑
U∈F1

(k− d(U)), k− d(A2) =
∑
U∈F2

(k−
d(U)), k − d(B1) =

∑
W∈F ′1(k − d(W)), and k − d(B2) =

∑
W∈F ′2(k − d(W)). Our

remark at the end of section 4 shows that in G, d(s)/2 = Φ. Now since A1, A2, B1, B2

is not a C4-configuration in H we must have that
⋃
U∈F1∪F2

U contains a vertex
x 6∈ Pi, say w.l.o.g. x ∈ U ⊆ A1, U ∈ F1. Since F1 is irreducible, s has a neighbor
u ∈ U ∩ Pi. Replace the edge su by the new edge sx. If all neighbors of s in B1 ∪B2

belong to some Pj , then since A1, A2, B1, B2 do not form a C4-configuration in H it
follows again that

⋃
W∈F ′1∪F ′2 W contains a vertex y 6∈ Pj , say w.l.o.g. y ∈ W ⊆ B1,

W ∈ F ′1. The irreducibility of F ′1 shows s has a neighbor v ∈ W ∩ Pj . Replace the
edge sv by the new edge sy.

Denote the graph resulting from these edge replacements by G′. G′ satisfies (1)
by Lemma 2.11 and satisfies d(s, Pi) ≤ d(s)/2 for all 1 ≤ i ≤ r. We will show G′

contains no C4-obstacle. (It may contain a C6-obstacle.) Suppose G′ contains a C4-
obstacle A∗1, A

∗
2, B

∗
1 , B

∗
2 where the labeling is chosen so all neighbors of s in A∗1 ∪ A∗2

belong to one class of P. An argument similar to those in section 3 shows that the
two obstacle partitions coincide. (Specifically, Lemma 2.5 implies that no two obstacle
sets cross. No two obstacle sets cover V since one would violate Lemma 2.8. Lemma
2.4 completes the argument.)

Observe that A∗1∪A∗2 is not the set A1∪A2 or B1∪B2, by our edge replacements.
Thus

A∗1 ∪A∗2 = Ap ∪Bq
for some indices p, q. We claim that d(s,Ap), d(s,Bq) > 1. Suppose d(s,Ap) = 1 (the
argument for d(s,Bq) = 1 is similar). Write p = 3 − p, q = 3 − q. Then d(s,Ap) =
d(s)/2− 1, and so d(s,Bq) = 1. The definition of the two C4-obstacles shows no edge
of H leaves Ap ∪ Bq. (An edge leaving Ap goes to Ap ∪ Bq by the second obstacle
and to Bq ∪ Bq by the first obstacle. This is similar for an edge leaving Bq.) Thus
d(Ap ∪Bq) = 2, contradicting k ≥ 3.

All neighbors of s in A∗1 ∪ A∗2 are in the same partition class. Thus if p = 1,
then d(s,A1) = 1 (by our edge replacement). If p = 2, then q = 1 and d(s,Bq) = 1
(since no edge was replaced in A2). Both cases give a contradiction. We conclude the
C4-obstacle does not exist.

The following result holds for k of arbitrary parity. It subsumes Lemma 4.1.
Theorem 5.8. Let k ≥ 2 and let H = (V,E) be a graph with a partition P =

{P1, . . . , Pr}, r ≥ 2 of V . Then OPT kP(H) = Φ unless H contains a C4- or C6-
configuration, in which case OPT kP(H) = Φ + 1.

Proof. We give a constructive proof. (The same outline is followed by our efficient
algorithm.) Start by performing Steps 1 and 2 of the procedure of section 4, and let

178 J. BANG-JENSEN, H. N. GABOW, T. JORDÁN, AND Z. SZIGETI

G be the resulting graph. As remarked at the end of section 4, G has d(s)/2 = Φ, and
also d(s, Pi) ≤ d(s)/2 for all 1 ≤ i ≤ r. Now execute the procedure given after Lemma
3.4 to split off edges of G. As remarked, eventually we obtain either a complete allowed
splitting or a graph with d(s) = 4 containing a C4-obstacle A1, A2, B1, B2. In the first
alternative OPT kP(H) = Φ. The rest of the proof concerns the second alternative. We
distinguish two cases depending on how the new edges were added to G during the
sequence of splittings.

Case I. At least one split added an edge inside one of the sets A1, A2, B1, B2.
Say w.l.o.g. that an edge was added inside A1 when we split off the pair sx, sy.

Undoing this split gives a graph G′ that has d(s) = 6 and still satisfies (1). If neither
x nor y belongs to a partition Pi with d(s, Pi) maximum in G′, then it is easy to see
that G′ does not contain an obstacle. Thus Theorem 3.6 shows G′ has a complete
allowed splitting and OPT kP(H) = Φ.

In the opposite case G′, x and y have all the properties of G, x, and y in Case 1
and Case A of the proof of Theorem 3.6. Following Case 1 we define another allowed
splitting sx′, sy′ for which there are two possibilities. The first possibility is that
splitting off sx′, sy′ gives a graph with no obstacle. Since this graph has d(s) = 4,
Lemma 3.4 shows the allowed splitting can be completed. Thus OPT kP(H) = Φ.

Lemma 3.9 shows that the second possibility is that graph G′ contains a C6-
obstacle. Suppose first that G′ 6= G, i.e., d(s) ≥ 8 in G. Let G′ be the result of
executing a split in the graph G′′. Lemma 3.5 shows G′′ has a splitting that results in
a graph G∗, where d(s) = 6 and there is no C4-obstacle and no C6-obstacle. Theorem
3.6 shows we can find a complete allowed splitting in G∗. Thus OPT kP(H) = Φ.

The remaining case is when G′ = G, so G has a C6-obstacle. Lemma 5.6 shows
there are two possibilities. The first possibility is that we can repair this C6-obstacle
by moving one edge incident with s, to get a graph with a complete allowed splitting.
This shows OPT kP(H) = Φ. The second possibility is that H has a C6-configuration.
In this case it follows from Lemmas 5.5 and 5.1 that OPT kP(H) = Φ + 1.

Case II. All splits added edges between different sets of the partition A1, A2,
B1, B2.

In this case A1, A2, B1, B2 is a C4-obstacle in G. Lemma 5.7 shows there are two
possiblities. The first possibility is that A1, A2, B1, B2 is a C4-configuration, in which
case Lemmas 5.4 and 5.1 show OPT kP(H) = Φ + 1. The second possiblity is that we
can move at most two edges incident with s so that the resulting graph G′ has no
C4-obstacle. If G′ has no C6-obstacle either, then Theorem 3.6 shows OPT kP(H) = Φ.
If G′ has a C6-obstacle, then the theorem holds as shown above.

Corollary 5.9. Let k ≥ 2 and let H = (V,E) be a graph with a partition
P = {P1, . . . , Pr}, r ≥ 2 of V . If OPT k(H) ≥ 2k + 1, then OPT kP(H) = Φ.

Proof. If H has a C6-configuration, then OPT k(H) = 3, so the corollary is vacu-
ous. If H contains a C4-configuration, then Definition 5.2(iv) shows OPT k(H) = Φ ≤
2k.

Corollary 5.10. Let k ≥ 2, let H = (V,E) be a bipartite graph with bipartition
V = A ∪B, and let P = {A,B}.

• Let α = max
{d 1

2

∑
X∈F (k − d(X))e : F a subpartition of V

}
.

• Let β′1 =
∑
v∈A max{0, k − d(v)}.

• Let β′2 =
∑
v∈B max{0, k − d(v)}.

• Let Φ′ = max{α, β′1, β′2}.
Then OPT kP(H) = Φ′ unless k is odd and H contains a C4-configuration, in which
case OPT kP(H) = Φ′ + 1.

PARTITION CONSTRAINED CONNECTIVITY AUGMENTATION 179

If r = |V |, we obtain the min-max equality of the unconstrained problem by Cai
and Sun [3].

Corollary 5.11 (see [3]). Let H = (V,E) be an undirected graph and k ≥ 2.
• Let α = max

{d 1
2

∑
X∈F (k − d(X))e : F a subpartition of V

}
.

Then OPT k(H) = α.

6. Efficient algorithms. This section presents a strongly polynomial algorithm
for edge connectivity augmentation with partition constraints. The time bound is
O(n(m+n log n) log n), the same as the best-known strong polynomial bound for the
problem without partition constraints. Throughout this section n and m denote the
number of vertices and edges in the given graph, respectively. Each edge xy has a
given integer capacity, which in our notation equals d(x, y). We represent splits by
providing the edges sx, sy and an integral multiplicity γ, which indicates that the split
is to be performed γ times (producing γ new copies of the edge xy).

Although our main concern is graphs that have arbitrary capacity functions, we
also state time bounds for the special case of unit capacity graphs. In these graphs each
edge has capacity one. Parallel edges are allowed, but each copy of an edge contributes
one to the number of edges m. For unit capacity input graphs our algorithm runs
in time O(nm log n), the best-known bound for the unconstrained problem on these
graphs. (The output graph is allowed to contain high-capacity edges.) Throughout this
section time bounds that apply to unit capacity graphs are explicitly designated as
such; time bounds without such an explicit designation apply to arbitrary capacitated
graphs.

Say the split sx, sy joins vertices x and y. Throughout this section it is convenient
to define

h =
k − 1

2
.

6.1. Basic facts. Assume G = (V + s,E) has d(s) even and satisfies (1). Con-
sider a set X ⊆ V . G/X denotes the graph G with X contracted to a single vertex.
A split sx, sy in G corresponds to a split in G/X in the obvious way. Set X is con-
tractible if any collection of splits in G that is admissible in G/X is admissible in G.
(Recall that a collection of splits is admissible if executing the splits results in a graph
satisfying (1).)

We will generalize the following well-known fact first proved by Mader [15].
Proposition 6.1. A critical set is contractible.
Proof. Consider a critical set C and a collection of splits in G that is admissible

in G/C. Let G′ be the result of executing the splits in G. We must show that any
nonempty set X ⊂ V satisfies d′(X) ≥ k (as usual d′ denotes the degree function
in G′).

Case 1. X ⊆ C. No split joins two vertices of C, since d(C) = k. Thus the degree
of any subset of C is preserved by the splitting, so d′(X) ≥ k.

Case 2. C ⊆ X orX ∩C = ∅. Since the splitting is admissible inG/C, d′(X) ≥ k.
Case 3. Neither Case 1 nor Case 2 applies.
By (3),

d′(C) + d′(X) ≥ d′(C −X) + d′(X − C).

Note that both sets C −X and X − C are nonempty. The analysis of Case 1 shows
d′(C −X) ≥ k = d′(C). Case 2 shows d′(X − C) ≥ k. Substituting these relations in
the displayed inequality gives the desired conclusion d′(X) ≥ k.

180 J. BANG-JENSEN, H. N. GABOW, T. JORDÁN, AND Z. SZIGETI

To generalize Proposition 6.1 define a k-bisection of a set C ⊆ V to be a partition
of C into exactly two sets of degree k.

Lemma 6.2. A dangerous set having no k-bisection is contractible.
Proof. The argument is similar to Proposition 6.1. Consider a set C with d(C) =

k+ 1 and a collection of splits in G that is admissible in G/C. Taking G′ and d′ as in
Proposition 6.1, we must show that any nonempty set X ⊂ V satisfies d′(X) ≥ k.

If X satisfies Case 1 or Case 2 of Proposition 6.1, we have d′(X) ≥ k. (For Case 1
we use the fact that no split joins vertices of C since d(C) = k+ 1.) If neither Case 1
nor Case 2 applies, then C − X and X ∩ C are both nonempty. Since C has no k-
bisection, at least one of these sets has degree ≥ k + 1 = d′(C). If d′(C −X) ≥ d′(C)
we argue as in Case 3 of Proposition 6.1. This leaves only the following case.

Case 4. d′(C ∩X) ≥ d′(C). First suppose C ∪X 6= V . By (2)

d′(C) + d′(X) ≥ d′(C ∩X) + d′(X ∪ C).

Case 2 shows d′(X ∪ C) ≥ k. Substituting this and the inequality for Case 4 gives
d′(X) ≥ k.

Next suppose C ∪ X = V . Applying Lemma 2.8 in G/C to C shows d′(s,X) ≥
d′(s,X − C) ≥ d′(s, C) ≥ d′(s, C − X). Thus d′(X) ≥ d′(C − X). Case 1 shows
d′(C −X) ≥ k, so d′(X) ≥ k as desired.

Lemma 6.3. Suppose d(C) = k + 1 and C has a k-bisection. Let the sets of the
k-bisection be A and B. Then

(a) k is an odd integer;
(b) A and B are both maximal degree k subsets of C, and C has no other maximal

degree k subsets;
(c) Sets A and B form the unique minimum cut of graph G[C]. This cut has value

d(A,B) = h.
Proof.
(a) Applying (2) shows 2k = d(A)+d(B) = d(C)+2d(A,B). This implies d(C) =

k + 1 is even.
(b) Let M be a maximal subset of C having degree k. Assume M is distinct from

A and B. We will deduce a contradiction, thereby proving (b).
M is not a subset of A or B. Since d(M) = k, M ⊂ C. Thus M is crossing with

at least one of the sets A, B, say A. Since A and M are crossing critical sets, their
union is critical by (2). This contradicts the maximality of M .

(c) Consider any cut of G[C], say a partition of C into sets X and Y . Applying
(2), 2k ≤ d(X) + d(Y) = d(X ∪ Y) + 2d(X,Y). Since d(X ∪ Y) = k + 1, this implies
d(X,Y) ≥ k−1

2 = h. Equality holds throughout for the cut A,B. Furthermore, (b)
shows that A,B is the unique k-bisection of C, so any other cut X,Y has 2k <
d(X) + d(Y), whence d(X,Y) > h. This proves (c).

We conclude this section by mentioning two simple properties of splittings that
will be useful. As before let G satisfy (1) with d(s) even. The first property is that any
vertex x in a dangerous set has d(s, x) ≤ d(s)/2 (equivalently, d(s, x) ≤ d(s, V − x)).
This follows from Lemma 2.8.

For the second property suppose that every vertex x has d(s, x) ≤ d(s)/2 and,
furthermore, there is a unique complete splitting at s such that no split joins a vertex
to itself. Then this splitting is admissible. To see this recall that a complete admissible
splitting exists (Theorem 2.12(a)). If it contains a split sx, sx it also contains a split
sy, sz with y, z 6= x (since d(s, x) ≤ d(s)/2). Replacing these two splits by sx, sy and
sx, sz results in another admissible splitting. Performing this replacement as many

PARTITION CONSTRAINED CONNECTIVITY AUGMENTATION 181

times as possible results in the unique complete splitting with no split joining a vertex
to itself, so this splitting is admissible.

6.2. The splitting algorithm for even k. Consider the problem of finding a
complete admissible splitting at s. We present an algorithm that runs in time O(n(m+
n log n) log ns). Here ns is the number of neighbors of s, ns ≤ n. Our algorithm is
a modification of the algorithm of Nagamochi, Nakamura, and Ibaraki [18], using
contraction as the main operation. The main advantage of our approach is that it
can be extended to find a complete allowed splitting for odd k. (Both algorithms
can be so extended for even k.) In addition there is a slight efficiency advantage:
the algorithm of [18] finds a complete splitting with O(ns log ns) distinct splits. Our
splitting contains O(ns) distinct splits, the asymptotically optimum number. This
implies that fewer distinct edges get added to the graph. It improves the space bound,
from O(m+ ns log ns) to O(m). Also, while the time bound of [18] for k even is the
same as our bound, for k odd it is our bound with logns changed to logn (so in some
cases our algorithm is slightly faster). This section presents our splitting algorithm
for even k.

We first summarize the algorithm of Nagamochi, Nakamura, and Ibaraki [18] (see
also [17]). It is based on two routines. The first routine, C-SPLIT, finds a complete
splitting at s. This splitting need not be admissible. However, it has the following
property. C-SPLIT is called with a subpartition of V whose sets contain all neighbors
of s. No split found by C-SPLIT joins two vertices in the same partition set.

The second routine, HOOK-UP, is called with a complete splitting. It identifies
a maximal subset of these given splits that is admissible. It executes these splits
on the graph (so (1) is preserved). It also returns a family Y of disjoint dangerous
sets, such that each given split that was not executed joins two vertices in the same
dangerous set of Y. (In terms of our representation of splits using multiplicities, the
maximal admissible subset of splits is an assignment of a new multiplicity γ′ to each
given split sx, sy of multiplicity γ, with γ′ ≤ γ. Increasing any value γ′ destroys
admissiblity. If γ′ < γ, then x and y are in the same set of Y.) HOOK-UP runs in
time O(n(m+ n log n)). (The time is O(nm) on a unit capacity graph.)

The algorithm of [18] for even k is as follows. The algorithm is a loop that ter-
minates when d(s) = 0, i.e., vertex s has been completely split off. Each iteration of
the loop starts by using C-SPLIT to find a complete splitting, with no split joining
two vertices in the same set of Y. (For the first iteration Y is initialized to the family
of singleton sets {x} where x ranges over all neighbors of s. After the first iteration,
Y was set by HOOK-UP in the previous iteration.) HOOK-UP is called to execute a
maximal admissible subset of these splits and to update Y for these splits. If d(s) = 0,
then a complete admissible splitting at s has been executed, so the algorithm halts.

It is proved in [18] that in each iteration the size of the family Y is halved. This
implies there are O(log ns) iterations. Each iteration uses time O(n(m+ n log n)), so
the total time is O(n(m+ n log n) log ns).

We now present our modified splitting algorithm for even k. Our approach is
always to contract the sets of Y. Instead of C-SPLIT we use the following algorithm
E-SPLIT to find a complete splitting. This algorithm seems easier to modify for the
case of odd k and the case of allowed splittings. E-SPLIT outputs a complete splitting
at s, with no split joining a vertex to itself (this specification differs slightly from C-
SPLIT). Let xi, i = 1, . . . , p be the distinct neighbors of s, indexed so that d(s, x1)

182 J. BANG-JENSEN, H. N. GABOW, T. JORDÁN, AND Z. SZIGETI

equals the maximum degree d(s, xi). E-SPLIT is always called with

d(s, x1) ≤
∑
i>1

d(s, xi).

E-SPLIT maintains di as the value of d(s, xi) if the splits output so far were to be
executed. So initially di = d(s, xi) for i = 1, . . . , p. E-SPLIT maintains the preceding
inequality throughout its execution, i.e.,

d1 ≤
∑
i>1

di.(7)

Procedure E-SPLIT.
Step 1. While (7) holds with strict inequality, repeat the following.
Step 1(a). Choose distinct indices i, i′ > 1 with both di, di′ > 0. Output split

sxi, sxi′ with multiplicity γ = min{di, di′ , (
∑
i>1 di−d1)/2}. Decrease di and di′ by γ.

Step 2. (At this point (7) holds with equality.) Output splits sx1, sxi with mul-
tiplicity di, for all indices i > 1 that have positive di.

We show that E-SPLIT works correctly, i.e., it outputs a complete splitting at
s, with no split joining a vertex to itself. First observe that d1 = max{di : i ≥ 1}
throughout the algorithm. This follows since Step 1(a) only decreases values di with
i > 1. Also observe that (7) holds throughout the algorithm, by the definition of γ
and the termination condition of Step 1(a).

Now consider Step 1. First observe there are at least two indices i > 1 with di
positive, since (7) holds with strict inequality and every di, i > 1 is no larger than d1.

Next observe that Step 1 eventually halts. This follows because the sum
∑
i>1 di

has the same parity as d1 when E-SPLIT starts (since d(s) is even). Each split main-
tains this relation, since it decreases the sum by an even integer. Thus eventually (7)
holds with equality and Step 1 completes.

Step 2 works correctly since (7) holds with equality.
To analyze the efficiency of E-SPLIT, first observe that it outputs at most p

distinct splits. This follows because, with one exception, every split (in Step 1 or Step
2) decreases some di, i > 1 to zero. The exception (which may not exist) is the unique
split in Step 1 that achieves equality in (7).

Now it is easy to see that E-SPLIT uses total time O(p).
Our splitting algorithm works by finding splits in a contracted graph H. We

execute these splits in both the contracted graph H and the original graph G. (So
both G and H change throughout the algorithm. The vertex set of G is always V +s.)
The following invariant holds throughout the algorithm:

Graph H can be obtained from G by contracting a collection of disjoint dangerous
subsets of V . Both G and H satisfy (1).

The invariant will guarantee correctness of the algorithm.
We use the following auxiliary routine to translate a split from H to G. It is called

with two disjoint sets X,Y ⊂ V and an integer γ. X and Y have been contracted to
vertices in H, and the split sX, sY with multiplicity γ is admissible, in H.

Procedure TRANSLATE(X,Y, γ).
Repeat Step 1 until γ = 0.
Step 1. Choose a vertex x of G corresponding to X: if X is a vertex of G let

x = X; otherwise choose a vertex x ∈ X that is a neighbor of s in G. Similarly
choose a vertex y of G corresponding to Y . Execute split sx, sy in G with multiplicity

PARTITION CONSTRAINED CONNECTIVITY AUGMENTATION 183

γ0 = min{d(s, x), d(s, y), γ} (here d is the degree function in G). Decrease γ by γ0.
Assuming the invariant holds, TRANSLATE executes a sequence of splits that

is admissible in G. This follows because any dangerous set is contractible when k
is even (by Proposition 6.1, Lemma 6.2, and Lemma 6.3(a)). The final G obtained
by TRANSLATE corresponds to H with split sX, sY executed (so the invariant is
preserved).

Now we present our splitting algorithm for even k. We assume the given graph
G satisfies (1) with d(s) even. In addition we assume that every vertex x satisfies
d(s, x) ≤ d(s)/2. This inequality holds automatically in many applications of splitting,
e.g., Frank’s algorithm of section 2. If not, we can enforce the inequality by deleting
all but d(s)−d(x) edges sx for the vertex x satisfying d(s, x) > d(s)/2. (To prove this
note that in a complete admissible splitting at most d(s)− d(x) copies of edge sx are
split off with an edge sy, y 6= x, so the remaining copies are in splits sx, sx which do
not affect the connectivity.)

The splitting algorithm works simultaneously on graphs G and H that satisfy the
invariant stated above. The algorithm executes a complete admissible splitting at s
on the original graph G. The algorithm starts with H initialized to the given graph G.

Procedure EVEN-SPLIT.

Repeat Steps 1–3 until d(s) = 0.

Step 1. Call E-SPLIT to find a complete splitting at s in graph H, with no split
joining a vertex to itself.

Step 2. Call HOOK-UP to execute a maximal admissible subset of these splits
in H and to return the corresponding family of dangerous sets Y. For each split that
was executed in H call TRANSLATE to execute it in G.

Step 3. In H contract each set Y ∈ Y to a single vertex.

To show EVEN-SPLIT is correct first observe that Step 1 works correctly because
(7) holds whenever E-SPLIT is called. To prove (7) recall that it holds by assumption
when the algorithm starts and E-SPLIT is called for the first time. In subsequent
iterations Step 3 ensures that every vertex of H adjacent to s forms a dangerous set.
This implies (7) (by the first remark at the end of section 6.1).

Next observe that the invariant is preserved by all steps: the splits executed by
HOOK-UP and TRANSLATE preserve the invariant (by the discussion of TRANS-
LATE). The contractions done in Step 3 clearly preserve the invariant.

The invariant implies that if EVEN-SPLIT halts, it has executed a complete
admissible splitting on the original graph G. Thus we need only prove termination.
We do this by showing there are O(log ns) iterations in EVEN-SPLIT.

Consider graph H after Step 2. Any remaining neighbor x of s was in an unex-
ecuted split sx, sy, with x and y now belonging to the same set of Y. This set gets
contracted in Step 3. Now let si denote the number of distinct neighbors of s at the
start of the ith iteration. Then

si+1 ≤ si
2
.

Since s1 = ns, there are O(log ns) iterations.

Next we show that the total number of distinct splits executed in Step 2 in all
iterations is O(ns), for both G and H. This fact for graph H is important for reasons
of efficiency: each distinct split executed in Step 2 can add a new edge to H, increasing
space and the time for subsequent computations. The fact for graph G is a measure
of quality of the complete splitting produced by EVEN-SPLIT.

184 J. BANG-JENSEN, H. N. GABOW, T. JORDÁN, AND Z. SZIGETI

To prove the fact for H, Step 1 (of EVEN-SPLIT) gives a splitting with at most
si distinct splits, by our discussion of E-SPLIT. So clearly Step 2 executes at most si
distinct splits in H. The inequality displayed above shows the sum of all quantities si
is O(s1) = O(ns).

To prove the fact for G it suffices to show that a total of at most ns more splits
is done in G than in H. This follows because for a given split sX, sY in H, each
execution of Step 1 of TRANSLATE excepting the last decreases a value d(s, x) to 0.

Now we can show the time for the entire algorithm EVEN-SPLIT is O(n(m +
n log n) log ns). Graphs G and H both have O(m + ns) = O(m) edges. Each call to
HOOK-UP takes time O(n(m+n log n)). The remaining processing in EVEN-SPLIT
takes time O(m) in each iteration. There are O(log ns) iterations, so the desired time
bound follows. It is easy to show that for unit capacity graphs EVEN-SPLIT runs in
time O(nm log ns). The argument is the same as above, with the observation that G
and H always have O(m) edges because each split decreases the number of edges.

6.3. The splitting algorithm for odd k. We turn to our splitting algorithm
for k an odd integer. The algorithm of [18] is based on the (strong) successive augmen-
tation property [4]: it first executes splits to achieve connectivity k − 1, and then it
augments the connectivity of the resulting graph to k. Our algorithm is a modification
of the algorithm for k even, again based on contraction. We present the algorithm by
specifying the changes made to the k even algorithm. The resulting algorithm will
apply to both even and odd k.

The main change in the algorithm is to avoid creating splits that are obviously
wrong. Call a split sx, sy foolish if {x} and {y} are critical sets and d(x, y) = h. A
foolish split is inadmissible, since d({x, y}) = d(x)+d(y)−2d(x, y) = 2k−2h = k+1.
We modify E-SPLIT so it creates at most C foolish splits for some constant C. (We
do not take care to minimize the value of C. Also the value of C will change when we
modify the algorithm to do allowed splitting.)

We start with two observations about foolish splits. First, a vertex x is in at most
two foolish splits. This follows because {x} must be critical and x must be a neighbor
of s, i.e., d(x) = k = 2h + 1 and d(s, x) ≥ 1. Thus d(x, y) = h for at most two
vertices y.

Second, in a complete splitting a vertex x is in at most one foolish split. This is
obvious if d(s, x) = 1. If d(s, x) > 1, then the above calculation shows we can have
d(x, y) = h for at most one vertex y.

Now we present procedure G-SPLIT. Like E-SPLIT, it outputs a complete split-
ting with no split joining a vertex to itself. G-SPLIT is the same as E-SPLIT with
one change. Step 1(a) chooses indices i, i′ by executing the following Choice Step.

Choice Step. Choose an index i > 1 with di > 0. Let F be the set of indices
f > 1 with sxi, sxf a foolish split. (Note |F | ≤ 2.) Choose an index i′ 6= i, 1 with
di′ > 0 and, if possible, i′ /∈ F . If i′ ∈ F and no splits have been output yet in Step
1, redefine i and i′ to be the two indices of F .

Note that if k is even there are no foolish splits, so G-SPLIT is the same as E-
SPLIT. It is not immediately obvious that the last statement of the Choice Step is
well defined or correct. We now prove the algorithm works as desired. Assume that
G-SPLIT (like E-SPLIT) is called with values di corresponding to vertices in a graph
H that satisfies (1).

Lemma 6.4.
(a) G-SPLIT outputs a complete splitting, with no split joining a vertex to itself.
(b) G-SPLIT outputs at most C = 2 foolish splits.

PARTITION CONSTRAINED CONNECTIVITY AUGMENTATION 185

(c) The first split output by G-SPLIT is not foolish.

Proof. Regarding part (a), by definition G-SPLIT never outputs a split joining
a vertex to itself. Now consider Step 2 of G-SPLIT. It outputs at most one foolish
split, since all its splits involve vertex x1. Suppose no splits are output in Step 1.
This means G-SPLIT starts with equality in (7). Step 2 outputs the unique complete
admissible splitting of H with no split joining a vertex to itself (by the second remark
at the end of section 6.1). Clearly (c) holds in this case.

To complete the proof we analyze Step 1 of G-SPLIT. For (b) it suffices to show
Step 1 outputs at most one foolish split. We consider two cases.

Case 1. For the first value of i chosen in Step 1, i′ /∈ F .

This certainly implies part (c). Furthermore, it ensures that the last statement of
the Choice Step never redefines i and i′. Now suppose at some point Step 1 outputs a
foolish split. Right before this occurs, at most three vertices xj have j > 1 and dj > 0
(specifically the vertices xi and xi′ in the foolish split, and at most one other vertex
xf with f ∈ F). Step 1 can output at most one foolish split involving only these three
vertices (since a given vertex is in at most one foolish split that gets output). Thus
(b) holds, as well as (a).

Case 2. Case 1 does not apply.

Let I be the set of all indices that are larger than 1 with di initially positive. A
complete admissible splitting exists. Recall (7) holds with strict inequality when Step
1 is executed. This implies there is an admissible split sxi, sxi′ with i, i′ ∈ I.

Suppose |I| = 2. Obviously the first value of i gives the only split that is possible.
This split is not foolish since it is admissible. Thus Case 1 applies.

Now suppose |I| ≥ 3. The first value of i gives a set with F = I − {i}. Thus
|I| ≤ 3 and so |I| = 3. Thus the unique admissible split formed from indices in I comes
from the two indices in F . The last statement of the Choice Step outputs this split.
This finishes Step 1 (again since a complete admissible splitting exists). Thus (a)–(c)
hold.

G-SPLIT outputs at most p distinct splits, since it is a special case of E-SPLIT.
It is easy to see that G-SPLIT runs in time O(m+ n).

Now we present the splitting algorithm GENERAL-SPLIT. This procedure con-
structs a complete admissible splitting for arbitrary k. As before we assume the given
graph G satisfies (1) with d(s) even, and every vertex x satisfies d(s, x) ≤ d(s)/2.
GENERAL-SPLIT is derived from EVEN-SPLIT by making two changes. Step 1
of GENERAL-SPLIT calls G-SPLIT rather than E-SPLIT. Step 3, which does the
contractions, is replaced by the following step.

Contraction Step. In H do the following for each set Y ∈ Y: If Y is critical,
contract Y . Otherwise (d(Y) = k + 1) test if Y has a k-bisection. If it does not,
contract Y . If it does, say into sets A and B, contract A and contract B.

We make several remarks on the Contraction Step. If k is even, there are no
k-bisections. Hence GENERAL-SPLIT becomes identical to EVEN-SPLIT. If Y has
a k-bisection, after contracting A and B a split sA, sB is foolish. And if sx, sy is a
foolish split giving a set Y = {x, y}, the Contraction Step does not change the graph
when it processes Y .

The Contraction Step tests if Y has a k-bisection by using the algorithm of [16]
to find a minimum cut of H[Y]. Lemma 6.3(c) shows this cut is the k-bisection, if one
exists. It is a simple matter to check if the cut is a k-bisection.

186 J. BANG-JENSEN, H. N. GABOW, T. JORDÁN, AND Z. SZIGETI

We proceed to analyze GENERAL-SPLIT. To prove correctness we first state the
new invariant:

Graph H can be obtained from G by contracting a collection of disjoint subsets of V ,
each of which is either critical or a dangerous set having no k-bisection. Both G and
H satisfy (1).

The TRANSLATE routine preserves the new invariant. This follows by the ar-
gument of section 6.2 with one change: any set contracted in H is contractible in G.
This follows from Proposition 6.1 and Lemma 6.2.

Now we can use the same argument as for EVEN-SPLIT to show that in Step 1
of GENERAL-SPLIT (7) holds and also GENERAL-SPLIT preserves its invariant.
For the first argument note that the Contraction Step still ensures that after the first
iteration every neighbor of s is in a dangerous set. For the second argument note that
the Contraction Step clearly preserves the invariant.

We must also prove that GENERAL-SPLIT terminates. We do this by showing
that in H, every iteration of GENERAL-SPLIT either decreases the number of neigh-
bors of s or decreases the number of vertices. To do this recall the first split output by
G-SPLIT is not foolish (Lemma 6.4(c)). Let this split be sx, sy with multiplicity γ.

First suppose HOOK-UP splits off γ pairs of edges sx, sy. We show this decreases
the number of neighbors of s in H. This is certainly true if γ = min{d(s, x), d(s, y)}.
It is easy to see that when the remaining possibility for γ holds, sx, sy is the last (as
well as the first) split output by Step 1 of G-SPLIT. Thus after executing this split
equality holds in (7), and the remaining splits are the only ones possible in a complete
admissible splitting at s. Hence these splits are all admissible. Thus this iteration of
GENERAL-SPLIT executes a complete splitting, resulting in no remaining neighbors
of s.

On the other hand suppose HOOK-UP splits off fewer than γ pairs of edges sx, sy.
HOOK-UP returns a set Y ∈ Y containing both x and y, and Y 6= {x, y} since the
split is not foolish. Hence the Contraction Step decreases the number of vertices of H
when it processes set Y . In summary we have shown that GENERAL-SPLIT always
terminates.

Now we prove the time bound. The key step is to prove there are O(log ns)
iterations in GENERAL-SPLIT.

We first introduce some notation. Let Hi be the graph H at the start of the ith
iteration of GENERAL-SPLIT. (Our argument will not refer to the corresponding
graph G.) For example, H1 is the given graph. The degree function in Hi is denoted
di. Suppose v is a vertex in Hi. For j ≥ i, v denotes the vertex in graph Hj that
contains v. When we use this notation the value of j will be explicitly stated or clear
from the context. For instance dj(v) denotes the degree in Hj of vertex v in Hj .

We classify the contractions made in Contraction Steps as follows. Call a contrac-
tion good if it reduces the number of vertices that contain a neighbor of s in H1. In
other words let X be a set that gets contracted in graph Hi. In a good contraction
X contains distinct vertices v and w (in Hi) where both v and w are neighbors of s
in H1. (v and w need not be neighbors of s in Hi.) A contraction that is not good is
bad. It is easy to see that a contraction is good if X ∈ Y. So in a bad contraction X
is one of the two sets of a k-bisection.

In the following discussion assume the number of iterations is at least four. Thus
graph Hi exists for 1 ≤ i ≤ 4.

Lemma 6.5. Let v be a neighbor of s in H1. At least one of the following alterna-
tives holds for some index i, 1 ≤ i ≤ 3:

PARTITION CONSTRAINED CONNECTIVITY AUGMENTATION 187

(i) v is not a neighbor of s in H4;
(ii) v is in a foolish split created in Hi;
(iii) v is in a good contraction done in Hi;
(iv) w, a neighbor of s in Hi with di(v, w) = h, is in a good contraction done in

Hj , for some j in i < j ≤ 3.
Proof. We assume none of alternatives (i)–(iv) hold and derive a contradiction.
Since (i) fails, v is a neighbor of s in H4. Thus for 1 ≤ i ≤ 3, v is in a split created

in Hi but not executed by HOOK-UP. For 1 ≤ i ≤ 3 let sv, swi be such a split. (Thus
wi is a vertex of Hi.) We will show that in H4 vertices v, w1, w2, and w3 are distinct
and in addition satisfy inequality (8). This will lead to the desired contradiction.

Since (iii) fails, split sv, swi results in a bad contraction. This implies

di+1(v) = k.

Also Lemma 6.3(c) shows

di+1(v, wi) = h.

Again since (iii) fails, v 6= wi in H4 for 1 ≤ i ≤ 3. This plus the preceding equation
implies that for i < j ≤ 4,

dj(v, wi) ≥ h.(8)

Next we show that in H4, wi 6= wj for any indices i, j with 1 ≤ i < j ≤ 3. First
we show wi 6= wj in Hj . As noted above, dj(v) = k. Since (iv) fails, dj(wi) = k.
By (8), dj(v, wi) ≥ h. If equality holds, then wi 6= wj because (ii) fails. If strict
inequality holds, then wi 6= wj because dj+1(v, wi) > h = dj+1(v, wj). We conclude
that wi 6= wj in Hj .

Thus to have wi = wj in H4 a contraction must merge the distinct vertices wi
and wj in some graph Hr, r > j. But since (iv) fails, this never occurs. Hence wi 6= wj
in H4.

Now the distinctness of vertices v, w1, w2, and w3 in H4 and inequality (8) in H4

imply

d4(v) ≥ d4(v, w1) + d4(v, w2) + d4(v, w3) + d4(v, s) ≥ 3h+ 1 > 2h+ 1 = k.

(Note that h ≥ 1 since k ≥ 3.) But as noted above, d4(v) = k. This contradiction
proves the lemma.

Let si denote the number of neighbors of s in Hi. Let C ′ = 3C. We will use the
lemma to show

s4 − C ′ ≤ 5

6
(s1 − C ′).(9)

In proof, let S be the set of all neighbors of s in H1. Define the following quantities
corresponding to the four cases of Lemma 6.5:

• g is the number of vertices of S that are in a good contraction in at least one
Hi, 1 ≤ i ≤ 3.
• n is the number of vertices of S, not counted in g, that are not neighbors of s

in H4. (This conflicts with the usual usage of n but will not cause confusion.)
• f is the number of vertices of S, not counted in g or n, in a foolish split in

some Hi, 1 ≤ i ≤ 3.

188 J. BANG-JENSEN, H. N. GABOW, T. JORDÁN, AND Z. SZIGETI

• r is the number of vertices of S not counted in g, n or f .
By definition s1 = g + n+ f + r.

First observe that the vertices counted in g belong to at most g/2 distinct vertices
in H4. This follows because a good contraction merges at least two vertices of S.

The vertices counted in n are no longer neighbors of s in H4. Thus we deduce

s4 ≤ g

2
+ f + r.

Next we show

r ≤ 2g.

Lemma 6.5(iv) applies to any vertex v that is counted in r. Thus some vertex w
counted in g has d4(v, w) ≥ h. Any contraction results in a vertex of degree at most
k+ 1. Hence d4(w) ≤ k+ 1. This implies w has d4(v, w) ≥ h for at most four vertices
v (since 5h ≥ 2h+ 3 = k + 2). Thus r ≤ 4(g/2) = 2g as desired.

Finally recall that each iteration creates at most C foolish splits. Hence three
iterations create at most 3C = C ′ foolish splits. Thus

f ≤ C ′.

Combining the above inequalities shows
s4 − C ′ ≤ g

2
+ f + r − C ′ ≤ g

2
+

5

6
(f + r) +

C ′

6
+
g

3
− C ′

=
5

6
(g + r + f − C ′) ≤ 5

6
(s1 − C ′).

This proves (9).
For convenience set si = 0 if i is larger than the number of iterations, so i ranges

over all integers ≥ 1.
Lemma 6.6. (a) There are O(log ns) iterations of GENERAL-SPLIT.
(b)

∑
i si = O(ns).

Proof. We can apply (9) to an arbitrary graph H1. Hence for any index i,

si+3 − C ′ ≤ 5

6
(si − C ′).

This shows there are O(log ns) iterations where s has more than C ′ neighbors. It also
implies the sum of all values si that are larger than C ′ is O(ns).

To complete the proof (of both parts) it suffices to show that si ≤ C ′ in O(1)
iterations i. To do this we strengthen our proof of termination of GENERAL-SPLIT.
We claim that every iteration of GENERAL-SPLIT either decreases si or increases
the number of foolish splits that exist in H. This claim completes the proof; it implies
that when si ≤ C ′, si decreases after at most 2C ′ iterations (since a vertex is in at
most two foolish splits).

To prove the claim, consider an iteration that does not decrease si. A split su, sv
that is foolish at the start of the iteration is foolish in the next iteration. In proof, since
the contraction step does not merge any neighbors of s, the next graph has u 6= v,
d(u) = d(v) = k, and d(u, v) ≥ h. The last inequality actually holds with equality,
d(u, v) = h. (Otherwise 2k = d(u)+d(v) = d(u∪v)+2d(u, v) ≥ k+2(h+1) = 2k+1,
a contradiction.) So su, sv is a foolish split.

PARTITION CONSTRAINED CONNECTIVITY AUGMENTATION 189

Now consider the first split sx, sy output by G-SPLIT. Recall this split is not
foolish, and our proof of termination of GENERAL-SPLIT shows HOOK-UP returns
a set Y ∈ Y containing x and y. In the Contraction Step Y has a k-bisection (since
the Contraction Step does not merge neighbors of s). Thus the contractions make
sx, sy a new foolish split.

As with EVEN-SPLIT, the total number of distinct splits executed in Step 2 in
all iterations is O(ns), for both G and H. This follows from the same argument as
EVEN-SPLIT, using Lemma 6.6(b) in the analysis of graph H.

Now we show the total time for GENERAL-SPLIT is O(n(m + n log n) log ns).
The previous paragraph shows each graph Hi has O(m+ns) = O(m) edges. Each call
to HOOK-UP takes time O(n(m+n log n)). Testing each graph H[Y] for a k-bisection
involves running the edge connectivity algorithm of [16]. It uses time O(n(m+n log n))
on a graph of n vertices and m edges. In one Contraction Step, the total number of
vertices in all graphs H[Y] is at most n and each H[Y] has at most m edges. This
implies the total time for one Contraction Step is O(n(m+n log n)). (A tighter analysis
shows all k-bisection tests in the entire algorithm use total time O(n(m + n log n)).)
The remaining processing in GENERAL-SPLIT takes time O(m) in each iteration.
Lemma 6.6(a) shows there are O(log ns) iterations, so the desired time bound follows.

The same analysis shows that the time on unit capacity graphs is O(nm log ns).
We use the fact that the edge connectivity algorithm of [16] runs in time O(nm) on
these graphs. In summary we have proved the following refinement of [18].

Theorem 6.7. Procedure GENERAL-SPLIT finds a complete admissible splitting
at a vertex s in time O(n(m+n log n) log ns) and space O(m). The splitting contains
O(ns) distinct splits. The time on unit capacity graphs is O(nm log ns).

6.4. Complete splittings respecting partitions and degree sequences.
The main task in adapting the algorithm of section 6.3 to allowed splitting is modifying
G-SPLIT to create only splits that join two different partition classes. This section
solves this problem.

Before discussing the problem recall that the degree sequence of a graph consists
of the integers d(x), where x ranges over every vertex. Hakimi [10] proved that given
integers di, i = 1, . . . , p are the degree sequence of a multigraph with no self-loops
if and only if

∑
i di is even and d1 ≤

∑
i>1 di, where the indexing is chosen so d1 =

max{di : 1 ≤ i ≤ p}.
Recall that E-SPLIT finds a complete splitting at s, with no split joining a vertex

to itself. In the given (multi)graph let s have neighbors xi, i = 1, . . . , p, and let di
denote d(s, xi). The splitting found by E-SPLIT exists precisely when di is the de-
gree sequence of a multigraph with no self-loops. Now it is clear that our algorithm
E-SPLIT gives an alternate proof of Hakimi’s theorem. (The necessity of Hakimi’s
condition is clear.) The algorithms of this section for complete splitting give other
theorems on degree sequences, which we state with the algorithm.

We now state the problem solved in this section more precisely. In the graph G
that is given for allowed splitting, let the partition be P = {Pi : 1 ≤ i ≤ r}. Recall
that our routines E-SPLIT and G-SPLIT are executed on a contraction H of G. For
each neighbor x of s in H and each partition class Pi, 1 ≤ i ≤ r, let di(s, x) denote
the total number of edges joining s to a vertex v of G that is in both vertex x and
Pi. Thus d(s, x) =

∑
i di(s, x). The task of E-SPLIT, when we compute allowed split-

tings, is to output a complete splitting that can be written as splits sxi, syj , where
x and y are distinct vertices of H, i and j are indices of distinct partition classes,
and the total multiplicity of all splits involving xi is di(s, x). (Note that in the initial

190 J. BANG-JENSEN, H. N. GABOW, T. JORDÁN, AND Z. SZIGETI

iteration when H = G, a given vertex x has di(s, x) > 0 for at most one index i.) The
task of G-SPLIT for allowed splittings is the same as E-SPLIT with the additional
requirement of not creating too many foolish splits (as in Lemma 6.4).

6.4.1. Even target connectivity k. We begin with the algorithm used when
the target k is even and the partition has exactly two classes. This routine is of
special interest because it is used for bipartite connectivity augmentation. Also, it is
a subroutine of our algorithm for general partitions.

Let us restate the problem to be solved in a convenient notation. We are given
nonnegative integers di1, di2, i = 1, . . . , p, such that∑

i

di1 =
∑
i

di2.(10)

(Note that in our splitting algorithm the index i corresponds to vertex xi, di1 and
di2 correspond to d1(s, xi) and d2(s, xi), respectively.) The task of the problem is to
output a complete pairing, defined as a collection of ordered pairs of indices ii′ where
i 6= i′, with corresponding nonnegative multiplicities γii′ , such that di1 =

∑
i′ γii′ and

di′ =
∑
i γii′ . Choose indices so that d11 + d12 = max{di1 + di2 : 1 ≤ i ≤ p}. We will

show that a complete pairing exists if

d11 + d12 ≤
∑
i>1

di1 + di2.(11)

First note the following interpretation in terms of degree sequences. Recall that
a party graph is a complete bipartite graph with a perfect matching deleted. (Every
person at the party talks to every member of the opposite sex except his or her
spouse.) We generalize this slightly. For index i ranging from 1 to p, say that di1, di2
is the degree sequence of a party graph if there is a bipartite multigraph with vertices
xi1 on one side, xi2 on the other side, no edge xi1xi2, and d(xij) = dij for j = 1, 2.
We prove di1, di2 is the degree sequence of a party graph if and only if (10) and (11)
hold, where the indexing is as described above. The necessity of these conditions is
clear.

Our algorithm for two partition classes and even k is the following procedure
BE-SPLIT. It maintains (10) and (11) throughout its execution.

Procedure BE-SPLIT.

Step 1. While (11) holds with strict inequality, repeat the following Step 1(a).
Step 1(a). Choose distinct indices i, i′ > 1 with di1, di′2 > 0. Output pair ii′ with

multiplicity

γ = min

{
di1, di′2,

∑
i>1(di1 + di2)− (d11 + d12)

2

}
.

Decrease di1 and di′2 by γ.
Step 2. (At this point (11) holds with equality.) Output pairs 1i with multiplicity

di2 and i1 with multiplicity di1, for all indices i > 1 that have positive di2 or di1,
respectively.

We show that BE-SPLIT outputs a complete pairing. Consider Step 1. First we
show the indices in Step 1(a) exist.

We claim some index i > 1 has di1 positive. In proof (10) shows
∑
i>1 di2 =∑

i di1 − d12. Substituting in (11) with strict inequality gives

d11 + d12 < 2
∑
i>1

di1 + d11 − d12,

PARTITION CONSTRAINED CONNECTIVITY AUGMENTATION 191

which implies the claim. Similarly some i′ > 1 has di′2 positive. If these indices i and
i′ are distinct they form the desired pair for Step 1(a). Suppose they are identical,
i.e., some i > 1 has di1, di2 > 0. An index i′ > 1 distinct from i has di′1 + di′2
positive, since (11) holds with strict inequality and di1 + di2 ≤ d11 + d12 (d11 + d12 =
max{di1 + di2 : i ≥ 1} throughout the algorithm). Thus either ii′ or i′i forms the
desired pair.

Next observe that Step 1 eventually halts. This follows because the two sides of
(11) have the same parity (by (10)). Each pair output maintains this relation. Thus
eventually (11) holds with equality and Step 1 halts.

Finally we show Step 2 works correctly, i.e., the pairs that are output exist and
account for all remaining values di1, di2. When we have equality in (11) the inequality
displayed above becomes an equality and implies d12 =

∑
i>1 di1. Similarly, d11 =∑

i>1 di2. These two relations show the pairs in Step 2 exist and exhaust all remaining
values di1, di2, i.e., a complete pairing has been output.

Next we analyze the efficiency of BE-SPLIT. It outputs O(p) distinct pairs. The
argument is the same as for E-SPLIT: excluding the last pair output in Step 1, every
pair decreases some di1 or di2 to zero.

BE-SPLIT can be implemented to use total time O(p). In Step 1 we maintain a
list of all indices i > 1 having positive di1, and we maintain a similar list for di2. An
execution of Step 1(a) chooses the first index from both lists; if they are equal it also
chooses the second index from one of the lists.

This concludes the discussion of BE-SPLIT. (We have also proved the theorem on
party graph degree sequences.) We turn to the problem for general partitions (and even
target k). As before we first restate the problem in a convenient notation. We are given
nonnegative integers dij for i = 1, . . . , p and j = 1, . . . , q. In our splitting algorithm
i corresponds to vertex xi, j corresponds to partition class j, and dij corresponds to
dj(s, xi). The given values have these properties for an integer D:∑

i,j

dij = 2D;

∑
j

dij ≤ D for i = 1, . . . , p;

∑
i

dij ≤ D for j = 1, . . . , q.

(Note
∑
i,j dij equals

∑p
i=1

∑q
j=1 dij .) The task of the problem is to output a complete

pairing, defined as a collection of pairs of ordered pairs ij, i′j′, where i 6= i′ and j 6= j′,
with corresponding nonnegative multiplicities γij,i′j′ = γi′j′,ij , such that for every
i = 1, . . . , p and j = 1, . . . , q, dij =

∑
i′,j′ γij,i′j′ .

In terms of degree sequences we prove the following. Let indices i and i′ range
over 1 ≤ i, i′ ≤ p, j and j′ range over 1 ≤ j, j′ ≤ q. Say that dij is the degree sequence
of a p, q-party graph if there is a multigraph with vertices xij , edges xijxi′j′ , where
i 6= i′ and j 6= j′, and degrees d(xij) = dij . We prove dij is the degree sequence of a
p, q-party graph if and only if the three conditions displayed above hold. The necessity
of these conditions is clear.

Our algorithm incorporates an additional goal of limiting the number of pairs ii′

that have pairs ij, i′j′ which are output. It is convenient to state the algorithm using
the following notation. Choose indices so that max{∑j dij : 1 ≤ i ≤ p} ∪ {∑i dij :
1 ≤ j ≤ q} equals either

∑
j d1j or

∑
i di1. In the first case define δi = 1, δj = 0. In

192 J. BANG-JENSEN, H. N. GABOW, T. JORDÁN, AND Z. SZIGETI

the second case define δi = 0, δj = 1. Thus in both cases

max
{∑

j dij : 1 ≤ i ≤ p
}
∪
{∑

i dij : 1 ≤ j ≤ q
}

=
∑
i=δi or j=δj

dij .

(In the summation on the right the indices range over all pairs i, j such that either
i = δi and 1 ≤ j ≤ q or j = δj and 1 ≤ i ≤ p.) We assume that dij = 0 if i or j is
zero.

Our algorithm for an arbitrary partition and even k is the following procedure,
PE-SPLIT. It maintains the following relations throughout its execution.∑

i,j

dij is even,(12)

∑
i=δi or j=δj

dij ≤
∑

i 6=δi,j 6=δj
dij .(13)

Notice that for the given values dij these conditions are equivalent to those assumed
for the input.

Procedure PE-SPLIT.
Step 1. While (13) holds with strict inequality, repeat the following Steps 1(a)

and 1(b).
Step 1(a). Choose distinct indices i, i′ > δi such that there are distinct indices

j, j′ > δj with dij , di′j′ > 0.
Step 1(b). While (13) holds with strict inequality and while there are distinct

indices j, j′ > δj such that dij , di′j′ > 0, output the pair ij, i′j′ with multiplic-
ity γ = min{dij , di′j′ , (

∑
i 6=δi,j 6=δj dij −

∑
i=δi or j=δj dij)/2}. Decrease dij and di′j′

by γ.
Step 2. (At this point (13) holds with equality.) Output the remaining pairs by

using procedure BE-SPLIT on input values d′i1, d
′
i2 defined as follows. If δi = 1, then

d′j1 = d1j , d
′
j2 =

∑
i>1

dij for 1 ≤ j ≤ q.

If δj = 1, then

d′i1 = di1, d
′
i2 =

∑
j>1

dij for 1 ≤ i ≤ p.

In both cases the pairs of the form ii′ output by BE-SPLIT correspond to pairs of
the form ij, i′j′ in the obvious way.

We now show PE-SPLIT outputs a complete pairing. Consider Step 1. First we
show the indices in Step 1(a) exist. For any index i 6= δi,∑

j 6=δj
dij ≤

∑
j

dij ≤
∑

i=δi or j=δj

dij <
∑
i 6=δi

∑
j 6=δj

dij .

The second inequality follows by the relation defining δi and δj (which holds through-
out the algorithm). The third inequality restates the fact that (13) holds with strict
inequality.

The displayed relation implies that
∑
j 6=δj dij is nonzero for at least two indices

i 6= δi, say i, i′. These indices have corresponding indices j, j′ that can be used in Step

PARTITION CONSTRAINED CONNECTIVITY AUGMENTATION 193

1(a) unless there is an index r 6= δj with dir, di′r > 0. To handle this case note that∑
i 6=δi dij is nonzero for at least two indices j 6= δj , say j, j′ (the proof is analogous to

the previous proof for i, i′). Without loss of generality j 6= r. We can choose i′′ 6= δi
so that di′′j > 0, and w.l.o.g. i′′ 6= i. Hence the indices i, i′′, r, j can be used in Step
1(a).

Next observe that Step 1 eventually halts. This follows because the two sides of
(13) have the same parity (by (12)). Each pair output maintains this relation. Thus
eventually (13) holds with equality and Step 1 halts.

To show Step 2 works correctly we need only check that the input conditions (10)
and (11) for BE-SPLIT hold. Equality (10) follows from equality in (13). Observe

that (11) is equivalent to dj1 + dj2 ≤
∑

i
di1+di2

2 for every index j. If δi = 1, then

cd′j1 + d′j2 =
∑
i

dij ≤
∑
j

d1j =

∑
i,j dij

2
,

which gives the equivalent form of (11). The same argument applies to the case δj = 1.
Next we show that PE-SPLIT outputs a small number of pairs. Specifically only

O(p) pairs ii′ have indices jj′ for which γij,i′j′ is positive.
To prove this first consider two indices i, i′ chosen in Step 1(a). Without loss of

generality assume this is not the last execution of Step 1(a). This implies that when
Step 1(b) halts one of the following conditions holds:

(i) dij = 0 for every index j > δj, or a similar condition holds for i′;
(ii) there is an index j such that dij′ = di′j′ = 0 for every index j′ 6= j, j′ > δj.

Before Step 1(a) neither condition holds. Thus condition (i) holds at most once for a
given index i. For (ii) note that at least one of the indices i, i′—say i—has more than
one positive value dij , j > δj , before Step 1(a), but only one positive value after Step
1(b). Thus condition (ii) holds at most once for a given index i. We conclude Step
1(a) is executed for O(p) distinct pairs i, i′.

Next consider Step 2. If δi = 1 then every pair ij, i′j′ output in Step 2 has i = 1.
So there are O(p) distinct pairs i, i′ in Step 2. If δj = 1, the input to BE-SPLIT
consists of p values d′i1, d

′
i2. Thus BE-SPLIT outputs O(p) distinct pairs ii′. Each

such pair corresponds to pairs i1, i′j, 1 < j ≤ q, output by PE-SPLIT. Thus again
Step 2 outputs O(p) distinct pairs i, i′.

PE-SPLIT can be implemented to use total time O(p+q+v), where v is the num-
ber of positive values dij . To implement Step 1 we maintain q+ 1 lists corresponding
to these sets:

T = {i : i > δi, at least two indices j > δj have dij > 0},
Oj = {i : i > δi, j is the unique index > δj with dij > 0}, δj < j ≤ q.

In addition each index i has a list of the indices j that have dij > 0. If |T | ≥ 2,
Step 1(a) chooses two indices i, i′ from T . The lists for i and i′ are used to generate
the indices j, j′ for Step 1(a). If |T | ≤ 1, Step 1(a) chooses indices i and i′ from two
distinct lists (among T and the Oj) and generates indices j, j′ in a similar way. The
implementation of Step 2 is straightforward.

This concludes the discussion of PE-SPLIT. (We have also proved the theorem
on p, q-party graph degree sequences.)

6.4.2. General targets. We adapt the algorithm PE-SPLIT to P-SPLIT, the
routine for general partitions and arbitrary k. As before assume the given values

194 J. BANG-JENSEN, H. N. GABOW, T. JORDÁN, AND Z. SZIGETI

dij , i = 1, . . . , p, j = 1, . . . , q, satisfy (12) and (13). Procedure P-SPLIT outputs
a complete pairing, which satisfies additional constraints coming from the graph H
associated with the input values. Recall that index i corresponds to vertex xi, with
dij = dj(s, xi). The pair ij, i′j′ corresponds to split sxi, sxi′ . P-SPLIT must limit the
number of foolish splits corresponding to its pairs; the precise sense of this requirement
is given in Lemmas 6.8 and 6.9 below.

Recall that the indices of splits sxi, sxi′ are chosen in Step 1(a) of PE-SPLIT and
Step 1(a) of BE-SPLIT. The latter is executed when BE-SPLIT is called from Step
2 of PE-SPLIT. The P-SPLIT routine uses a rule, called the Choice Step, to specify
how the indices of splits are chosen. Note that if BE-SPLIT is called with δi = 1
in PE-SPLIT, there is no need for such a rule, since in this case there is a unique
complete splitting. Thus BE-SPLIT uses the Choice Step only when δj = 1.

To use the same Choice Step for both Steps 1(a) we extend some notation from
PE-SPLIT to BE-SPLIT. For BE-SPLIT define δi = 1 and δj = 0. Observe that these
choices make the first sentence of Step 1(a) of BE-SPLIT identical to Step 1(a) of
PE-SPLIT. (Although this convention allows us to treat the two routines uniformly,
BE-SPLIT is not a special case of PE-SPLIT: the original definition of δi and δj for
PE-SPLIT would lead us to choose δi = 0, δj = 1 because of (10).) Also define q = 2
for BE-SPLIT.

We need some more notation for the Choice Step. A normal execution of Step 1(a)
is an execution of Step 1(a) of P-SPLIT or an execution of Step 1(a) of BE-SPLIT
when BE-SPLIT is called with δj = 1 in P-SPLIT. Observe that in a normal execution
of Step 1(a) an index i in 1 ≤ i ≤ p corresponds to a vertex of H. (This is false for
an abnormal execution.) For δj < j ≤ q define sets

Ij = {i : δi < i ≤ p, dij > 0}.

Also for an index δi < i ≤ p let Fi denote the set of all indices f > δi with sxi, sxf a
foolish split in the associated graph H. (This makes sense in a normal execution.)

The routine P-SPLIT is the same as PE-SPLIT except that normal executions of
Step 1(a) choose indices i, i′ by executing the following Choice Step.

Choice Step. Execute the case below that applies.
Case 1. There are two distinct indices j, j′ > δj with Ij ∩ Ij′ 6= ∅.
Choose any i ∈ Ij ∩ Ij′ . Choose i′ ∈ ∪tIt − i, with i′ /∈ Fi if possible.
Case 2(a). There are exactly two nonempty sets Ij , disjoint and both of cardinality

two.
Case 2(b). There are exactly three nonempty sets Ij , pairwise disjoint and all of

cardinality one.
In both Cases 2(a) and 2(b), choose any index i in a set Ij such that ∪t6=jIt − Fi

is nonempty, and choose an index i′ in the latter set.
Case 3. No previous case applies.
Choose index j > δj so that Ij is nonempty and |Ij | is minimum. Choose any

i ∈ Ij . Choose an index i′ ∈ ∪t6=jIt, with i′ /∈ Fi if possible.
When the target k is even there are no foolish splits, so the Choice Step does not

substantively change PE-SPLIT. Also note that Case 2(b) never holds in BE-SPLIT.
The analysis of PE-SPLIT shows P-SPLIT outputs a complete pairing if it is well
defined, i.e., the index i always exists in Case 2. The following two lemmas state
properties of the pairs output by P-SPLIT in terms of the corresponding splits on H,
the graph corresponding to the input for P-SPLIT. As in section 6.3 H satisfies (1).
Let H have vertex set VH + s.

PARTITION CONSTRAINED CONNECTIVITY AUGMENTATION 195

Lemma 6.8.

(a) P-SPLIT is well defined.

(b) P-SPLIT outputs at most C = 3 foolish splits.

Proof. Consider a normal execution of Step 1(a). We discuss each case of the
Choice Step.

Case 1. There are two distinct indices j, j′ > δj with Ij ∩ Ij′ 6= ∅.
For any i ∈ Ij ∩ Ij′ , d(s, xi) ≥ dij + dij′ ≥ 2. Hence vertex xi is in at most one

foolish split and |Fi| ≤ 1 (recall the discussion preceding the Choice Step in section
6.3). Thus Case 1 does not create a foolish split when | ∪t It| ≥ 3. We conclude that
Case 1 creates a foolish split only when |∪t It| ≤ 2.

Case 2(a). There are exactly two nonempty sets Ij , disjoint and both of cardinality
two.

Case 2(b). There are exactly three nonempty sets Ij , pairwise disjoint and all of
cardinality one.

We must show some index i in a set Ij has ∪t6=jIt − Fi nonempty. Suppose on
the contrary that for every j > δj and i ∈ Ij , ∪t6=jIt ⊆ Fi. Thus d(xi) = k and
d(xi, xr) = h for every r ∈ ∪t6=jIt. The hypotheses of Cases 2(a) and 2(b) both imply
there are two such indices r. Thus d(s, xi) = 1.

Let X = VH − {xi : i ∈ ∪jIj}. Observe that X is nonempty. If δi = 1, then
x1 ∈ X. If δj = 1, then there are vertices y with d1(s, y) > 0. Such a y does not
correspond to an index in any Ij since, as noted above, any i ∈ Ij has d(s, xi) = 1, so
d(s, xi) = dj(s, xi).

The equations of the first paragraph of this case imply d(X,VH − X) = 0. We
claim d(s,X) ≤ 2. The claim implies d(X) = d(s,X) ≤ 2. Using k ≥ 3 this violates
(1), giving the desired contradiction.

To prove the claim first suppose δi = 1. In this case d(s,X) = d(s, x1). For
Step 1(a) of P-SPLIT strict inequality holds in (13), so d(s, x1) ≤ 4 − 2 = 2. This
inequality is also valid for Step 1(a) of BE-SPLIT since strict inequality holds in (11).
Next suppose δj = 1. In this case d(s,X) = d1(s,X). Again since strict inequality
holds in (13), d1(s,X) ≤ d1(s, VH) ≤ 4− 2 = 2.

In summary we have proved the claim, thus showing the desired index i of the
Choice Step exists. This gives part (a) of the lemma. We have also shown this case
does not create a foolish split.

Case 3. No previous case applies.

Suppose |⋃j Ij | ≥ 4. We observe that selecting j as in the Choice Step gives
|⋃s 6=j Is| ≥ 3. In proof first note the sets Ij are pairwise disjoint, by Case 1. The
observation follows if |Ij | ≥ 3, since there is at least one set It. If |Ij | = 2 the
observation follows from the definition of Case 2(a). If |Ij | = 1 the observation follows
from the supposition |⋃j Ij | ≥ 4.

The observation implies that any i ∈ Ij has an index i′ ∈ ⋃t6=j It not creating a
foolish split. We conclude that Case 3 creates a foolish split only when |⋃j Ij | ≤ 3.

We have shown the Choice Step does not create a foolish split unless |⋃j Ij | ≤
3. This implies Step 1(a) of P-SPLIT creates at most one foolish split (recall the
discussion preceding the Choice Step in section 6.3). If δi = 1 in P-SPLIT, then BE-
SPLIT creates at most one foolish split (since every split involves vertex 1). Suppose
δj = 1 in P-SPLIT. Then as above, Step 1(a) of BE-SPLIT creates at most one
foolish split. In Step 2 of BE-SPLIT all the splits output involve a common vertex
(the vertex indexed as 1 in BE-SPLIT). Thus Step 2 of BE-SPLIT creates at most
one foolish split. In summary, at most three foolish splits are created, giving part (b)

196 J. BANG-JENSEN, H. N. GABOW, T. JORDÁN, AND Z. SZIGETI

of the lemma.
For the next lemma assume G and H satisfy the invariant of section 6.3. (We

show this is the case in the next section.)
Lemma 6.9. If the first split output by P-SPLIT is foolish, then executing a

maximal admissible subset of the splits output gives a new graph G containing a C4-
obstacle with d(s) = 4.

Proof. The main case is when the first split is output in a normal execution of
Step 1(a). We start by showing that if this is not the case, i.e., the first split is output
in Step 1(a) of an abnormal execution of BE-SPLIT or Step 2 of BE-SPLIT, then
the first split is not foolish. In fact we show BE-SPLIT finds a complete admissible
splitting. To prove this observe that in both of these situations

(s, x1) =
∑
i>1

d(s, xi).

This follows because if the first split is output in BE-SPLIT with δi = 1 in P-SPLIT,
equality holds in (13). Similarly, if the first split is output in Step 2 of BE-SPLIT
with δj = 1 in P-SPLIT, equality holds in (11). (In this case x1 is the vertex indexed
1 in BE-SPLIT.) The displayed equation implies H has a unique complete splitting
with no split joining a vertex to itself. Hence this splitting is found by BE-SPLIT.
The splitting is admissible by the second remark at the end of section 6.1.

Now we turn to the main case, when the first split is output in a normal execution
of Step 1(a). Fix the sets Ij to their values right before this first split is output. We
claim the first split is foolish only when exactly two of these sets are nonempty, say
Ij and Ij′ , and for distinct indices a, b, c > δi,

Ij = {a} and Ij′ = {b, c}.

Cases 1–3 of Lemma 6.8 show the claim holds if |∪j Ij | ≥ 4, or if |∪j Ij | = 3 and either
two sets Ij have a nonempty intersection or the nonempty sets Ij are pairwise disjoint
singletons. Since the indices of Step 1(a) exist, | ∪j Ij | ≥ 2. Hence the remaining case
to prove the claim is | ∪j Ij | = 2. Let ∪jIj = {i, i′}. We must show that the split
sxi, sxi′ is not foolish. We will show it is admissible.

First observe that because the execution of Step 1(a) is normal, d(s, {xi, xi′}) >
d(s)/2. (If δi = 1, then d(s, {xi, xi′}) equals the right-hand side of (13) or (11). If
δj = 1, then d(s, {xi, xi′}) is at least the right-hand side of (13).) This implies any
complete splitting with no split joining a vertex to itself contains the split sxi, sxi′ .
Hence this split is admissible.

We have proved the claim. To prove the lemma it remains only to treat the case
of sets Ij , Ij′ displayed above.

Suppose for these sets the first split output by P-SPLIT is foolish. The Choice
Step takes i = a, so Ij′ ⊆ Fa. This implies d(xa) = d(xb) = d(xc) = k, d(xa, xb) =
d(xa, xc) = h, and d(s, xa) = 1.

The first split is output in an execution of BE-SPLIT. This follows because strict
inequality in (13) is impossible as it implies this contradiction:

dj′(s, {xb, xc}) ≤ dj′(s, VH) ≤ dj(s, xa) + dj′(s, {xb, xc})− 2 = dj′(s, {xb, xc})− 1.

We conclude that the split is output in BE-SPLIT, so δi = 1 and (11) holds with
strict inequality.

Define A = VH − {xa, xb, xc}. This set is nonempty since it contains x1.

PARTITION CONSTRAINED CONNECTIVITY AUGMENTATION 197

The criticality of xb implies

d(xb, A) ≤ h+ 1− d(s, xb).

Similarly, d(xc, A) ≤ h + 1 − d(s, xc) and d(xa, A) = 0. Since strict inequality holds
in (11),

d(s, x1) ≤ d(s, xb) + d(s, xc) + d(s, xa)− 2 = d(s, xb) + d(s, xc)− 1.

These inequalities imply d(A) = d(A, xb)+d(A, xc)+d(A, xa)+d(s, x1) ≤ 2h+1 = k.
Hence by (1), equality holds throughout. Equality in the first displayed inequality
implies d(xb, xc) = 0. Equality in the second displayed inequality implies d(s, x1) +
d(s, xa) = d(s, xb) + d(s, xc) = d(s)/2. By (10), d(s, x1) = dj(s, x1). Examining the
definition of d′ij (for δj = 1) in Step 2 of P-SPLIT shows that partition 1 in BE-
SPLIT is the same as the original partition 1 in H. Let X1, Xa, Xb, Xc denote the
set of all vertices of G contained in x1, xa, xb, xc, respectively. In graph G either
d(s,X1 ∪ Xa) = d1(s,X1 ∪ Xa) or d(s,Xb ∪ Xc) = d1(s,Xb ∪ Xc). Now we have
deduced that A,Xa, Xb, Xc is a C4-obstacle in G.

Without loss of generality, Step 1(a) outputs the (foolish) split sxa, sxb with
multiplicity one. This gives equality in (11). The remaining splits are sx1, sxc with
multiplicity d(s, xc) and sx1, sxb with multiplicity d(s, xb) − 1. It is easy to see that
a maximal admissible splitting executes all these splits except the split sxa, sxb and
one copy of the split sx1, sxc (use Proposition 6.1). This gives the lemma.

Since P-SPLIT is a special case of PE-SPLIT, it has the same bound on the
number of pairs output; specifically, O(p) pairs ii′ have indices jj′ for which γij,i′j′ is
positive. It is easy to implement P-SPLIT in time O(m + n). We use the same data
structures as for BE-SPLIT.

6.5. Computing a near-complete allowed splitting. Lemma 5.1 shows that
any graph has a splitting of allowed pairs that is either complete or gives a graph
containing a C4-obstacle with d(s) = 4. We call this a near-complete allowed splitting.
This section adapts the algorithm of section 6.3 to find such a splitting.

We note that Nagamochi and Ibaraki [17] give an algorithm for this task when k
is even. The algorithm achieves the same time bound as ours in the special case that
all edges have unit capacity.

The new algorithm is a straightforward extension of GENERAL-SPLIT, but we
state it below for convenience. Recall the notation introduced at the start of section
6.4 to represent partitions in contracted graphs: di(s, x) for degrees and sxi, syj for
splits.

The procedure TRANSLATE is called with two disjoint sets X,Y ⊂ V and in-
tegers i, j, γ. X and Y have been contracted to vertices in H, and the split sXi, sYj
with multiplicity γ is admissible in H.

Procedure TRANSLATE(X, i, Y, j, γ).
Repeat Step 1 until γ = 0.

Step 1.Choose a vertex x of G corresponding to X: If X is a vertex of G let
x = X. Otherwise choose a vertex x ∈ X that is a neighbor of s in partition class Pi.
Similarly choose a vertex y of G corresponding to Y , in partition class Pj . Execute
split sx, sy in G with multiplicity γ0 = min{d(s, x), d(s, y), γ} (d is the degree function
in G). Decrease γ by γ0.

Procedure PARTITION-SPLIT is our allowed splitting algorithm. It executes
a near-complete allowed splitting at s on the original graph G. It starts with H
initialized to the given graph G.

198 J. BANG-JENSEN, H. N. GABOW, T. JORDÁN, AND Z. SZIGETI

Procedure PARTITION-SPLIT.
Repeat Steps 1–3 until either d(s) = 0 or d(s) = 4 and H consists of four vertices
forming a C4-obstacle in G.

Step 1. Use graph G to compute the degree values di(s, x) for each vertex x of
H. Call P-SPLIT (with these degree values di(s, x)) to find a complete splitting at s
in H, with splits sxi, syj .

Step 2. Call HOOK-UP to execute a maximal admissible subset of these splits
in H and to return the corresponding family of dangerous sets Y. For each split that
was executed in H call TRANSLATE to execute it in G.

Step 3. In H do the following for each set Y ∈ Y. If Y is critical, contract Y .
Otherwise (d(Y) = k + 1) test if Y has a k-bisection. If it does not, contract Y . If it
does (say, into sets A and B), contract A and contract B.

To show correctness first observe that PARTITION-SPLIT maintains the same
invariant as GENERAL-SPLIT, by exactly the same argument. Also observe that P-
SPLIT is called with degree values di(s, x) that satisfy (12) and (13): (12) holds since
d(s) is always even; (13) holds in the first iteration of PARTITION-SPLIT because
of the initial choice of edges sx. (This is done by the algorithm of Lemma 4.1, which
we implement in section 6.6.) Now we show (13) holds in subsequent iterations. For
δi = 1 (13) holds because every neighbor of s is in a dangerous set. Suppose δj = 1.
It suffices to show that each iteration preserves the fact that any partition j has∑
i dij ≤ d(s)/2. This holds because each split involves two distinct partition classes,

so each unexecuted split increases
∑
i dij for two different partitions j.

It remains only to show that the main loop terminates the algorithm correctly,
which we now do. Call an iteration of PARTITION-SPLIT normal if it performs
at least one normal execution of Step 1(a), i.e., P-SPLIT starts with either strict
inequality in (13) or equality in (13), δj = 1 and strict inequality in (11). We will
show that an execution of PARTITION-SPLIT begins with a finite number of normal
iterations starting with inequality in (13), followed by a finite number of normal
iterations starting with equality in (13) and inequality in (11), followed by at most
one abnormal iteration.

First observe that once (13) holds with equality, it will hold with equality
throughout the rest of the algorithm. This follows since equality means d(s, x1) =∑
i>1 d(s, xi) or d1(s, V) =

∑
j>1 dj(s, V), and both of these relations are preserved

by all subsequent splits and contractions.
Next observe that an iteration starting with equality in both (13) and (11) is

abnormal. Furthermore, an abnormal iteration is the last iteration of PARTITION-
SPLIT. This was shown in the first paragraph of the proof of Lemma 6.9.

It remains only to show that there is a finite number of normal iterations. The
finiteness property holds because of a property similar to GENERAL-SPLIT: for
indices j ≥ 0 define

Nj = {x : vertex x of H has di(s, x) > 0 for at least j partition classes i}.

Thus N0 is VH and N1 is the set of neighbors of s in H. Also Nj = ∅ for j ≥ 3 in BE-
SPLIT, i.e., when (13) holds with equality. The property is that, with two exceptions,
every normal iteration ending with strict inequality in (13) or (11) decreases |Nj | for
some j in 0 ≤ j ≤ 3. The two exceptions are the last iteration and an iteration that
starts with strict inequality in (13) and ends with equality in (13). Note that the sets
Nj in this termination property are defined using the given partition in iterations that
start with inequality in (13) and the partition for BE-SPLIT in iterations that start

PARTITION CONSTRAINED CONNECTIVITY AUGMENTATION 199

with equality in (13). The exceptional iteration just mentioned switches the definition
of sets Nj , since subsequent iterations execute BE-SPLIT. Note that this switch does
not increase any |Nj |, since it just merges partition classes.

Our termination property implies there is a finite number of normal iterations:
once a given vertex leaves Nj , j ≥ 1, it never reenters Nj . Hence a sequence of normal
iterations that preserves the number of vertices of H has finite length and leads to a
decrease of |N0|. Now we prove the termination property. Let the first split output by
P-SPLIT be sx, sy with multiplicity γ. We begin by assuming this split is not foolish.

Suppose HOOK-UP splits off γ pairs of edges sx, sy. If sx, sy is the last split
output in Step 1 of P-SPLIT or BE-SPLIT, then after executing this split equality
holds in (13) or (11), respectively. So assume sx, sy is not the last split output in Step
1. Assume N0 does not change in this iteration (else we are done). In Step 1 assume
vertices x and y correspond to indices i and i′, respectively. Recall the conditions (i)
and (ii) that hold when Step 1(b) of P-SPLIT halts (see the end of section 6.4.1).
These imply that (without loss of generality) one of these conditions holds when Step
1(b) of P-SPLIT halts: (i) dj(s, x) = 0 for every index j > δj ; (ii) dj(s, x) > 0 for
more than one index j > δj before Step 1(a) but for only one such index after Step
1(b). It is easy to see that one of these conditions also holds after Step 1(a) of BE-
SPLIT. We conclude that the iteration decreases |Nr| for some index r, 1 ≤ r ≤ 3.
If (i) holds, then r = 1 if δj = 0 and r = 1 or 2 if δj = 1. If (ii) holds, then r = 2 if
δj = 0 and r = 2 or 3 if δj = 1. (The assumption that N0 does not change guarantees
that at the end of the iteration x is still a vertex of H.)

On the other hand suppose HOOK-UP splits off fewer than γ pairs of edges sx, sy.
HOOK-UP returns a set Y ∈ Y containing both x and y, and Y 6= {x, y} since the
split is not foolish. Hence the Contraction Step decreases |N0| when it processes set Y .

Now we consider the case that the first split sx, sy is foolish. We will show this is
the last iteration of PARTITION-SPLIT. Lemma 6.9 implies that after HOOK-UP,
graph G has d(s) = 4 and contains a C4-obstacle. Let the obstacle consist of sets
A1, A2, B1, B2 with a1, a2, b1, b2 their neighbors of s.

Without loss of generality the two splits that are not executed by HOOK-UP are
sai, sbi for i = 1, 2. HOOK-UP returns a dangerous set Di containing ai and bi, for
i = 1, 2. These sets are distinct, by Lemma 2.8, so they are disjoint.

Note the following general fact: If X is a critical set and Y is dangerous, with
X ∩ Y containing a neighbor of s, then X ⊆ Y or Y ⊆ X. (In proof suppose the
contrary, i.e., Y −X and X − Y are nonempty. Then k + (k + 1) ≥ d(X) + d(Y) ≥
d(X − Y) + d(Y −X) + 2d(s,X ∩ Y) ≥ k + k + 2, a contradiction.)

The fact implies Ai ∪ Bi ⊆ Di for i = 1, 2. Disjointness of the Di implies Di =
Ai ∪ Bi. This implies d(Di) = k + 1 (Lemma 2.4). Thus Ai and Bi form the unique
k-bisection of Di. The Contraction Step makes each of the four obstacle sets Ai, Bi,
i = 1, 2 into a vertex. Hence the termination condition of the main loop now detects
a C4-obstacle on four vertices. We have thus shown the termination property for
PARTITION-SPLIT.

The efficiency analysis requires a stronger termination property, which we now
prove. Define

Φ = 2|N1|+ |N2|+ |N3|.
The property states that Φ never increases, and every normal iteration except possibly
two either decreases Φ or increases the number of foolish splits that exist in H. The
two exceptional iterations are the last iteration and an iteration that starts with strict
inequality in (13) and ends with equality in (13).

200 J. BANG-JENSEN, H. N. GABOW, T. JORDÁN, AND Z. SZIGETI

To prove this property we analyze how Φ changes by computing first the change
in Step 2 and then the change in Step 3. (First recall that Φ does not increase when
we switch definitions of the Nj .) Step 2 can remove a vertex from a set Nj when it
executes a split. Thus Step 2 can decrease Φ but it never increases Φ. To analyze Step
3 consider the effect of a contraction on Φ: Let vertices x1 and x2 be merged to form
vertex X. Let di(s, xr) > 0 for exactly jr partition classes i, r = 1, 2, with j1 ≥ j2.
Then di(s,X) > 0 for between j1 and j1 + j2 partition classes. Hence this operation
does not change Φ if j2 = 0 and it decreases Φ if j2 > 0. We have now shown that an
iteration never increases Φ.

The proof of the first termination property shows that with three exceptions
the first split causes Φ to decrease, by either decreasing some |Nj |, 1 ≤ j ≤ 3 or
contracting a set that contains at least two neighbors of s. The three exceptions
are the two exceptional iterations mentioned above, and when the first split creates
a dangerous set with a k-bisection, whose two contractions do not change Φ. Now
consider a normal iteration that is not one of the two exceptional iterations and does
not change Φ. As in the proof of Lemma 6.6, every split that is foolish at the start
of the iteration is foolish at the end of the iteration, and furthermore the first split
causes a contraction creating a new foolish split. This proves the stonger termination
property.

The efficiency analysis for PARTITION-SPLIT is essentially identical to previous
arguments. PARTITION-SPLIT has O(log n) iterations, by the same derivation as for
GENERAL-SPLIT; Lemma 6.5 is proved exactly the same way. This holds similarly
for inequality (9). The proof of Lemma 6.6 incorporates the stronger termination
property just proved. (This property implies that si ≤ C ′ in O(1) iterations, since
si ≤ C ′ implies Φ ≤ 4C ′.)

The total number of distinct splits executed in Step 2 in all iterations is O(n),
for both G and H. The proof is the same argument as GENERAL-SPLIT. For the
analysis of graph H we use the fact that each execution of P-SPLIT gives a splitting
with O(si) distinct splits sx, sy.

The time bound for PARTITION-SPLIT is O(n(m + n log n) log n). (The time
is O(nm log n) on unit capacity graphs.) The argument is the same as GENERAL-
SPLIT, using the above facts.

6.6. Finding good neighbors. This section gives algorithms to compute the
set of edges incident to s, i.e., the values d(s, x). This problem occurs three times in
our connectivity augmentation algorithm—in computing the initial graph, rearranging
edges in a C4-obstacle, and rearranging edges in a C6-obstacle. We discuss each of
these. Our approach is to simulate the procedures given in previous sections using an
efficient algorithm for computing the initial edges of an admissible splitting.

Nagamochi, Nakamura, and Ibaraki [18] give an algorithm MINIMAL that
starts with a graph G = (V +s,E) satisfying (1) and deletes edges incident to s so (1)
still holds but decreasing any value d(s, x) destroys (1). MINIMAL is a modification
of HOOK-UP and has the same time bound, O(n(m + n log n)). The time is O(nm)
on unit capacity graphs.

We use a straightforward generalization of MINIMAL. In addition to G, this
algorithm is given a value `(s, x) for each x ∈ V , with `(s, x) ≤ d(s, x) in G. The
graph that is returned satisfies (1) and has `(s, x) ≤ d(s, x) for every x ∈ V , and
no value d(s, x) can be decreased subject to these constraints. It is simple to modify
the algorithm of [18] to handle these lower bounds. (Specifically the algorithm of [18]
initializes the solution graph to G with each value d(s, x) decreased to 0. It proceeds to

PARTITION CONSTRAINED CONNECTIVITY AUGMENTATION 201

add back a minimal set of edges of G incident to s that achieves (1). The only change
for the modified algorithm is to decrease initially each d(s, x) to `(s, x).) The time
bound for the modified algorithm is unchanged. We still call this modified algorithm
MINIMAL.

6.6.1. Computing the initial graph. The initial edges incident to s are com-
puted by Steps 1 and 2 of the procedure given in Lemma 4.1. (These steps are used
for both even and odd k.) Step 1 computes values d(s, x) that achieve (1) and are
minimal. We do this using the original algorithm MINIMAL of [18]. The rest of Step
1 ensures that d(s) is even, specifically d(s) = 2α for α as defined in section 4. This
part is trivial to implement.

Step 2 applies if there is a partition class P1 such that d(s, P1) > d(s, V − P1).
It decreases d(s, P1) and increases d(s, V − P1) by the same amount, preserving (1),
until either the two quantities become equal or any further change destroys (1). The
first case ends with d(s, P1) = d(s, V −P1) = α; the second case ends with d(s, P1) >
α > d(s, V − P1). Our implementation of Step 2 begins by deciding which of these
two alternatives holds, as follows.

Call the degree function at the end of Step 1 d1. Thus d1(s, P1) > α > d1(s, V −
P1). Define values d2(s, x) and lower bounds `(s, x) by

d2(s, x) = d1(s, x), `(s, x) = 0 for x ∈ P1;

d2(s, x) = `(s, x) = k for x ∈ V − P1.

Execute MINIMAL starting with these values. Let d′2 denote the degree function in
the graph that is returned. Note that d′2 corresponds to a minimal degree function
satisfying (1) for sets X ⊆ P1.

Clearly when the first case of Step 2 holds, we get d′2(s, P1) ≤ α. It is not hard to
see that when the second case of Step 2 holds we get d′2(s, P1) > α. (Use the family
of sets Wi defined in the discussion of Step 2(c).) We process the two cases as follows.

Case 1. d′2(s, P1) ≤ α. As in Step 2 our goal is to construct a new degree function
so d(s, P1) = d(s, V − P1) = α. To do this first define values d′′2(s, x) for x ∈ P1

as follows. Initialize each d′′2(s, x) to d′2(s, x). Then increase some values d′′2(s, x),
x ∈ P1, maintaining d′′2(s, x) ≤ d1(s, x), until d′′2(s, P1) = α. Note that aside from
these constraints, the vertices x whose values are increased and the amounts increased
are arbitrary. It is possible to achieve the desired function d′′2 by the definition of d2

and Case 1.
Now define values d3(s, x) and lower bounds `(s, x) by

d3(s, x) = `(s, x) = d′′2(s, x) for x ∈ P1;

d3(s, x) = k, `(s, x) = 0 for x ∈ V − P1.

Execute MINIMAL starting with these values. Use the resulting graph as the output
of Step 2.

To see that this construction is correct, observe that any x ∈ P1 has d1(s, x) ≥
d′′2(s, x). Suppose we execute Step 2 starting with the degree function d1. In each
execution of Step 2(b) we can choose u to be any vertex x satisfying d1(s, x) >
d′′2(s, x), where the quantity on the left is the current value of d1. This follows from
our characterization of d′2 as a minimal degree function satisfying (1) for sets X ⊆ P1.
Hence we can execute Step 2 so it halts with a degree function d equal to d′′2 on vertices
of P1. This degree function has d(s) = 2α. The existence of d implies that the above

202 J. BANG-JENSEN, H. N. GABOW, T. JORDÁN, AND Z. SZIGETI

execution of MINIMAL returns a similar degree function d′3, i.e., d′3 equals d′′2 on P1

and d′3(s) = 2α. Thus our algorithm behaves the same as Step 2.
Case 2. d′2(s, P1) > α. Our characterization of d′2 shows that Step 2 halts with

a degree function satisfying d(s, P1) = d′2(s, P1) = d(s, V − P1). Thus it suffices to
construct a degree function satisfying this equation (and (1)). To do this define values
d3(s, x) by

d3(s, x) = d′2(s, x) for x ∈ P1;

d3(s, x) = k for x ∈ V − P1.

Execute MINIMAL (with no lower bounds) starting with these values. Let d′3 be the
resulting degree function. Note that d′3(s, V − P1) < d′3(s, P1) (by Step 2). Now as in
Step 2(c), increase values d′3(s, x) for x ∈ V − P1 to make d′3(s, V − P1) = d′3(s, P1).

We have shown this implementation of Step 2 is correct. It constructs the initial
degree function in the same time bound as MINIMAL, O(n(m+ n log n)).

6.6.2. Rearranging obstacles. The basic step in rearranging obstacles oper-
ates on a given critical set X ⊂ V and a given class Pi such that all edges from s to
X go to vertices of Pi. The task is to check if this is forced—more precisely, if X has
a subpartition F consisting of sets U, each contained in Pi, such that in G− s,

k − d(X) =
∑
U∈F

k − d(U).(14)

If no such F exists, we may execute a second part of this basic step: the second part
replaces one edge that goes from s to X ∩Pi by an edge from s to X ∩Pj , j 6= i, still
preserving (1).

We perform the basic step by computing a minimal degree function satisfying (1)
for all subsets of X ∩ Pi. Specifically, define values d1(s, x) and lower bounds `(s, x)
by

d1(s, x) = d(s, x), `(s, x) = 0 for x ∈ X ∩ Pi;
d1(s, x) = `(s, x) = k for x ∈ V − (X ∩ Pi).

Execute MINIMAL starting with these values. The resulting degree function d′ is a
minimal degree function satisfying (1) for subsets of X∩Pi. By [6], d′(s,X∩Pi) equals
the maximum possible value of the sum in (14). Note that the left-hand side of (14)
(which is computed in G − s) equals d(s,X) (since X is critical). We conclude that
the condition of (14) is equivalent to the test d(s,X) = d′(s,X ∩ Pi).

If the test of (14) fails, then d(s,X) > d′(s,X ∩ Pi). In this case the second part
of the basic step, replacing an edge from s to X, can be performed as follows. Choose
any vertex u ∈ X ∩ Pi with d′(s, u) < d(s, u). Consider an irreducible subpartition of
X (as defined before Lemma 5.7) that satisfies (14) (here we do not restrict the sets
U to be contained in Pi). Vertex u is in some set U of the partition. We cannot have
U ⊆ Pi since then d′(U) < d(U) = k. Choose any vertex v ∈ U − Pi. Lemma 2.12
shows that replacing edge su by sv preserves (1).

To perform the procedure just described, use the above vertex u to define values
δx for x ∈ X ∩ Pi by δx = 1 for x = u and δx = 0 otherwise. Define values d2(s, x)
and lower bounds `(s, x) by

d2(s, x) = `(s, x) = d(s, x)− δx for x ∈ X ∩ Pi;
d2(s, x) = d(s, x) + 1, `(s, x) = d(s, x) for x ∈ V − (X ∩ Pi).

PARTITION CONSTRAINED CONNECTIVITY AUGMENTATION 203

Execute MINIMAL starting with these values. The resulting degree function replaces
edge su by an edge sv, preserving (1), as described above.

The above basic step is used to rearrange obstacles as follows. First consider a
C4-obstacle in G = (V +s,E). Let the obstacle sets be A1, A2, B1, B2, where partition
class P1 contains all neighbors of s in A1 ∪ A2. According to Lemma 5.7 either the
obstacle sets form a C4-configuration in the given graph, or rearranging up to two
edges incident to s gives a graph with no C4-obstacle. We implement the procedure
of Lemma 5.7 as follows. Use the basic step to check if both sets A1 and A2 have
the subpartition F of (14). If so, the obstacle sets form a C4-configuration. If not,
perform the second part of the basic step (to replace one edge) on one set not having
such a subpartition. Repeat this procedure for sets B1 and B2 if some partition class
P2 contains all neighbors of s in B1 ∪B2.

A C6-obstacle is handled similarly. We implement the procedure of Lemma 5.6.
Use the basic step to check if each of the six obstacle sets has the subpartition F
of (14) (this subpartition will contain just one set). If so, the obstacle sets form a
C6-configuration. If not, perform the second part of the basic step on one obstacle set
not having such a subpartition.

6.7. The constrained connectivity augmentation algorithm. Now we
combine the pieces of the previous sections to get our algorithm for partition-
constrained edge-connectivity augmentation.

The algorithm uses a subroutine to find a complete allowed splitting in a graph
having d(s) = 6, d(s, P) ≤ 3 for every partition class P , and containing no ob-
stacle. The splitting exists by Theorem 3.6. To find it try every possible complete
splitting that respects the partition constraints. Test every resulting graph for k-
edge-connectivity using the procedure of [16]. Return the desired complete allowed
splitting.

The algorithm for partition-constrained edge-connectivity augmentation starts by
executing the algorithm of section 6.6 to define the initial degree function d(s, x).

Next execute PARTITION-SPLIT. If it finds a complete allowed splitting, then
return. (This will be the case when the target connectivity k is even.) If the splitting
is not complete, then PARTITION-SPLIT finds a C4-obstacle with d(s) = 4. As in
Theorem 5.8 consider the two cases.

Case 1. Every split that was executed joins vertices in different obstacle sets.
Test if the C4-obstacle gives a C4-configuration, using the procedure of section

6.6. If so, use the procedure of Lemma 5.1 to add three edges to G (the graph returned
by PARTITION-SPLIT) to make it k-edge-connected. This is optimal, so return.

If there is no C4-configuration, rearrange the C4-obstacle using the procedure of
section 6.6. Execute PARTITION-SPLIT on the new graph. If it finds a complete
splitting, then return. If not, PARTITION-SPLIT finds a C4-obstacle to which Case
2 applies, so execute that case.

Case 2. A split joining two vertices in the same obstacle set was executed.
Let sx, sy be such a split. Undo it to get a graph G′ with d(s) = 6. If neither x

nor y belongs to a partition Pi with d(s, Pi) maximum in G′ then G′ contains has no
obstacle. Find a complete allowed splitting using the subroutine described above.

In the opposite case change the edges of this split, as described in Theorem
3.6, Case 1, and execute the new split. This gives a graph with d(s) = 4. Execute
PARTITION-SPLIT on this graph. If PARTITION-SPLIT finds a complete splitting,
then return. (This will be the case when there are only two partition classes.) If not,
PARTITION-SPLIT finds a second C4-obstacle. Use the two C4-obstacles to construct

204 J. BANG-JENSEN, H. N. GABOW, T. JORDÁN, AND Z. SZIGETI

a C6-obstacle, as described in Lemma 3.9.
Suppose the C6-obstacle is not in the original graph. Change a preceding split to

get a graph G′′ with no obstacle and d(s) = 6, as in the proof of Lemma 3.5. Find a
complete allowed splitting in G′′ using the subroutine.

Suppose the C6-obstacle is in the original graph. Test if the C6-obstacle gives a
C6-configuration, using the procedure of section 6.6. If not, rearrange the C6-obstacle
using the procedure of section 6.6. This gives a graph G′′ with no obstacle and d(s) =
6. Find a complete allowed splitting of G′′ by using the subroutine.

The remaining case is when the original graph has a C6-configuration. Using the
last C4-obstacle found, execute the procedure of Lemma 5.1 to add three more edges
to make the graph k-edge-connected. This is optimal, so return.

In summary we have proved the following.
Theorem 6.10. The edge-connectivity augmentation problem with partition con-

straints can be solved for k ≥ 2 in time O(n(m+ n log n) log n) and space O(m). The
time is O(nm log n) on unit capacity graphs.

7. An application in statics. In this section we show how one of our results
(Corollary 5.10) solves an open question raised by Frank (and implicitly by Recski in
his book [20, pp. 63–64]) and hence present a possible application in statics, a new
field where connectivity augmentation algorithms may be useful. Corollary 5.10 gives
a good characterization for the augmentation problem where the starting graph G is
bipartite and the goal is to increase the edge-connectivity to k optimally by adding
edges such that bipartiteness is preserved. (The polynomial algorithm which solves
this problem is a simplified version of our main algorithm; see Theorem 6.10.)

One of the basic two-dimensional structures in statics is a square-grid framework
consisting of horizontal and vertical rods, each of the same length and rigid, and joints,
which connect the incident rods and which are rotatable. The rods collectively join
all gridpoints in a rectangular region that are adjacent horizontally or vertically.

A square-grid framework can be deformed by rotating certain parts along certain
joints. To prevent these deformations we can add rods (call them extra rods) to the
framework diagonally into some of the squares. A framework (possibly containing
extra rods) is rigid if, roughly speaking, it has no nontrivial deformations; that is,
fixing the position of a rod of the grid to the plane, the positions of all other rods
(and joints) are uniquely determined. (For a precise description and more details see
[20, Section 2.6].)

How can we decide whether a framework (with extra rods) is rigid? The answer—
which was found by Bolker and Crapo [2]—depends only on the graph of the frame-
work. Given a square-grid framework S with m rows and l columns of squares, define
the graph GS = (V,E) of S as follows. Let V = {v1, . . . , vm, w1, . . . , wl} and connect
vi and wj by an edge if there is an extra rod in the intersection of row i and column
j. Observe that GS is a bipartite graph and if at most one extra rod may be put into
each square, GS is simple as well.

Theorem 7.1 (see [2]). The square-grid framework S is rigid if and only if the
corresponding graph GS is connected.

One may want to brace a framework, by adding more extra rods, so it can survive
the failure of k′ ≥ 1 extra rods; that is, in removing any set of at most k′ extra
rods, the framework remains rigid. We say that a square-grid framework S is k-
rigid if S remains rigid by removing any set of at most k′ < k extra rods. This
yields the following optimization problem: Given a square-grid framework S, find a
smallest set F of new extra rods whose addition makes S k-rigid. In terms of graphs

PARTITION CONSTRAINED CONNECTIVITY AUGMENTATION 205

this corresponds to the augmentation problem we described at the beginning of this
section and solved (without the additional simplicity assumption) in Corollary 5.10
and Theorem 6.10.

In the rest of this section we briefly discuss the case where simplicity must also
be preserved. We show that if k ≤ 3, then the (size of the) solution we obtain by
our algorithm of section 6 is optimal in this case, too, by showing how the possible
parallel edges in our solution can be substituted one by one by some other new edges
maintaining k-edge-connectivity and achieving simplicity.

Let G = (A,B,E) be a simple bipartite graph we want to make optimally k-edge-
connected preserving bipartiteness and simplicity. We can assume that |A|, |B| ≥ k
and k ≥ 2. Let F be a solution produced by our algorithm of section 6 and suppose
that G′ = (A,B,E ∪ F) contains parallel edges.

First let k = 2 and let f ∈ F be an edge which is parallel to some edge e ∈ E∪F .

Lemma 7.2. There exists an edge f ′ /∈ E∪F for which G′′ = (A,B,E∪F−f+f ′)
is bipartite and 2-edge-connected.

Proof. By the optimality of F the edge f is critical with respect to 2-edge-
connectivity in G′. Since e is parallel to f , we can observe that the only cut-edge
in G′− f is e. Let X and Y be the two connected components we obtain from G′− f
by removing e. It is enough to show that there exist two vertices u, v, one in X and
one in Y , which are not adjacent in G′−f and which belong to different classes of the
bipartition (A,B). The existence of such a vertex pair can be checked easily (using
|A|, |B| ≥ 2).

Consider the case k = 3. Using the same notation suppose that G′ contains
parallel edges and let f ∈ F be an edge which is parallel to some edge e ∈ E ∪ F .

Lemma 7.3. There exists an edge f ′ /∈ E∪F for which G′′ = (A,B,E∪F−f+f ′)
is bipartite and 3-edge-connected.

Proof. Let f = xy and let X ⊂ A∪B (Y ⊂ A∪B) be a minimal set containing x
(y) with dG′−f (X) = 2 (dG′−f (Y) = 2, respectively). Minimality implies X ∩ Y = ∅.
The key observation is that X ∪ Y = A ∪ B since dG′(X ∪ Y) = dG′(X) + dG′(Y)−
2dG′(X,Y) ≤ 3 + 3− 4 = 2 (using that both e and f connect X and Y in G′). Thus
the unique 2-edge-cut in G′ − f is induced by X (and Y = V − X). Therefore it is
enough to show that there exist two vertices u, v, one in X and one in Y , which are
not adjacent in G′− f and which belong to different classes of the bipartition (A,B).
The existence of such a vertex pair can be checked easily (using |A|, |B| ≥ 3).

The above lemmas cannot be extended to k ≥ 4. (To see this take a bipartite
4-edge-connected simple graph Ḡ = (A,B,E) and extend it by two new vertices u, v,
the edge uv, two distinct edges from u to A, and two distinct edges from v to B. The
resulting bipartite graph is 3-edge-connected and its unique optimal augmentation
with respect to k = 4 is a new copy of the edge uv.) Note also that for the special
case k = 1 of the directed version of this bipartite augmentation problem a linear-time
algorithm and a min-max formula were given in [8].

8. Remarks. Another type of “partition-constrained” augmentation problem is
the following (let us call it Problem PC2).

INSTANCE G = (V,E) an undirected graph, P = {P1, . . . , Pr} a partition of V, k,
and M integers.

QUESTION Does there exist a set F of edges such that G′ = (V,E ∪ F) is k-edge-
connected, |F | ≤M, and the endvertices of each edge of F lie within a class of P?

Theorem 8.1. Problem PC 2 is NP-complete.

206 J. BANG-JENSEN, H. N. GABOW, T. JORDÁN, AND Z. SZIGETI

Proof. The problem obviously belongs to the class NP. We reduce the Hamiltonian
cycle problem (HCP) to PC2. Let H = (W,E′) be an instance of HCP. We can assume
that H is 2-edge-connected. Let W = {w1, . . . , wn}.

Construct the following instance of PC2. For every vertex wi ∈ W we have a
vertex vi in G, and for every edge wiwj ∈ E′ let G contain two vertices u1

ij and u2
ij ,

two parallel edges between u1
ij and vi, and two parallel edges between u2

ij and vj .

Let P consist of the one-element classes {v1}, . . . , {vn} and the classes {u1
ij , u

2
ij} of

size two for every pair ij with wiwj ∈ E′. Let M = n and k = 2. We claim that
the problem PC2 has a solution with this instance if and only if H has a Hamil-
tonian cycle. The proof of this simple claim (and hence the theorem) is left to the
reader.

Note that the case where r is fixed (in particular if r = 2) in problem PC2 remains
open.

Acknowledgments. The authors gratefully thank András Frank. He invited us
to the Second Budapest Workshop on Network Design, where this work was begun,
and he suggested the application of section 7. We thank Hiroshi Nagamochi for making
a preprint of [18] available.

REFERENCES

[1] J. Bang-Jensen and T. Jordán, Edge-connectivity augmentation preserving simplicity, SIAM
J. Disc. Math., 11 (1998), pp. 603–623.

[2] E.D. Bolker and H. Crapo, How to brace a one-story building, Environ. Plan. B, 4 (1977),
pp. 125–152.

[3] G.-R. Cai and Y.-G. Sun, The minimum augmentation of any graph to a k-edge-connected
graph, Networks, 19 (1989), pp. 151–172.

[4] E. Cheng and T. Jordán, Successive edge-connectivity augmentation problems, Math. Pro-
gramming, Ser. B., to appear.

[5] K.P. Eswaran and R.E. Tarjan, Augmentation problems, SIAM J. Comput., 5 (1976), pp.
653–665.

[6] A. Frank, Augmenting graphs to meet edge-connectivity requirements, SIAM J. Disc. Math.,
5 (1992), pp. 25–53.

[7] A. Frank, Connectivity augmentation problems in network design, Math. Programming: State
of the Art 1994, J.R. Birge and K.G. Murty, eds., University of Michigan, Ann Arbor, MI,
1994, pp. 34–63.

[8] H.N. Gabow and T. Jordán, How to make a square grid framework with cables rigid, Pro-
ceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, 1999, pp.
356–365.

[9] M. Grötschel, C.L. Monma, and M. Stoer, Design of survivable networks, Handbooks in
Oper. Res. Management Sci. 7, Network Models, M.O. Ball, T.L. Magnanti, C.L. Monma,
and G.L. Nemhauser, eds., North–Holland, Amsterdam, 1994, pp. 617–672.

[10] S. L. Hakimi, On realizability of a set of integers as degrees of the vertices of a linear graph,
J. SIAM, 10 (1962), pp. 496–506.

[11] T.-S. Hsu and M.-Y. Kao, Optimal augmentation for bipartite componentwise biconnectivity
in linear time, Algorithms Comput., Lecture Notes in Comput. Sci. 1178, Springer-Verlag,
Berlin, 1996.

[12] T. Jordán, Two NP-Complete Augmentation Problems, Preprint 8, Department of Math and
Computer Science, Odense University, Odense, Denmark, 1997.

[13] G. Kant and H.L. Bodlaender, Planar graph augmentation problems, Algorithms and Data
Structures, Lecture Notes in Comput. Sci. 519, Springer-Verlag, Berlin, 1991.

[14] L. Lovász, Combinatorial Problems and Exercises, North–Holland, Amsterdam, 1979.
[15] W. Mader, A reduction method for edge-connectivity in graphs, Ann. Discrete Math., 3 (1978),

pp. 145–164.
[16] H. Nagamochi and T. Ibaraki, Computing edge-connectivity of multigraphs and capacitated

graphs, SIAM J. Discrete Math., 5 (1992), pp. 54–66.

PARTITION CONSTRAINED CONNECTIVITY AUGMENTATION 207

[17] H. Nagamochi and T. Ibaraki, Deterministic Õ(nm) time edge-splitting algorithm in undi-
rected graphs, J. Combin. Optim., 1 (1997), pp. 5–46.

[18] H. Nagamochi, S. Nakamura, and T. Ibaraki, A simple Õ(nm) time edge-splitting algorithm
in undirected graphs, Tech. report 96013, Department of Applied Mathematics and Physics,
Kyoto University, Kyoto, Japan, 1996.

[19] D. Naor, D. Gusfield, and Ch. Martel, A fast algorithm for optimally increasing the edge
connectivity, SIAM J. Comput., 26 (1997), pp. 1139–1165.

[20] A. Recski, Matroid Theory and its Applications in Electric Network Theory and in Statics,
Akadémiai Kiadó, Budapest, 1989.

[21] M. Stoer, Design of Survivable Networks, Ph.D. thesis, Lecture Notes in Math. 1531, Springer-
Verlag, Berlin, 1992.

[22] T. Watanabe and A. Nakamura, Edge-connectivity augmentation problems, J. Comput. Sys-
tem Sci., 35 (1987), pp. 96–144.

ON PERFECT MATCHINGS AND HAMILTON CYCLES IN SUMS
OF RANDOM TREES∗

ALAN FRIEZE† , MICHAÃL KAROŃSKI‡ , AND LUBOŠ THOMA§

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 2, pp. 208–216

Abstract. We prove that the sum of two random trees possesses with high probability a perfect
matching and the sum of five random trees possesses with high probability a Hamilton cycle.

Key words. sums of random trees, perfect matching, Hamilton cycle

AMS subject classification. 05C80

PII. S0895480196313790

1. Introduction. In this paper we prove that an appropriately defined sum of
two random trees possesses with high probability (w.h.p.) a perfect matching. Second,
we show that the sum of five random trees possesses w.h.p. a Hamilton cycle.

We say that a sequence of events En (defined on a sequence of probabilistic spaces)
holds w.h.p. if the probabilities of these events converge to 1 as n→∞.

For an integer n, we use [n] to denote the set {1, . . . , n}. A random tree on the
set Vn = [n] is a tree on this set chosen uniformly at random from the family of all
trees on the set [n].

Definition 1.1 (sums). Let k be a positive integer. For trees T1, . . . , Tk, all of
them on the set [n], we define their sum ST (T1, . . . , Tk) as the graph on the vertex set
[n] and edge set being the union of edge sets of the trees T1, . . . , Tk, where the parallel
edges coalesce.

Let f be a mapping from [n]→ [n]. Let D(f) be its associated functional digraph,
i.e., the graph with vertex set [n] and edges (i, f(i)), i ∈ [n]. For a set f1, . . . , fk of
such mappings we define their sum SM(f1, . . . , fk) as the union of the digraphs
D(fi), 1 ≤ i ≤ k.

Let k be a positive integer. Consider k random trees T1, . . . , Tk on [n] chosen
independently. We use the notation STn(k) for ST (T1, . . . , Tk).

A random mapping f : [n] → [n] is a mapping from the set [n] to itself chosen
uniformly at random from the family of all mappings [n] → [n]. Similarly, as in the
case for trees, we use SMn(k) to denote the sum of k random mappings.

SMn(k) is a well-studied model of a random graph. Frieze [4] showed that
w.h.p. SMn(2) has a perfect matching (see also Shamir and Upfal [11], who showed
that w.h.p. SMn(6) has a perfect matching). Cooper and Frieze [2] have shown that

∗Received by the editors December 16, 1996; accepted for publication (in revised form) March 24,
1998; published electronically April 29, 1999.

http://www.siam.org/journals/sidma/12-2/31379.html
†Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213 (af1p@

andrew.cmu.edu). The research of this author was partially supported by NSF grant 953074.
‡Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322,

and Adam Mickiewicz University, Poznań, Poland (michal@mathcs.emory.edu, karonski@math.amu.
edu.pl). The research of this author was partially supported by NSF grant INT-9406971 and KBN
grant 2 P03A 023 09.
§DIMACS, Rutgers University, P.O. Box 1179, Piscataway, NJ 08855 (thoma@dimacs.rutgers.

edu). This author was supported by DIMACS as a Postdoctoral Fellow. DIMACS is a cooperative
project of Rutgers University, Princeton University, AT&T Research, Bellcore, and Bell Laboratories.
DIMACS is an NSF Science and Technology Center, funded under contract STC-91-19999, and also
receives support from the New Jersey Commission on Science and Technology. This author was also
partially supported by NSF grant INT-9406971.

208

ON SUMS OF RANDOM TREES 209

w.h.p. SMn(4) has a Hamilton cycle, but the problem of whether or not SMn(3) has
w.h.p. a Hamilton cycle is one of the most important open questions in the theory of
random graphs.

There is also a well-known bipartite mapping model SMn,n(k). Walkup [12] had
earlier shown that SMn,n(2) has w.h.p. a perfect matching.

STn(k) is less well studied. Schmutz [9] computed the expected number of perfect
matchings in STn(2) and showed that asymptotically it is (4/e)n. He also studied a bi-
partite model STn,n(k) where the trees involved are random subtrees of the complete
bipartite graph Kn,n and showed that STn,n(2) has w.h.p. a perfect matching.

In section 2, we prove the following theorem.
Theorem 1.2.

(a) lim
n→∞
n even

Prob(STn(1) has a perfect matching) = 0 .

(b) lim
n→∞
n even

Prob(STn(2) has a perfect matching) = 1.

Using the proof methodology of Frieze and ÃLuczak [5], who showed that SMn(5)
has w.h.p. a Hamilton cycle, we prove a result on the existence of Hamilton cycles in
STn(5) in section 3.

Theorem 1.3.

lim
n→∞Prob(STn(5) has a Hamilton cycle) = 1.

2. Perfect matchings—proof of Theorem 1.2.
(a) This follows immediately from Meir and Moon’s result [8] that the size of the

largest matching in a random tree is w.h.p. asymptotic to (1 − ρ)n ≈ .432 n, where
ρeρ = 1.

(b) The proof of the second limit in Theorem 1.2 consists of several lemmas.
Our starting point is a lemma by Gallai and Edmonds (Lemma 2.1) which gives a
sufficient condition for the existence of a perfect matching. In the view of this lemma,
it is enough to show that w.h.p. there is no bad set in STn(2). To show that we are
going to distinguish different sizes of a bad set, Lemma 2.2 implies that for any fixed
positive integer k0 the sum of two random trees STn(2) has w.h.p. no bad set of size
at most k0. The next range of bad sets we eliminate are bad sets of size at most u0n
for some positive constant u0. Using Lemma 2.4 we conclude that w.h.p. STn(2) has
no such bad sets. Finally, a correspondence between labelled trees on n vertices and
mappings from the set [n] into itself and Lemma 2.7 imply that w.h.p. STn(2) does
not contain a bad set of size larger than u0n.

Before giving the lemmas we need some notation. Let G = (V,E) be the graph.
For U ⊆ V, let G[U] = (U,EU) be a subgraph of G induced on U, i.e., EU = {e ∈ E;
both vertices of e belong to U}. Furthermore, let NG(U) = {v ∈ V \ U ; there is
u ∈ U such that {u, v} ∈ E} denote the neighborhood of the set U and set N(U) =
NSTn(2)(U). A subset U ⊆ V is said to be stable if EU = ∅.

The following lemma is due to Gallai [6] and Edmonds [3] (cf. [4]).
Lemma 2.1. If a graph G does not have a perfect matching, then there exists

K ⊆ V (G), |K| = k ≥ 0 such that if H = G[V (G) \K], then

(1) H has at least k + 1 components with an odd number of vertices;

210 ALAN FRIEZE, MICHAÃL KAROŃSKI, AND LUBOŠ THOMA

(2) no odd component of H, which is not an isolated vertex, is a tree.

The set K guaranteed by Lemma 2.1 will be called a bad set.
In the following sequence of lemmas, we are going to show that for n even STn(2)

has w.h.p. no bad set.
Before starting with the lemmas, we recall the following two formulas: the number

of forests on n vertices with k fixed roots is equal to knn−k−1, and the number of
forests on n vertices with k roots (the roots can be any k of the n vertices) is equal
to
(
n−1
k−1

)
nn−k.

Lemma 2.2. For sets K,L ⊆ Vn, let A1(K,L) be the event that N(L) ⊆ K. For
positive integers k, l define the event A1(k, l) by

there exist K,L ⊆ Vn,K ∩ L = ∅, |K| = k, |L| = l such that A1(K,L) occurs.

For ε, 0 < ε < 1, let u(ε) = [1−ε
3e4(1+ε)1+ε]1/ε and suppose that u = u(ε) satisfies

(5e4)u/uu ≤ 21/8e2 .
Then setting n1 = bunc and l1 = d(1 + ε)ke and

A1(ε) =

n1⋃
k=1

bn/2c⋃
l=l1

A1(k, l),

we have

lim
n→∞Prob(A1(ε)) = 0.

Proof. To bound Prob(A1(k, l)) we are going to divide the ranges of k and l into
the following two cases:

(a) l ≤ bn/(2e2)c and any k,
(b) l > bn/(2e2)c and any k.
Fix K,L and the lowest numbered vertex v ∈ K. Now, each tree T with NT (L) ⊆

K is considered to be oriented towards v.
Case A. Let T be a tree oriented as described above. Delete edges oriented out

of vertices in L. This leaves a forest F ′ with l + 1 roots and n vertices. There are at
most (l+ 1)nn−l−2 such forests, (not all forests with l+ 1 roots and n vertices respect
NT (L) ⊆ K). To obtain T we construct a forest F ′′ with vertex set K ∪ L and roots
K and take T = F ′ ∪ F ′′. We can construct F ′′ in k(k + l)l−1 ways. Hence,

Prob(A1(k, l)) ≤
(
n

k

)(
n

l

)(
(l + 1)nn−l−2k(k + l)l−1

nn−2

)2

(3)

≤ (ne)k+l

kkll
k2 l

2l(1 + k
l)

2l

n2l

≤ nkk2e3k

kk

(el
n

)l
.

Putting µl = (el/n)l, we get µl/µl−1 < 1/2 for l < n/2e2.
Thus,

bn/2e2c∑
l=l1

(el
n

)l
≤ 2
(el1
n

)l1
.

ON SUMS OF RANDOM TREES 211

Hence,

n1∑
k=1

bn/2e2c∑
l=l1

Prob(A1(k, l)) ≤
bunc∑
k=1

nkk2e3k

kk
2
(el1
n

)l1
≤ 2

bunc∑
k=1

(3e4(1 + ε)1+εkε

nε

)k
= o(1).

Case B. Let T be a tree oriented as described above. Let F ′ be the forest obtained
by deleting edges oriented out of K and deleting vertices in L. This forms a forest
with n − l vertices and k roots K. There are k(n − l)n−l−k−1 such forests and each
forest can be extended in at most k(k + l)l−1nk−1 ways to form the oriented tree T.
Indeed, we attach the vertices from L by constructing a forest on K ∪ L with roots
K in at most k(k + l)l−1 ways. The remaining k − 1 edges oriented out of K can be
chosen in at most nk−1 ways. Hence,

Prob(A1(k, l)) ≤
(
n

k

)(
n

l

)[k(n− l)n−l−k−1k(k + l)l−1nk

nn−2

]2
≤ (ne)k+l

kkll
· k

4e−2l+
2l(l+k+1)

n l2(l−1)e2k

n2(l−1)

≤ nke3k−lk4el+k+1ll−2

kknl−2

= e

(
nk4/ke4

k

)k (
l

n

)l−2

.

For n large enough,

bn/2c∑
l=bn/2e2c+1

(l
n

)l−2

≤ n
(1

2

) n
2e2
−2

≤
(1

2

) n
4e2

.

Hence,

n1∑
k=1

bn/2c∑
l=bn/2e2c+1

Prob(A1(k, l)) ≤ e
(1

2

) n
4e2

bunc∑
k=1

(nk4/ke4

k

)k

≤ e
(1

2

) n
4e2

bunc∑
k=1

(5e4n

k

)k
≤ en

((5e4)u

21/(4e2)uu

)n
= o(1).

Lemma 2.3. Let ε be as in Lemma 2.2. Suppose a graph G contains a bad set
K, 1 ≤ k = |K| ≤ u(ε)n, and no subset of K is bad. Let H = G[Vn \K] have s ≥ k+1
odd components C1, C2, . . . , Cs with n1 = n2 = · · · = np = 1 < 3 ≤ np+1 ≤ · · · ≤ ns
vertices, respectively.

212 ALAN FRIEZE, MICHAÃL KAROŃSKI, AND LUBOŠ THOMA

Assume that A1(ε) does not occur. Then there exists a partition K,P,Q,R of Vn
with p = |P |, q = |Q| satisfying

(4) N(R) ⊆ K,N(P) ⊆ K,N(Q) ⊆ K,
(5) P is a stable set,

(6) each vertex of K is adjacent to at least one member of P ∪Q,
(7) 1 ≤ k ≤ u(ε)n, 0 ≤ p+ q < (1 + ε)k, p+ bq/3c ≥ k and q = 0 implies p ≥ k + 1.

Proof. For the proof, see [4].
Let A2(ε) be the event that there is a partition satisfying (4)–(7) described in

Lemma 2.3.
We can immediately show that for any fixed integer k0

lim
n→∞
n even

Prob(STn(2) has a bad set K, with 1 ≤ |K| ≤ k0) = 0.

Let us take ε = 1/2k0 and assume that A1(ε) does not occur. If there is a bad set K
with 1 ≤ |K| ≤ k0, then the conditions of Lemma 2.3 are satisfied for some k ≤ k0.
But (7) implies q < 3εk/2 which in this case forces q < 1 or q = 0. But then p ≥ k+ 1
contradicts p < (1 + ε)k.

In the proof of the following lemma we assume that k ≥ k0 for some suitably
large k0.

Lemma 2.4. For small ε

lim
n→∞Prob(A2(ε)) = 0.

Proof. Fix K,P,Q, and v ∈ K. Each tree satisfying (4)–(6) can be chosen in at
most k(n−p−q)n−p−q−k−1nk−1kp(k+q)q ways. We first build a forest on V \(P ∪Q)
with roots in K (k(n− p− q)n−p−q−k−1 ways). Then each x ∈ P is allowed to choose
in K, each y ∈ Q is allowed to choose in K ∪ Q, and each z ∈ K \ {v} is allowed to
choose in Vn.

Let Ki be the set of vertices in K which have a neighbor in P ∪Q in the tree Ti,
i = 1, 2. There are two possibilities:

(a) |K1| ≥ .9k.
Of the kp(k + q)q choices ascribed to vertices in P ∪Q, at most a proportion .9k

will make |K1| ≥ .9k. Indeed, for each x ∈ K the probability it is included in such a
choice is at most

1−
(

1− 1

k

)p(
1− 1

k + q

)q
≤ .64,

for large enough k. The corresponding events for each x are clearly negatively
correlated—note that we do not claim this for the choice of tree T1, but only for
the choices defined by the upper estimate. Thus,

Prob(|K1| ≥ .9k) ≤
(
k

.9k

)
(.64)k

≤ (.9)k.

ON SUMS OF RANDOM TREES 213

(b) |K1| < .9k. By a similar argument,

Prob(K2 ⊇ K \K1 | K1, |K1| < .9k) ≤ (.64).1k.

Combining the two cases we see that for δ = (.64).1, we have

Prob(A2(k, p, q)) ≤ 2

(
n

k, p, q

)[k(n− p− q)n−p−q−k−1nk−1kp(k + q)q

nn−2

]2
δk

≤ 2
(ne)k+p+q

kkppqq
· k

2p+2q+2e2q2/ke−
p+q
n (n−p−q−k−1)

n2p+2q
δk,

where A2(k, p, q) is the event that there is a partition satisfying (4)–(7) in Lemma 2.3
for given k, p, q. We obtain for the probability of the event A2(k, p, q), under the
condition q ≥ 2,

Prob(A2(k, p, q)) ≤ 2
ek−p−qk2p+2q+2

kkqqppnp+q−k
e2q2/ke

2(1+ε)(2+ε)k2+2(1+ε)k
n δk

≤ 2
(k
en

)p+q−k(k
p

)p(k
q

)q
k2e2q2/ke

2(1+ε)(2+ε)k2+2(1+ε)k
n δk.

We continue with the bound on Prob(A2(k, p, q)), using k
p ≤ 1 + q

p , q ≤ 3
2εk, and

p+ q − k ≥ 1. Furthermore, we use that the function x−x on the interval (0,∞) has
its maxima at x = 1/e. Thus, for every k ≥ k0 = k0(ε)

Prob(A2(k, p, q)) ≤ 2
(k
en

)p+q−k(k
p

)p(k
q

)q
k2e9ε2k/2e12u(ε)ke4u(ε)δk

≤ 2k3

en
e4u(ε)

(2

3ε

)3εk/2

e5εk+12u(ε)kδk.

Choose ε small enough such that (2/3ε)3ε/2e5ε+12u(ε)δ ≤ µ < 1 for some 0 < µ <
1. For k ≥ k0 let S(k) = {(p, q); k, p, q satisfy conditions (7)}. Note that |S(k)| ≤ 2k2

for ε small. We sum up over k, p, and q. Thus,

Prob(A2(ε)) =

bu(ε)nc∑
k=k0

∑
(p,q)∈S(k)

Prob(A2(k, p, q))

≤ 4e3

n

bu(ε)nc∑
k=k0

k5µk

= o(1).

Summing up, by choosing ε small enough and k0 sufficiently large, so far we have
proved that there is a constant u0 > 0 such that

lim
n→∞
n even

Prob(STn(2) has a bad set K, with 1 ≤ |K| ≤ u0n) = 0.

To complete the proof of Theorem 1.2, we need to take care about large bad sets.

214 ALAN FRIEZE, MICHAÃL KAROŃSKI, AND LUBOŠ THOMA

Lemma 2.5. Let A3 denote the following event:

STn(2) contains at least (log n)3 sets S ⊆ Vn satisfying

(8) |S| ≤ log log n,

(9) |ES | ≥ |S|.

Then limn→∞ Prob(A3) = 0.
Proof. Fix k ≥ 2. Let Xk be a random variable counting sets S with |S| = k and

|ES | ≥ k. Then

EXk ≤
(
n

k

)∑k
t=2

∑
i,j≥1
i+j=t

(n− k)t
((
k−1
i−1

)
kk−i

)((
k−1
j−1

)
kk−j

)
[
(n− k)nn−(n−k)−1

]2
=

(
n

k

)
k2k

∑k
t=2

(
2(k−1)
t−2

)
(n−kk)t

[(n− k)nk−1]2

≤ ek
(

n

n− k
)2 (k

n

)k k∑
t=2

(
2(k − 1)

t− 2

)(
n− k
k

)t
.

As we have k ≤ log log n, we get

EXk ≤ ek
(n

n− k
)2

k

(
2k

k

)(n− k
k

)k(k
n

)k
≤ (4e)kk

(n− k
n

)k−2

≤ (4e)k log log n.

By the Markov inequality

Prob(A3) = Prob

(blog log nc∑
k=3

Xk ≥ (log n)3

)

≤ 2 log log n · (4e)log log n

(log n)3

= o(1).

Now we shall make use of the known one-to-one correspondence between the
family of labelled trees on n vertices with two marked vertices and the family of
functional digraphs D(f) of mappings f : [n] → [n]. Each such digraph D consists
of vertices S(f) which form cycles, and the remaining vertices form a set of trees T
which are attached to the cycles. To obtain a tree T with two appropriately marked
vertices from D, we shall consider vertices lying on the cycles as a permutation drawn
in cyclic form. Next we write such a permutation in a line form, which in turn we
treat as a directed path P . As a final step, we reattach the trees in T to their vertices
on P to obtain a tree with two marked vertices (these two vertices are simply the
beginning and the end of P). One can easily reproduce the correspondence from
trees to mappings reversing the procedure described above. We believe that the one-
to-one correspondence stated above is due to Joyal. A complete description of this
correspondence can be found, for example, in Bender and Williamson [1].

ON SUMS OF RANDOM TREES 215

This defines a natural measure preserving mapping φ from the space of random
mappings to the space of random trees (φ just “forgets” the random choice of a pair
of marked vertices). To finish the proof of Theorem 1.2 we will use φ to construct
STn(2) in the following way: we first generate SMn(2) from random functions f1, f2

and then apply φ to both of them.
Definition 2.6. Let a pair of sets K,P ⊆ Vn be matched if
(ι) P is stable in STn(2),
(ιι) N(P) = K,
(ιιι) |P | ≥ |K| − δ(n) ,

where δ(n) = d n
log log n + (logn)3e.

Lemma 2.7. Suppose STn(2) has no bad sets of size u0n or less but STn(2)
contains a bad set K0, k = |K0| > u0n. Suppose K0 does not strictly contain another
bad set and A3 does not occur in STn(2). Let S = S(f1) ∪ S(f2). If s = |S|, then
either SMn(2) contains a matched pair K,P with

|P |+ δ(n) + s ≥ k ≥ |K| ≥ |P |

or

K0 contains a bad set of SMn(2).

Proof. Arguing as in Lemma 2.7 of [4] we see that STn(2) contains a matched
pair K1, P1 with

|P1|+ δ(n) ≥ k ≥ |K1| ≥ |P1|.

Let P = P1 \ S. Then P is stable and |P | ≥ |P1| − s. Also, NSMn(2)(P) ⊆ K1. Now

take K = NSMn(2)(P). Either |K| < |P | and K is a bad set of SMn(2) or |K| ≥ |P |
and K,P is the required matched pair.

Both possibilities in Lemma 2.7 are shown not to happen w.h.p. in [4], completing
the proof of Theorem 1.2. (We observe first that w.h.p. s = O(

√
n) (cf. Kolchin [7]).

The definition of a matched pair in [4] has to be amended to δ(n) +O(
√
n), but this

does not affect the proof there given in any significant way.)

3. Hamilton cycles—proof of Theorem 1.3. Frieze and ÃLuczak [5] proved
that w.h.p. there is a Hamilton cycle in SMn(5). We will use the same proof technique
here, giving only a sketch as the main ideas are very similar.

We consider STn(5) to be the union of STn(4) and a random tree T5. We observe
first that Theorem 1.2 shows that w.h.p. STn(4) contains the union of two perfect
matchings M1,M2. We can argue (see Lemma 2 of [5]) that M1 and M2 are an
independent pair of matchings, chosen uniformly from the set of all possible perfect
matchings. Furthermore, (see Lemma 3 of [5]) M1∪M2 is w.h.p. the union of at most
3 log n vertex disjoint cycles—some cycles may possibly just be double edges.

We show next that w.h.p. STn(4) has good expansion properties. For sets K,L ⊆
Vn, let Ã1(K,L) be the event that NSTn(4)(L) ⊆ K and let

A4 =
⋃

|K|≤10−3n
|L|=2|K|

Ã1(K,L).

Lemma 3.1. Prob(A4) = o(1).

216 ALAN FRIEZE, MICHAÃL KAROŃSKI, AND LUBOŠ THOMA

Proof. It follows from (3) that

Prob(A4) ≤
10−3n∑
k=1

(
n

k

)(
n

2k

)(
(k + 1)nn−k−22k(3k)k−1

nn−2

)4

≤
10−3n∑
k=1

(k + 1)4

(
81e3k

4n

)k
= o(1).

The idea now is to use the extension-rotation procedure (as described in [5]).
The main idea that we get from [5] is to reserve the edges of T5 for closing paths.
More precisely, at some points of our extension-rotation procedure we will have a
set A, |A| ≥ 10−3n and for each a ∈ A there is a collection of paths with endpoints
B(a), |B(a)| ≥ 10−3n, and we succeed if we always find a T5-edge of the form (a, b)
where b ∈ B(a). With high probability we need only to attempt this at most 3 logn
times (from Lemma 3.1). Let us suppose that the edges of T5 come from a random
mapping f5, where an adversary has altered the edges coming out of a set S of O(

√
n)

nodes. When given A, {B(a) : a ∈ A} we choose the lowest numbered a ∈ A \ S
whose f5 value has not been examined. So, w.h.p. we examine a further O(log n) a’s
before finding one with f5(a) ∈ B(a). Thus, w.h.p. the number of edges examined
and altered throughout the procedure is O(

√
n) and we succeed in finding a Hamilton

cycle.

REFERENCES

[1] E. A. Bender and S. G. Williamson, Foundations of Applied Combinatorics, Addison–
Wesley, Reading, MA, 1991.

[2] C. Cooper and A. M. Frieze, Hamilton cycles in random graphs and directed graphs, to
appear.

[3] J. Edmonds, Paths, Trees, and Flowers, Canad. J. Math., 17 (1965), pp. 449–467.
[4] A. M. Frieze, Maximum matchings in a class of random graphs, J. Combin. Theory Ser. B,

40 (1986), pp. 196–212.
[5] A. M. Frieze and T. ÃLuczak, Hamiltonian cycles in a class of random graphs: One step

further, in Random Graphs ’87, M. Karonski, J. Jaworski, and A. Rucinski, eds., John
Wiley, Chichester, 1990, pp. 53–59.

[6] T. Gallai, Über extreme Punkt-und Kantenmengen, Ann. Univ. Sci. Budapest Eötvös Sect.
Math., 2 (1959), pp. 133–138.

[7] V. F. Kolchin, Random Mappings, Optimization Software Inc., New York, 1986.
[8] A. Meir and J. W. Moon, The expected node-independence number of random trees, Nederl.

Akad. Wetensch. Proc. Ser. Indag. Math., 35 (1974), pp. 335–341.
[9] E. Schmutz, private communication.

[10] E. Schmutz, Matchings in superpositions of (n, n)-bipartite trees, Random Structures Algo-
rithms, 5 (1994), pp. 235–241.

[11] E. Shamir and E. Upfal, One-factor in random graphs based on vertex choice, Discrete Math.,
41 (1982), pp. 281–286.

[12] D. W. Walkup, Matchings in random regular bipartite digraphs, Discrete Math., 31 (1980),
pp. 59–64.

THE SIZE OF THE LARGEST COMPONENTS IN
RANDOM PLANAR MAPS∗

ZHICHENG GAO† AND NICHOLAS C. WORMALD‡

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 2, pp. 217–228

Abstract. Bender, Richmond, and Wormald showed that in almost all planar 3-connected
triangulations (or dually, 3-connected cubic maps) with n edges, the largest 4-connected triangulation
(or dually, the largest cyclically 4-edge-connected cubic component) has about n/2 edges [Random
Structures Algorithms, 7 (1995), pp. 273–285]. In this paper, we derive some general results about
the size of the largest component and apply them to a variety of types of planar maps.

Key words. planar map, 4-connected component, triangulation, cubic graph

AMS subject classifications. 05C30, 05C40

PII. S0895480195292053

1. Introduction. Recently, Bender, Richmond, and Wormald [3] showed that
in almost all 3-connected triangulations with n edges, the largest 4-connected trian-
gulation has n/2 +O(λ(n)n2/3) edges, for any function λ(n)→∞. (See section 3 for
definitions.) Our objective in this paper is to abstract and generalize the technique
of the above mentioned paper and apply it to a variety of types of planar maps. In
principle, the general method applies to any combinatorial structure provided that
the generating functions of the structures and their components have a relationship
with each other which is common in enumerative map theory.

The next section contains analytic asymptotic results needed in a general form
for evaluating the number of maps with a specified component of a given size, among
other things. In section 3, we give some basic definitions for maps. The final sec-
tion addresses the problem of transferring from a specified component to the largest
component. The main result is Theorem 2, which determines almost surely the size
of the largest component of a specified type in several classes of maps. Our results
apply equally well to rooted or unrooted maps, though we work with the rooted ones
in order to prove the main result.

2. General asymptotic results. Throughout this paper, η and ρ are positive
constants with ρ < 1. Ω(n) is any positive function which goes to ∞.

Lemma 1. Suppose Gj ≥ 0 for j ≥ 0 and
∑
j≥0Gjρ

j converges for some ρ > 0.
Suppose there is a nonempty finite set J of indices satisfying Gj > 0 for j ∈ J and
gcd{j − j′ : j, j′ ∈ J} = 1. Then, for any 0 < r ≤ ρ and 0 < θ < 2π,∣∣∣∣∣∣

∑
j≥0

Gj
(
reiθ

)j∣∣∣∣∣∣ <
∑
j≥0

Gjr
j .

∗Received by the editors September 18, 1995; accepted for publication (in revised form) February
2, 1998; published electronically April 29, 1999.

http://www.siam.org/journals/sidma/12-2/29205.html
†Department of Mathematics and Statistics, Carleton University, Ottawa, Ontario K1S 5B6,

Canada (zgao@math.carleton.ca). The research of this author was supported by NSERCC.
‡Department of Mathematics, University of Melbourne, Parkville, VIC 3052, Australia

(nick@mundoe.maths.mu.oz.au). The research of this author was supported by the Australian Re-
search Council.

217

218 ZHICHENG GAO AND NICHOLAS C. WORMALD

Proof. Clearly, the left side does not exceed the right. Suppose there exist 0 <
r ≤ ρ and 0 < θ < 2π such that∣∣∣∣∣∣

∑
j≥0

Gj(re
iθ)j

∣∣∣∣∣∣ =
∑
j≥0

Gjr
j .

Then, ∑
j≥0

Gj
(
reiθ

)j
=
∑
j≥0

Gjr
jeiθ

′

for some 0 ≤ θ′ < 2π. This implies that∑
j≥0

Gjr
j
(

1− ei(jθ−θ′)
)

= 0,

and, hence,

jθ − θ′ = 2kjπ

for some integers kj and all j ∈ J . This gives

(j − j′)θ = 2(kj − kj′)π for all j, j′ ∈ J.

Since gcd{j − j′ : j, j′ ∈ J} = 1, there are integers mj,j′ such that∑
j,j′∈J

mj,j′(j − j′) = 1.

Hence,

θ =
∑
j,j′∈J

mj,j′(kj − kj′)2π,

which contradicts the assumption that 0 < θ < 2π.
Theorem 1. Suppose that G(z) =

∑
n≥0Gnz

n satisfies the following conditions
for some ρ > 0 and η > 0:

(i) G(z) is analytic in ∆ = {z : |z| ≤ ρ(1 + η)} − [ρ, ρ(1 + η)].
(ii) Let R =

√
1− z/ρ with the determination being positive for z < ρ. Then,

G(z) = g0 − g2R
2 +

∑
j≥3

gjR
j ,

and the power series is convergent for |z − ρ| ≤ ρη.
(iii) Gn ≥ 0 for all n ≥ 0, and g3 > 0.
Then for β = g0/g2 and any Ω(n)→∞ as n→∞ with Ω(n) = O(n1/3), we have

(a)

[zn]Gj(z) ∼ jg3

Γ(−3/2)
(n− j/β)−5/2gj−1

0 ρ−n

uniformly for all 1 ≤ j ≤ βn− n2/3Ω(n).

COMPONENTS IN RANDOM MAPS 219

(b)

[zn]Gj(z) = O
(
ρ−ngj0n

−2/3 exp
(

(n− j/β)n−2/3
))

uniformly for all j ≥ βn+ n2/3Ω(n), j = O(n).
Proof. Let δ = n−2/3/Ω′(n), where Ω′(n) → ∞ and Ω′(n) = O(Ω1/6(n)). Using

conditions (i), (ii), and (iii) and Darboux’s theorem (see Bender [1], for example), we
have

Gn ∼ g3

Γ(−3/2)
n−5/2ρ−n,(1)

and, hence, Gn > 0 for all sufficiently large n. Therefore, again using (iii),

g0 = G(ρ) > 0 and g2 = ρG′(ρ) > 0,(2)

and G(z) satisfies the conditions of Lemma 1. Since G(z) is continuous in ∆, using
Lemma 1 we have that for any θ0 > 0, there exists η′ > 0 such that∣∣G(ρeiθ)

∣∣ ≤ G(ρ)(1− η′)(3)

for all θ0 ≤ θ ≤ 2π − θ0. For sufficiently small θ0 and ε, we define

Γ1 = {ρ+ εeiθ : π/2 ≤ θ ≤ 3π/2},
Γ2 = {ρ(1 + x) + iε : 0 ≤ x ≤ δ′},
Γ3 = {z : z = ρ(1 + δ)eiθ, 0 < θ < θ0, Im(z) ≥ ε},
Γ4 = {ρ(1 + δ)eiθ : θ0 ≤ θ ≤ 2π − θ0},
Γ5 = {z : z = ρ(1 + δ)eiθ, 2π − θ0 < θ < 2π, Im(z) ≤ −ε},
Γ6 = {ρ(1 + x)− iε : 0 ≤ x ≤ δ′},

where the direction of the contour is anticlockwise, and δ′ is chosen so that |ρ(1 +
δ′) + iε| = ρ(1 + δ). Let

Il =

∫
Γl

Gj(z)z−(n+1)dz

for l = 1, . . . , 6. Then by Cauchy’s formula,

[zn]Gj(z) =
1

2πi
(I1 + I2 + I3 + I4 + I5 + I6).(4)

We can assume j = O(n). For z = ρ(1 + δ)eiθ ∈ Γ3 and sufficiently small θ0, we
have

R =
√
−δ − (1 + δ)iθ +O(θ2).(5)

It follows from condition (ii) that

|G(z)/g0|j = | exp(j log(G(z)/g0))|
= exp(jδ/β + j(g3/g0)Re(R3) + jO(θ2 + δ2)).(6)

For n−2/3 ≤ θ ≤ θ0, and for sufficiently small θ0 and sufficiently large n, we have from
(5), and using g3 > 0 from (2), that

Re(R3) = (−1/
√

2)θ3/2(1 +O(θ + δ/θ)) ≤ (−1/2)θ3/2,

220 ZHICHENG GAO AND NICHOLAS C. WORMALD

and, hence,

|G(z)/g0|j = O(exp(jδ/β − (g3/4g0)jθ3/2)).

For 0 ≤ θ ≤ n−2/3, we have from (5) that R3 = O(1/n) and, hence, that

|G(z)/g0|j = O(exp(jδ/β)).

Therefore,

|I3| = O
(
ρ−ngj0 exp((j/β − n)δ)

)(∫ θ0

0

exp(−(g3/4g0)jθ3/2)dθ + n−2/3

)
= O

(
ρ−ngj0j

−2/3 exp((j/β − n)δ)
)
.(7)

Assume j ≤ βn− n2/3Ω(n). Using

exp((j/β − n)δ) = o ((n− j/β)δ)
−3

= o
(

(n− j/β)−5/2n5/3
)

and

exp((j/β − n)δ) = o
(
n−10

)
for j ≤ βn/2,

we obtain

|I3| = o
(
jρ−ngj0(n− j/β)−5/2

)
(8)

uniformly over j.
Using (3), we have, for sufficiently large n and z ∈ Γ4, that

|G(z)| ≤ G(ρ) = g0,

and, hence,

|I4| = O(gj0ρ
−n(1 + δ)−n) = O(gj0ρ

−ne−δn).(9)

It is clear that I5 and I6 are the negative conjugates of I3 and I2, respectively.
All the error estimates above from (4)–(9) are independent of ε (or more precisely,
uniform in the range 0 < ε < ε0, for some small but fixed positive constant ε0). Hence,
we can let ε→ 0 in (4). Using (8) and (9), we note that I1 goes to 0, and obtain

[zn]Gj(z) = (1/π)Im
(

lim
ε→0

I2

)
+o
(
ρ−ngj0j(n− j/β)−5/2

)
,(10)

provided the limit exists.
For z = ρ(1 + x) + iε ∈ Γ2, we have

lim
ε→0

R = −ix1/2,(11)

and, hence, by condition (ii),

lim
ε→0

Gj(z) = gj0 exp(j(g2/g0)x+ ij(g3/g0)x3/2 +O(jx2))

= gj0 exp(jx/β)(1 + ij(g3/g0)x3/2 +O(jx2)).

COMPONENTS IN RANDOM MAPS 221

Therefore, noting dz
dx = ρ and limε→0 δ

′ = δ,

Im
(

lim
ε→0

I2

)
= ρ−ngj0

∫ δ

0

exp(−(n− j/β)x)(jg3/g0)x3/2(1 + o(1))dx

= ρ−ngj−1
0 jg3Γ(5/2)(n− j/β)−5/2(1 + o(1)).(12)

Now part (a) follows from (10) and Γ(5/2) = π/Γ(−3/2).
Now we prove part (b). Let

Γ1 = {z : z = ρ(1− n−2/3)eiθ, |θ| ≤ θ0},
Γ2 = {z : z = ρ(1− n−2/3)eiθ, θ0 ≤ |θ| ≤ π},

and define

Il =

∫
Γl

Gj(z)z−(n+1)dz

for l = 1 and 2. Then,

[zn](Gj(z)) =
1

2πi
(I1 + I2).(13)

Using Lemma 1, we have

|G(z)| ≤ g0(1− η′)

for z ∈ Γ2 and some positive constant η′. Hence,

|I2| = O
(
ρ−ngj0(1− η′)j(1− n−2/3)−n

)
= o

(
ρ−ngj0 (1− η′/2)

j
)

(14)

uniformly for all j ≥ βn+ n2/3Ω(n). Also, using an estimation similar to that for I3
in part (a), this time with δ = −n−2/3, we again get the bound in (7); that is,

|I1| = O
(
ρ−ngj0n

−2/3 exp((n− j/β)n−2/3)
)

(15)

uniformly for all j ≥ βn+ n2/3Ω(n). Now part (b) follows from (13)–(15).
We will say that (A(z), B(z), C(z)) is an admissible triple if it satisfies the follow-

ing conditions:
H1: A(z) = C(B(z));
H2: A(z) =

∑
n≥0Anz

n and B(z) =
∑
n≥0Bnz

n are analytic in

∆1 = {z : |z| ≤ ρ(1 + η), z 6= ρ,Arg(z − ρ) 6= 0},

and C(z) =
∑
n≥0 Cnz

n is analytic in

∆2 = {z : |z| ≤ B(ρ)(1 + η), z 6= B(ρ),Arg(z −B(ρ)) 6= 0}

and An, Bn, Cn ≥ 0 for all n;
H3:

A(z) = a0 − a2R
2 +

∑
j≥3

ajR
j , B(z) = b0 − b2R2 +

∑
j≥3

bjR
j ,

222 ZHICHENG GAO AND NICHOLAS C. WORMALD

where R =
√

1− z/ρ (the determination being positive for z < ρ) and the power
series in R has positive radii of convergence, and

C(z) = c0 − c2S2 +
∑
j≥3

cjS
j ,

where S =
√

1− z/b0 (the determination being positive for z < b0) and the power
series in S has a positive radius of convergence;
H4: a3 > 0, b3 > 0, and c3 > 0.

Lemma 2. Let (A(z), B(z), C(z)) be an admissible triple, β = b0/b2, and Ω(n)
be any function which goes to positive infinity. Then,

αn =
∑

|j−βn|<n2/3Ω(n)

Cj [z
n]Bj(z)/An = 1− a2b3

a3b2
+ o(1).(16)

Proof. Using Darboux’s theorem [1], or Theorem 1(a) with j = 1, we have

An ∼ (a3/Γ(−3/2))n−5/2ρ−n,
Bn ∼ (b3/Γ(−3/2))n−5/2ρ−n,
Cn ∼ (a3/Γ(−3/2))n−5/2b−n0 .

By Theorem 1(a), we have

[zn]Bj(z) =
jb3b

j−1
0

Γ(−3/2)
(n− j/β)−5/2ρ−n(17)

uniformly for all j ≤ βn− n3/2Ω(n). Therefore,∑
j≤βn−n2/3Ω(n)

Cj [zn]Bj(z)/An(18)

= (b3/a3)
∑

j≤n/ logn

Cjjb
j−1
0 (1 + o(1)) +

∑
n/ logn<j≤βn/2

O(j−3/2)

+
∑

βn/2<j≤βn−n2/3Ω(n)

O
(
j−3/2(n− j/β)−5/2 n5/2

)

= (b3/a3)C ′(b0) +O

(
n

∫ βn−n2/3Ω(n)

βn/2

(n− x/β)−5/2dx

)
+ o(1)

= (b3/a3)C ′(b0) +O(Ω−3/2(n)) + o(1).

Since C ′(b0) = a2/b2, we have∑
j≤βn−n2/3Ω(n)

Cj [z
n]Bj(z)/An = a2b3/(a3b2) + o(1).(19)

By Theorem 1(b), we have∑
j≥βn+n2/3Ω(n)

Cj [zn]Bj(z)/An

=
∑

j≥βn+n2/3Ω(n)

O
(
n−2/3 exp

(
(n− j/β)n−2/3

))
= O (exp (−Ω(n)/β))

= o(1).(20)

COMPONENTS IN RANDOM MAPS 223

Now the lemma follows from H1, (19), and (20).
Lemma 3. Let (A(z), B(z), C(z)) be an admissible triple, αn and β = b0/b2 as

defined in Lemma 2. If B(z) = zh(A(z)) for some function h(z), which is analytic in
{z : |z| ≤ a0}, then

αn = β + o(1).

Proof. Let

h(z) =
∑
k≥0

hk(z − a0)k.

Then,

B(z) = z
∑
k≥0

hk

(
− a2R

2 +
∑
j≥3

ajR
j

)k
= ρ(1−R2)(h0 − h1a2R

2 + h1a3R
3 + higher power terms in R).

Therefore,

b0 = ρh0, b2 = ρ(h0 + h1a2), b3 = ρh1a3.(21)

Thus, we have

1− a2b3
a3b2

= h0/(h0 + h1a2) = β.

Now the lemma follows from Lemma 2.

3. General map definitions. A planar map is a connected graph G embedded
in the sphere S such that all components of S−G are simply connected regions, which
are called faces. Loops and multiple edges are permitted in G. In this paper a planar
map is simply a map. A map is rooted if an edge is distinguished, together with a
vertex incident with the edge and a side of the edge. This is useful in enumeration,
since we regard two maps to be equivalent if there is a homeomorphism of the sphere
which takes one to the other; for rooted maps, the homeomorphism must preserve the
rooting.

A graph (or the corresponding map) is k-connected if it has at least k vertices,
requires removing at least k vertices to separate the graph, and the graph has no
loops if k ≥ 2 and no multiple edges if k ≥ 3.

A triangulation is a map in which all the faces are triangles. In this paper, a
quadrangulation is a map which has no multiple edges and in which all the faces are
quadrangles. Cubic maps have all vertices of degree 3 (the duals of triangulations),
and bicubic maps are cubic maps whose graphs are bipartite.

To contract a loop e of a map with respect to a face F , shrink e and the part of
the sphere on the other side of e from F down to the vertex incident with e. A loopless
component in a map is a map obtained by specifying a face F and then contracting
all loops with respect to F . A simple component in a loopless map is defined similarly
by contracting all 2-cycles into single edges, with respect to some face. The same
definition serves for a 3-connected component of a 2-connected triangulation, since in

224 ZHICHENG GAO AND NICHOLAS C. WORMALD

such a map, a 2-vertex cut determines a 2-cycle. A quadrangulation is called simple if
all 4-cycles are facial. A 2-connected component of a map is simply the map induced
by a 2-connected component (maximal 2-connected subgraph) of its graph. To treat
3-connected components in 2-connected maps, we use the one-to-one correspondence
between rooted quadrangulations and rooted maps [6].

4. Components in planar maps. In this section, we apply Theorem 1 to
obtain the size of the largest component of the following types in the specified families
of planar maps. In some cases the components are not actually submaps but are the
components in a unique decomposition of the maps under some natural definition
of decomposition. It could also be applied to obtain the analogous result about 4-
connected components in 3-connected triangulations obtained in [3].

1. 2-connected component in a general map;
2. loopless component in a general map, or dually, 2-edge connected component

in a general map;
3. simple component in a loopless map, or dually, 3-edge connected component

in a 2-edge connected map;
4. 3-connected component in a 2-connected triangulation;
5. 3-connected bicubic component in a 2-connected bicubic map;
6. 3-connected component in a 2-connected map, or, equivalently, simple com-

ponent in a quadrangulation;
The following lemma is useful; the proof of a special case can be found in [7].
Lemma 4. In a family of rooted maps of any of the types listed above, for any

ε > 0, almost all maps with n edges have at most one component that has more than
n2/3+ε edges.

Proof. For any of these families of maps (bicubic maps [7], other maps [5]), the
number of maps on n edges is asymptotic to

M(c, r, n) = cn−5/2rn

for some constants c and r, depending on the family, where for some of the families
n is restricted in a natural way to a subset of the positive integers. (For example, in
bicubic maps, n is a multiple of 3.)

We now treat the family of all maps in detail; the other cases are almost identical.
Suppose a rooted map R with n edges has at least two 2-connected components
containing more than n2/3+ε edges. Then, there is some cut-vertex at which the map
splits into two submaps, R1 and R2, containing at least n2/3+ε edges each. One of
these (say R1) contains the root edge of R. Given R1 with, say, n − k edges, there
are at most 2(n − k) places at which R2 could be attached. Thus, summing over k,
the number of possibilities for R is at most

bn−n2/3+εc∑
k=dn2/3+εe

O(1)(n− k)k−5/2(n− k)−5/2rn = O(1)rnn−3/2

∫ n/2

n2/3+ε

k−5/2dk

= O(n−3ε/2)M(c, r, n).

Suppose now that we have specified a family A of maps and a family C of com-
ponents. A map in A is called C-rooted (component rooted) if a component in C is
distinguished together with a rooting of the component as a map. Let A(z) be the
generating function of the C-rooted maps in A, and let C(z) be the generating func-
tion for the rooted maps in C. Then, in general, there will be a function B(z) such

COMPONENTS IN RANDOM MAPS 225

that H1 holds. (In general, a member of the maps in A can be created by taking
one of the components in C and replacing some parts of the component, perhaps each
face, or each nonroot edge, for instance, by something very close to one of the maps
in question. CkB

k(z) counts the number of C-rooted maps whose root components
have size k.) Then, (A(z), B(z), C(z)) will be an admissible triple (provided the other
requirements H2, H3, and H4 hold), and so Lemmas 2 and 3 will apply.

The following lemma will be used to pass from the root component size to the
largest component size. Here, “size” refers to the number of edges.

Lemma 5. Let M(z) be the generating function for rooted maps of one of the
above-listed families A by edges, C(z) the generating function for the corresponding
family C of components, and A(z) the generating function for the C-rooted maps in A.
Assume that (A(z), B(z), C(z)) is an admissible triple for some function B(z). Let
Xn be the size of a largest component in a random map with uniform distribution in
the family. Let αn and β be defined as in Lemma 2. Then,

P
(
|Xn − βn| < n2/3Ω(n)

)
= αn

An
βMn

+ o(1).

Proof. A map in A is called doubly rooted if it is C-rooted and has an additional
secondary rooting (that is, an edge, and a side and end of that edge are distinguished,
perhaps the same as the primary rooting). Let Dn be the set of doubly rooted maps in
A that have n edges, in which the root component has size k with |k−βn| < n2/3Ω(n).

By the definition of αn,

|Dn| = 4nαnAn.(22)

On the other hand, let Zn be the subset of Dn in which all rooted maps have at
least two components of size greater than βn − n2/3Ω(n). Since each rooted map in
Zn can be C-rooted in at most O(n) ways, it follows from Lemma 4 that

|Zn| = o(1)nMn.(23)

Hence,

|Dn| = (4βn+ o(n))P(|Xn − βn| < n2/3Ω(n))Mn + o(1)nMn.(24)

Now the lemma follows from (22)–(24).
Now we prove the following main result.
Theorem 2.
(1) Let Xn be the number of edges of a largest 2-connected component in a random

rooted map with n edges. Then,

P(|Xn − n/3| < n2/3Ω(n)) = 1 + o(1).

(2) Let Xn be the number of edges of a largest simple component in a random
rooted loopless map with n edges. Then,

P(|Xn − 2n/3| < n2/3Ω(n)) = 1 + o(1).

(3) Let Xn be the number of edges of a largest 3-connected component in a random
rooted 2-connected triangulation with 3n edges. Then,

P(|Xn − 3n/2| < n2/3Ω(n)) = 1 + o(1).

226 ZHICHENG GAO AND NICHOLAS C. WORMALD

(4) Let Xn be the number of edges of a largest 3-connected component in a random
rooted 2-connected bicubic map with 3n edges. Then,

P(|Xn − 5n/17| < n2/3Ω(n)) = 1 + o(1).

(5) Let Xn be the number of edges of a largest loopless component in a random
rooted map with n edges. Then,

P(|Xn − 2n/3| < n2/3Ω(n)) = 1 + o(1).

(6) Let Xn be the number of edges of a largest 3-connected component in a random
rooted 2-connected map with n edges. Then,

P(|Xn − n/3| < n2/3Ω(n)) = 1 + o(1).

Proof. We note for the map families and component families in (1)–(4), the
C-rooted maps are the same as rooted maps, since there is exactly one component
containing the root. Therefore, in the terminology of Lemma 5, Mn = An for these
maps. Also, as shown below, the conditions of Lemma 3 are also satisfied by these
maps. It will then follow that (1)–(4) hold by Lemmas 2, 3, and 5.

For part (1), let An (Cn) be the number of rooted maps (2-connected maps) with
n edges. Define

A(z) =
∑
n≥1

Anz
n, C(z) =

∑
n≥1

Cnz
n, B(z) = z(1 +A(z))2.

It follows from [4] that (A(z), B(z), C(z)) is an admissible triple. Using (4.2) of [4]
with a bit of calculation, we have

b0 = 4/27, b2 = 12/27.

Hence, β = 1/3.
For part (2), let An (Cn) be the number of loopless rooted maps (simple maps)

with n edges. Define

A(z) =
∑
n≥1

Anz
n, C(z) =

∑
n≥1

Cnz
n, B(z) = z(1 +A(z)).

Noting that simple maps are obtained by closing digons in loopless maps, it is easily
seen that (A(z), B(z), C(z)) is an admissible triple. (See [9] for more details.) Using
(20) and (22) of [5] with a bit of calculation, we have

b0 = 1/8, b2 = 3/16.

Hence, β = 2/3.
For part (3), let An (Cn) be the number of rooted 2-connected triangulations

(3-connected triangulations) with 3n edges. Define

A(z) =
∑
n≥1

Anz
n, C(z) =

∑
n≥1

Cnz
n, B(z) = z(1 +A(z))3.

Then (A(z), B(z), C(z)) is an admissible triple [9]. Using (15) and (16) of [9], we have

z = θ(1− 2θ)2, B(z) = θ(1− 3θ)3(1− 2θ)−4.

COMPONENTS IN RANDOM MAPS 227

After a bit of calculation, we obtain

B(z) = 27/256− (27/128)(1− 27z/2) + (3
√

3/32)(1− 27z/2)3/2 + · · ·
and, hence, β = b0/b2 = 1/2.

For part (4), let An (Cn) be the number of rooted 2-connected bicubic maps
(3-connected bicubic maps) with 3n edges. Define

A(z) =
∑
n≥1

Anz
n, C(z) =

∑
n≥1

Cnz
n, B(z) = z(1 +A(z))3.

Then (A(z), B(z), C(z)) is an admissible triple [8]. Using (21) of [8] with a bit of
calculation, we obtain

B(z) = 125/512− (425/512)(1− 8z) + (75/64)(1− 8z)3/2 + · · ·
and, hence, β = 5/17.

The proofs of (5) and (6) are a bit different because M(z) 6= A(z) in these cases.
For part (5), let Mn (Cn) be the number of all rooted maps (loopless maps) with

n edges, and let An be the number of component rooted maps with n edges. Define

M(z) =
∑
n≥0

Mnz
n, A(z) =

∑
n≥1

Anz
n, C(z) =

∑
n≥1

Cnz
n.

If we let L(z) be the generating function for those maps whose root faces consist of
only loops, including the single vertex map, then it is easy to show that

L(z) =
∑
j≥0

(zM(z))j = 1/(1− zM(z)),(25)

A(z) = C(zL2(z)),(26)

A(z) = M(z)− 1− zM2(z).(27)

Let B(z) = zL2(z); then (A(z), B(z), C(z)) is an admissible triple. Using (4.20) of [2]
with a bit of algebra, we obtain

M(z) = 4/3− (4/3)(1− 12z) + (8/3)(1− 12z)3/2 + · · ·(28)

A(z) = 32/27− (8/9)(1− 12z) + (56/27)(1− 12z)3/2 + · · ·(29)

B(z) = 27/256− (81/512)(1− 12z) + (27/512)(1− 12z)3/2 + · · ·(30)

Hence, β = b0/b2 = 2/3 and αn = 6/7 + o(1). It follows from Lemma 5 that

P(|Xn − 2n/3| < n2/3Ω(n)) = (9/7)(56/27)(3/8) + o(1) = 1 + o(1).

For part (6), let Mn (Cn) be the number of rooted quadrangulations (simple
quadrangulations) with n faces (i.e., 2n edges). Define

M(z) =
∑
n≥2

Qnz
n, C(z) =

∑
n≥4

Cnz
n, B(z) = M(z)/z.

Let A(z) be the generating function for component rooted quadrangulations such that
the root component has at least four faces. Using the argument of [6], we have

A(z) =
∑
j≥4

CjB
j(z) = C(B(z)).(31)

228 ZHICHENG GAO AND NICHOLAS C. WORMALD

Note that for F (x, y) and Q∗N (x, y) defined in [6], we have

M(z) = F (z, z), C(z) = Q∗N (z, z).

It follows from [6] that∑
j≥4

CjB
j−1(z) = B(z)(1−B(z))/(1 +B(z))− z,(32)

and M(z) is given parametrically by

M(z) = t2(1− t), z = t(1− t)2.(33)

Letting R = (1− 27z/4)1/2, we obtain the following expansions:

M(z) = 1/27− (4/27)R2 + (8/27
√

3)R3 + · · ·(34)

B(z) = 1/4− (3/4)R2 + (2/
√

3)R3 + · · · .(35)

Using (31), (32), and (35), we obtain

A(z) = 1/2160− (91/5400)R2 + (97/675
√

3)R3 + · · · .(36)

Therefore,

β = 1/3, αn = 200/291 + o(1),

and, hence,

αnAn
βMn

= 1 + o(1).

Now part (6) follows from Lemma 5 and the correspondence between quadrangulations
and maps.

Since almost all rooted maps in the families we consider have no symmetries [8],
we immediately get the following.

Corollary. The conclusions of Theorem 2 also apply for random unrooted maps.

REFERENCES

[1] E. A. Bender, Asymptotic methods in enumeration, SIAM Rev., 16 (1974), pp. 485–515.
[2] E. A. Bender, E. R. Canfield, and R. W. Robinson, The enumeration of maps on the torus

and the projective plane, Canad. Math. Bull., 31 (1988), pp. 257–271.
[3] E. A. Bender, L. B. Richmond, and N. C. Wormald, Largest 4-connected components of

3-connected planar triangulations, Random Structures Algorithms, 7 (1995), pp. 273–285.
[4] E. A. Bender and N. C. Wormald, The asymptotic number of rooted nonseparable maps on

a surface, J. Combin. Theory Ser. A, 49 (1988), pp. 370–380.
[5] Z. C. Gao, A pattern for the asymptotic number of rooted maps on surfaces, J. Combin. Theory

Ser. A, 64 (1993), pp. 246–264.
[6] R. C. Mullin and P. J. Schellenberg, The enumeration of c-nets via quadrangulations, J.

Combin. Theory, 4 (1968), pp. 259–276.
[7] L. B. Richmond and N. C. Wormald, Random triangulations of the plane, European J.

Combin., 9 (1988), pp. 61–71.
[8] L. B. Richmond and N. C. Wormald, Almost all maps are asymmetric, J. Combin. Theory

Ser. B, 63 (1995), pp. 1–7.
[9] W. T. Tutte, The enumerative theory of planar maps, in A Survey of Combinatorial Theory,

J.N. Srivastava et al., eds., North–Holland, Amsterdam, 1973, pp. 437–448.

GRAPH EAR DECOMPOSITIONS AND GRAPH EMBEDDINGS∗

JIANER CHEN† AND SAROJA P. KANCHI‡

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 2, pp. 229–242

Abstract. Ear decomposition of a graph has been extensively studied in relation to graph
connectivity. In this paper, a connection of ear decomposition to graph embeddings is exhibited.
It is shown that constructing a maximum-paired ear decomposition of a graph and constructing
a maximum-genus embedding of the graph are polynomial-time equivalent. Applications of this
connection are discussed.

Key words. graph connectivity, graph embedding, ear decomposition, graph maximum genus,
algorithm

AMS subject classifications. 05C10, 05C40, 05C85, 57M15, 68R10

PII. S0895480196304234

1. Introduction. An ear decomposition of a graph is a way of partitioning the
edge set of the graph into an ordered collection of edge-disjoint simple paths called
ears. It is well known that a graph has an ear decomposition if and only if it is
2-edge-connected [21].

Ear decomposition of a graph has received considerable attention recently be-
cause of its close relation to graph connectivity. Lovasz [15] first noted that ear
decompositions can be found quickly in parallel. Ear decompositions have been used
in designing efficient sequential and parallel algorithms for 2-edge-connectivity, 2-
vertex-connectivity, 3-vertex-connectivity [17], and 4-vertex-connectivity [14].

Variations of ear decomposition of a graph have also been proposed. The concept
of 2-connected semisimplicial ear decomposition was introduced in the study of average
genus of 2-connected simple graphs [4]. Algorithms for efficiently constructing 3-
connected ear decompositions have been discussed [8]. Cheriyan and Maheshwari
[9] used nonseparating ear decomposition to develop efficient algorithms for finding
independent spanning trees in a graph. Ear decompositions for 4-connected graphs
have also been studied [7, 20].

The maximum genus γM (G) of a graph G is defined to be the maximum inte-
ger k such that there exists a cellular embedding of G into the orientable surface
of genus k. Since the introductory investigation by Nordhaus, Stewart, and White
[16], maximum genus embeddings of a graph have been extensively studied. (For a
survey, see Ringeisen [18].) Certain graph classes can be precisely characterized by
their maximum genus. For example, a graph has maximum genus 0 if and only if it
is a cactus [18], and a 2-edge-connected graph has maximum genus 1 if and only if
it is a necklace (with five exceptions) [5]. Recent investigations on maximum genus
have focused on developing efficient algorithms for maximum genus embeddings of a
graph. A polynomial-time algorithm for constructing a maximum genus embedding

∗Received by the editors May 24, 1996; accepted for publication (in revised form) December
23, 1998; published electronically April 29, 1999. This research was supported in part by National
Science Foundation grants CCR-9110824 and CCR-9613805.

http://www.siam.org/journals/sidma/12-2/30423.html
†Department of Computer Science, Texas A&M University, College Station, TX 77843-3112

(chen@cs.tamu.edu).
‡Department of Science and Mathematics, Kettering University, Flint, MI 48504 (skanchi@

kettering.edu). The research of this author was partially supported by the Engineering Excellence
Award from Texas A&M University.

229

230 JIANER CHEN AND SAROJA P. KANCHI

of a graph was developed by Furst, Gross, and McGeoch [10] based on a charac-
terization of the maximum genus of a graph given by Xuong [22] and an efficient
matroid parity algorithm by Gabow and Stallmann [11]. A linear-time algorithm for
constructing a maximum genus embedding of a graph of bounded maximum genus
has been developed by Chen [1].

In this paper, we exhibit an interesting connection between ear decompositions
and maximum genus embeddings of a graph. We introduce the concept of maximum-
paired ear decomposition of a graph (the precise definition will be given in section 2).
We prove that a maximum-paired ear decomposition of a graph G is k-paired if and
only if the maximum genus of the graph G is k. Then we show by developing effi-
cient algorithms that constructing a maximum-paired ear decomposition of a graph
is polynomial-time equivalent to constructing a maximum genus embedding of the
graph. Since a maximum genus embedding of a graph can be constructed in poly-
nomial time [10], our results imply a polynomial-time algorithm for constructing a
maximum-paired ear decomposition of a graph. Applications of this connection will
also be discussed.

We point out that our results lose no generality with the restriction that the
graph has an ear decomposition, i.e., the graph should be 2-edge-connected. In fact,
the maximum genus of a graph is equal to the sum of maximum genera of its 2-
edge-connected components [5]. Thus, our results can be applied directly to each
2-edge-connected component of a graph if it is not 2-edge-connected.

The paper is organized as follows. Section 2 reviews the related algorithmic and
topological preliminaries and definitions. In section 3, the relationship between ear
decompositions and Xuong trees, which are a kind of spanning tree closely related
to maximum genus embeddings, is investigated. Section 4 studies the algorithmic
relationship between maximum genus embeddings and Xuong trees. Combining the
results of sections 3 and 4, section 5 concludes with the algorithmic relationship
between maximum genus embeddings and maximum-paired ear decompositions. Some
applications of this relationship are also described.

2. Preliminaries and definitions. It is assumed that the reader is somewhat
familiar with the fundamentals of graph embeddings. For further description, see
Gross and Tucker [12].

A graph may have multiple adjacencies or self-adjacencies. The topological spaces
discussed in this paper are all subspaces of the 3-dimensional space. An orientable
surface is a closed and connected 2-dimensional manifold that does not contain a
Möbius band. It is well known that every orientable surface is homeomorphic to a
generalized torus Sg for some integer g ≥ 0, where Sg is obtained from a sphere by
adding g handles. The integer g is called the genus of the surface Sg. A sphere,
for example, is a surface of genus 0, a torus is a surface of genus 1, and a two-
handled torus is a surface of genus 2. An embedding of a graph G to a surface S is a
continuous one-to-one mapping. The embedding is cellular if each component of S−G
is homeomorphic to an open disk. All our embeddings in this paper are cellular.

A rotation at a vertex v is a cyclic permutation of the edge-ends incident on v.
A list of rotations, one for each vertex of the graph, is called a rotation system of the
graph.

An embedding of a graph G in an orientable surface induces a rotation system
as follows: The rotation at vertex v is the cyclic permutation corresponding to the
order in which the edge ends are traversed in an orientation-preserving tour around v.
Conversely, by the Heffter–Edmonds principle, every rotation system induces a unique

GRAPH EAR DECOMPOSITIONS AND GRAPH EMBEDDINGS 231

embedding of G into an orientable surface (see [12]). This bijectivity enables us to
study graph embeddings based on graph rotation systems. We will interchangeably
use the phrases “an embedding of a graph” and “a rotation system of a graph.” In
particular, if ρ(G) is a rotation system of a graph G, we will denote by γ(ρ(G)) the
genus of the corresponding embedding of the graph G. Moreover, there is a linear-
time algorithm that, given a rotation system ρ(G) of a graph G = (V,E), traces the
boundary walks of all faces in the rotation system ρ(G) [6]. Thus, the genus γ(ρ(G))
of the rotation system ρ(G) can be calculated in linear time using the Euler polyhedral
equation [12]:

|V | − |E|+ |F | = 2− 2γ(ρ(G)),

where F is the set of faces in the rotation system ρ(G).
Let T be a spanning tree of a graph G. The edge complement G − T will be

called a cotree. The number of edges in any cotree is known as the cycle rank of G,
denoted β(G). For each edge e in the cotree G − T , the unique simple cycle in the
graph T ∪ {e} is called the fundamental cycle of e with respect to the spanning tree
T .

The deficiency ξ(G,T) of a spanning tree T for a graph G is defined to be the
number of components of G − T that have an odd number of edges. The deficiency
ξ(G) of the graph G is defined to be the minimum of ξ(G,T) over all spanning trees
T of G. A spanning tree T is a Xuong tree if ξ(G,T) = ξ(G). Xuong [22] obtained a
characterization of maximum genus γM (G) of a graph G in terms of deficiency of the
graph.

Proposition 2.1 (see [22]). Let G be a connected graph. Then

γM (G) =
β(G)− ξ(G)

2
.

The effect of inserting or deleting an edge in a graph embedding has been discussed
in the literature (see, e.g., [18, Theorem 1.2] and [10, section 2.4]). For the reader’s
convenience, we list the related results in the following propositions.

Let ρ(G) be an embedding of a connected graph G. Suppose that we insert a new
edge e = [u, v] into the embedding ρ(G), where u and v are vertices of G.

Proposition 2.2. If the edge-ends u and v of e are inserted between two corners
of the same face F in ρ(G), then the new edge e splits the face F into two faces with
the embedding genus unchanged. If the edge-ends u and v of e are inserted between
corners of two different faces F1 and F2 in ρ(G), then both these faces are merged by
e into one larger face with the embedding genus increased by 1.

Figure 2.1 illustrates how an edge is inserted in the two different situations. Fig-
ure 2.1(a) inserts a new edge (u, x) between the two face corners 〈vuw〉 and 〈wxv〉,
which belong to the same face. The insertion of the edge (u, x) splits the face [vuwxv]
into two faces [uxvu] and [uwxu] and does not change the embedding genus. Fig-
ure 2.1(b) inserts a new edge (u, y) between the two face corners 〈vuw〉 and 〈wyx〉,
which belong to different faces. The insertion of the edge (u, y) merges the faces
[vuwxv] and [wyxw] into a single face [uwxvuyxwyu] and increases the embedding
genus by 1.

The inverse operation of edge insertion is edge deletion. Let ρ(H) be an embed-
ding of a graph H and let e′ be an edge in H such that e′ is not a cut-edge. Then we
have the following proposition.

232 JIANER CHEN AND SAROJA P. KANCHI

u

v

w

x

y
u

v

w

x

y

(a)

u

v

w

x

y
u

w y

x

(b)

Fig. 2.1. (a) inserting an edge between two corners of the same face; (b) inserting an edge
between corners of two different faces.

Proposition 2.3. If both sides of the edge e′ belong to the same face F in ρ(H),
then deleting the edge e′ from ρ(H) splits the face F into two faces and decreases the
embedding genus by 1; while if the edge e′ is on the boundary of two different faces
F1 and F2 in ρ(H), then deleting the edge e′ merges the two faces into a single face
without changing the embedding genus.

Note that inserting an edge into an embedding never decreases the embedding
genus and that deleting an edge from an embedding never increases the embed-
ding genus.

Following the standard definition [17], we define an ear decomposition D = [P1,
P2, . . . , Pr] of a graph G to be a partition of edge set of G into an ordered collection of
edge-disjoint simple paths P1, P2, . . . , Pr such that P1 is a simple cycle and Pi, i ≥ 2, is
a path with only its endpoints in common with P1+· · ·+Pi−1. Each Pi is called an ear.

We now introduce the notions of pairing and maximum pairing in an ear decom-
position.

Definition 2.4. A pairing in an ear decomposition D = [P1, P2, . . . , Pr] is a
partition of the ears into pairs of matched ears and single ears such that each pair of
matched ears consists of two consecutive ears Pi and Pi+1, where the ear Pi+1 has an
endpoint on the ear Pi. A maximum pairing of the ear decomposition D is a pairing
that maximizes the number of pairs of matched ears.

The following theorem shows that a maximum pairing of a given ear decomposi-
tion can be constructed very efficiently.

Theorem 2.5. Given an ear decomposition D = [P1, P2, . . . , Pr] of a 2-edge
connected graph, a maximum pairing in D can be constructed in linear time.

Proof. Represent the ear decomposition D = [P1, P2, . . . , Pr] as a graph H in
which each ear Pi is a vertex. There is an edge between two vertices Pi and Pi+1 in
the graph H if and only if the ear Pi+1 has an endpoint on the ear Pi. It is not hard to
see that the graph H is a union of disjoint simple paths and a maximum matching in
the graph H corresponds to a maximum pairing in the ear decomposition D. Finally,
because of its special structure, a maximum matching in the graph H can be easily
constructed in linear time.

GRAPH EAR DECOMPOSITIONS AND GRAPH EMBEDDINGS 233

If a maximum pairing of an ear decomposition D has k pairs of matched ears, we
say that the ear decomposition D is k-paired. A maximum-paired ear decomposition
of a graph G is a k-paired ear decomposition such that k is the largest overall ear
decomposition of G.

3. Ear decomposition and Xuong tree. In this section, we first develop
efficient algorithms to show that constructing a maximum-paired ear decomposition of
a graph and constructing a Xuong tree of the graph are linear-time equivalent. Based
on these results, a conclusion is derived that a maximum-paired ear decomposition of
a graph is k-paired if and only if the maximum genus of the graph is k.

Let H be a (not necessarily connected) graph. Two edges in the graph H are
adjacent if they have an endpoint in common. An adjacency matching in H is a
partition of edges of H into groups of one or two edges, called 1-groups and 2-groups,
respectively, such that two edges in the same 2-group are adjacent. We say that the
two edges in the same 2-group are matched, and the edge in a 1-group is unmatched.
A maximum adjacency matching in H is an adjacency matching that maximizes the
number of 2-groups.

Lemma 3.1. In a maximum adjacency matching of a graph H, the number of
unmatched edges is equal to the number of components of H that have an odd number
of edges. Moreover, a maximum adjacency matching of H can be constructed in
linear time.

Proof. The fact that the number of unmatched edges in a maximum adjacency
matching of the graph H is equal to the number of components of H that have an
odd number of edges was first observed by Xuong [22]. A linear-time algorithm that
constructs a maximum adjacency matching of a graph has been given in [10, Theorem
3.6, pp. 529–530].

Let G be a 2-edge-connected graph and let T be a Xuong tree of G. We name
each vertex in G by its preorder number in the tree T . Given a pair of vertices u and
v, we denote by lca(u, v) the least common ancestor of u and v in the tree T . We
also say that a vertex w is the least common ancestor of a cotree edge e = [u, v] if
w = lca(u, v). Note that the least common ancestor of a cotree edge e is the smallest
vertex in the fundamental cycle of e.

Consider the algorithm Xuong-to-Ears in Figure 3.1. In the following, we prove
that this algorithm constructs a maximum-paired ear decomposition for the graph G.

Lemma 3.2. If the graph G is 2-edge-connected, then every edge e in G is assigned
a unique ear number ear(e) in the algorithm Xuong-to-Ears.

Proof. Let T be the Xuong tree in the algorithm Xuong-to-Ears. According to
step 4 of the algorithm, each cotree edge e gets a different number num(e). Therefore,
each cotree edge e gets a unique ear number ear(e) in step 5. For each tree edge e′,
since the graph G is 2-edge-connected, the edge e′ must be in the fundamental cycle
of some cotree edge. Therefore, the set Ae′ of the numbers ear(e), where e is a cotree
edge such that e′ is in the fundamental cycle of e, is not empty. Now step 6 assigns
the ear number ear(e′) to equal to the minimum in Ae′ , which is unique since all
cotree edges have different ear numbers. In consequence, for each tree edge e′, the ear
number ear(e′) is also well defined and unique.

Lemma 3.3. The algorithm Xuong-to-Ears constructs a valid ear decomposition
for the graph G. That is, there is an ear decomposition D = [P1, P2, . . . , Pr] of the
graph G such that the ear Pi consists of exactly those edges that are assigned an ear
number i by the algorithm Xuong-to-Ears.

234 JIANER CHEN AND SAROJA P. KANCHI

Algorithm Xuong-to-Ears

Input: a Xuong tree T of a 2-edge-connected graph G
Output: an ear decomposition of G

1. Rename each vertex of G by its preorder number in the tree T ; construct
the cotree H = G− T ;

2. construct a maximum adjacency matching M in H;
3. sort all edges in the cotree H by their least common ancestors; let the

sorted list be L1;
4. assign each cotree edge e a number num(e) as follows: for each pair of

matched edges L1(i) and L1(j) inM, where i < j, assign num(L1(i)) = 2i
and num(L1(j)) = 2i + 1; for each unmatched edge L1(k) in M, assign
num(L1(k)) = 2k;

5. sort all cotree edges by their new assigned numbers num(·); let the sorted
list be L2; now for each cotree edge e = L2(i), assign ear(e) = i;

6. for each tree edge e′, assign ear(e′) = min{ear(e)}, where the minimum is
taken over all cotree edges e whose fundamental cycle contains e′.

Fig. 3.1. The algorithm Xuong-to-Ears.

Proof. Let the cotree edges in the sorted list L2 be e1, e2, . . . , er, with ear(ei) = i
for i = 1, 2, . . . , r. First note that by our construction, only edges in the fundamental
cycle of the cotree edge ei may be assigned an ear number i, and that if an edge in
the fundamental cycle of ei has an ear number different from i, then the edge must
have an ear number less than i. In particular, the fundamental cycle of e1 contains
the root of the tree T and every edge in it is assigned an ear number 1. This forms
the first ear, P1.

Consider the cotree edge ei = [xi, yi], i > 1, with ear(ei) = i. Let the directed
tree paths (directed from child to parent) from xi and yi to the vertex lca(xi, yi) be
Qx and Qy, respectively. If all the tree edges on Qx and Qy are assigned ear number
i, then the ear Pi is the fundamental cycle of ei. Note that if the vertex lca(xi, yi)
is not the root of T , then it must be contained in the fundamental cycle of another
cotree edge ej , with j < i.

Suppose that some edge in the fundamental cycle of ei has an ear number less
than i. We show that there are two vertices vx and vy on the paths Qx and Qy,
respectively, such that all edges before the vertex vx (respectively, vy) on the path
Qx (respectively, Qy) are assigned ear number i and all edges after the vertex vx
(respectively, vy) on the path Qx (respectively, Qy) are assigned ear number less than
i. Let f1 be the first edge on Qx with ear(f1) = j < i. Consider the cotree edge
ej = [xj , yj] with ear(ej) = j. According to steps 4 and 5 of the algorithm, we must
have either lca(ej) ≤ lca(ei), or lca(ej) > lca(ei) and {ej−1, ej} is a matched pair in
M with lca(ej−1) ≤ lca(ei), for the cotree edge ej−1 = [xj−1, yj−1]. We first observe
that because there is a unique directed tree path from the edge f1 to the root of the
tree and the edge f1 is shared by the fundamental cycles of the cotree edges ej and
ei, the vertex lca(ej) is either an ancestor or a descendent of the vertex lca(ei).

Suppose lca(ej) ≤ lca(ei). Then lca(ej) is an ancestor of lca(ei). Thus, all edges
on the path Qx after the edge f1 belong to the fundamental cycle of the cotree edge
ej and should have ear numbers of at most j, which is smaller than i.

On the other hand, suppose lca(ej) > lca(ei) and {ej−1, ej} is a matched pair in
M with lca(ej−1) ≤ lca(ei) for the cotree edge ej−1 = [xj−1, yj−1]; then lca(ej) is
on the path Qx. Since the partial path on Qx from the edge f1 to the vertex lca(ej)
belongs to the fundamental cycle of the cotree edge ej , the edges on this partial path of
Qx have ear numbers of at most j, which is smaller than i. It remains to examine the

GRAPH EAR DECOMPOSITIONS AND GRAPH EMBEDDINGS 235

partial path of Qx from the vertex lca(ej) to the vertex lca(ei). Since the cotree edges
ej and ej−1 are matched (thus they share a common endpoint), the least common
ancestors lca(ej) and lca(ej−1) must be on the same tree path from this endpoint to
the root of the tree. Now since lca(ej−1) ≤ lca(ei) < lca(ej) and the vertex lca(ei)
is on the tree path from lca(ej) to the root of the tree, we conclude that the partial
path of Qx from the vertex lca(ej) to the vertex lca(ei) must be entirely contained in
the fundamental cycle of the cotree edge ej−1. Thus, all edges on this partial path of
Qx have ear numbers of at most j − 1, which is smaller than i. This concludes that
all edges on the path Qx after the edge f1 have ear numbers smaller than i.

Completely similar proof shows that if we let f2 be the first edge with an ear
number less than i on the path Qy, then all edges on the path Qy after the edge f2

should have ear numbers smaller than i.
Therefore, we can find a vertex vx on the path Qx and a vertex vy on the path Qy

such that the edges on the path between the vertices vx and vy that contains the edge
ei in the fundamental cycle of ei are the only edges that have ear number i. These
edges form the ear Pi.

Let H = G− T be the cotree and letM be the maximum adjacency matching in
H constructed by the algorithm Xuong-to-Ears in step 2. By Lemma 3.1, the number
of unmatched edges in M is equal to the deficiency ξ(G) of the graph G. Thus, the
number of pairs of matched edges inM is (β(G)− ξ(G))/2, which is equal to γM (G)
by Proposition 2.1. Since each pair of matched edges inM is adjacent in the list L2,
their ear numbers differ by exactly 1. Thus, their corresponding ears are consecutive
in the ear decomposition. Moreover, they have at least one vertex in common. This
gives us the following lemma immediately.

Lemma 3.4. The ear decomposition constructed by the algorithm Xuong-to-Ears
is k-paired, where k ≥ γM (G).

In fact, the integer k in Lemma 3.4 cannot be larger than γM (G) because of the
following lemma.

Lemma 3.5. If a graph G has a k-paired ear decomposition, then γM (G) ≥ k.
Proof. Let D = [P1, P2, . . . , Pr] be a k-paired ear decomposition of the graph G

and let P be a maximum pairing of D. We construct an embedding of G by first
embedding the cycle P1 into the plane then inserting the ears P2, . . . , Pr one by one
in that order into the embedding. Inductively, suppose that we have embedded the
ears P1, . . . , Pj−1 and the next two ears Pj and Pj+1 are a pair of matched ears. We
first arbitrarily insert the ear Pj . If this increases the embedding genus, then we
arbitrarily insert the ear Pj+1. On the other hand, if inserting the ear Pj does not
increase the embedding genus, then by Proposition 2.2 Pj must split a face F of the
embedding of P1 + P2 + · · ·+ Pj−1 into two faces F1 and F2. Therefore, all edges of
the ear Pj are on the boundary of the two faces F1 and F2. Now since the ear Pj+1 is
matched with Pj , it has an endpoint on the ear Pj . Thus, no matter where the other
endpoint of Pj+1 is (including the case that the two endpoints of Pj+1 are attached to
the same vertex), we are always able to insert the ear Pj+1 so that the two endpoints
of the ear Pj+1 are inserted into corners of two different faces of the embedding of
P1 + P2 + · · · + Pj−1 + Pj . By Proposition 2.2 again, this increases the embedding
genus by 1.

We also arbitrarily insert all the single ears.
According to the above description, we can always insert each pair of matched

ears in P in such a way that increases the embedding genus by at least 1; therefore,
this construction will result in an embedding of genus at least k.

236 JIANER CHEN AND SAROJA P. KANCHI

Now we are ready for our first theorem in this section.
Theorem 3.6. A 2-edge-connected graph G has maximum genus k if and only

if every maximum-paired ear decomposition of G is k-paired. Moreover, a maximum-
paired ear decomposition of the graph G can be constructed from a Xuong tree of G
in linear time.

Proof. Lemma 3.5 shows that the graph G does not have a k-paired ear decom-
position, with k > γM (G), while Lemma 3.4 and Lemma 3.5 together show that the
algorithm Xuong-to-Ears constructs a γM (G)-paired ear decomposition for the graph
G. To complete the proof of the theorem, we need to show only that the algorithm
Xuong-to-Ears runs in linear time.

Step 1 of the algorithm can be done trivially in linear time. Step 2 can be done
in linear time according to Lemma 3.1. To compute the least common ancestor for
each cotree edge, we use Schieber and Vishkin’s algorithm [19], which can compute
the least common ancestor of any two vertices in constant time with a linear-time
preprocessing. All sortings in the algorithm can be implemented using bucket sorting
that takes linear time. Finally, to assign ear numbers to the tree edges, we pick the
cotree edges sorted in the list L2. For each cotree edge ei = [xi, yi], we traverse
the two tree paths Qx and Qy from the vertices xi and yi, respectively, to the least
common ancestor of ei and stop at a vertex that belongs to an ear of smaller index.
By the proof of Lemma 3.3, exactly those edges traversed in the process should be
assigned the ear number ear(ei). This process obviously can be done in linear time.
This proves that the algorithm Xuong-to-Ears runs in linear time.

Furst, Gross, and McGeoch [10] have developed an O(m2n log6 n)-time algorithm
that constructs a Xuong tree for a graph G, where m is the number of edges and n
is the number of vertices in G. This result with Theorem 3.6 gives us a polynomial-
time algorithm for constructing a maximum-paired ear decomposition given a 2-edge-
connected graph.

Theorem 3.7. A maximum-paired ear decomposition of a 2-edge-connected graph
G of n vertices and m edges can be constructed in time O(m2n log6 n).

Theorem 3.6 indicates that a maximum-paired ear decomposition of a 2-edge-
connected graph can be constructed from a Xuong tree of the graph. In the following,
we show the converse of this fact, that is, how a Xuong tree of a 2-edge-connected
graph is constructed from a maximum-paired ear decomposition of the graph.

Lemma 3.8. Let D = [P1, P2, . . . , Pr] be an ear decomposition of a graph G. Let
S be a subset of ears in D. Let GS be a subgraph of G obtained by deleting one edge
from each ear in S. Then the graph GS is a connected spanning subgraph of G.

Proof. It suffices to prove the lemma for the case that S contains all ears in D.
Since no vertices are deleted, the graph GS is a spanning subgraph of the graph G.

The connectedness of the graph GS can be proved easily by induction on the number
of ears in the ear decomposition D, based on the following observation: Suppose that
the graph G′S = (P1 + · · ·+ Pr−1)− S is connected; then every edge in the ear Pr is
in a cycle in the graph G′S + Pr. Thus, deleting any edge in Pr from G′S + Pr still
leaves a connected graph.

Now consider the algorithm Ears-to-Xuong in Figure 3.2.
Theorem 3.9. Given a maximum-paired ear decomposition of a 2-edge-connected

graph, the algorithm Ears-to-Xuong constructs a Xuong tree of the graph G in linear
time.

Proof. By Theorem 2.5, step 1 can be done in linear time. By Theorem 3.6, the
pairing P has γM (G) pairs of matched ears.

GRAPH EAR DECOMPOSITIONS AND GRAPH EMBEDDINGS 237

Algorithm Ears-to-Xuong

Input: a maximum-paired ear decomposition D of G
Output: a Xuong tree T of the graph G

1. Construct a maximum pairing P in the ear decomposition D; let the γM (G)
pairs of matched ears in P be {Pij , Pij+1}, 1 ≤ j ≤ γM (G);

2. for each pair {Pij , Pij+1}, let vj be a vertex shared by Pij and Pij+1,
delete an edge eij in Pij and an edge eij+1 in Pij+1 such that both edges
are incident on vj ;

3. let GS be the subgraph of G after the edge deletions in step 2, construct a
spanning tree T in GS ; T is a Xuong tree of the graph G.

Fig. 3.2. The algorithm Ears-to-Xuong.

It is easy to see that steps 2 and 3 take linear time. By Lemma 3.8, the graph GS
is a connected spanning subgraph of G. Therefore, the spanning tree T of GS is also
a spanning tree of the graph G. Moreover, since in the cotree G−T there are γM (G)
pairs of adjacent edges eij and eij+1, 1 ≤ j ≤ γM (G), the number of components in
G−T that has an odd number of edges cannot be larger than β(G)−2γM (G) = ξ(G).
Therefore, the spanning tree T is a Xuong tree of the graph G.

Combining Theorem 3.6 and Theorem 3.9, we obtain the next theorem.
Theorem 3.10. Constructing a Xuong tree of a 2-edge-connected graph and

constructing a maximum-paired ear decomposition of the graph are linear-time equiv-
alent.

In a pairing of an ear decomposition D, pairs of matched ears and single ears are,
in general, interlaced. The canonical pairing of D is the pairing of D that pairs the
first 2k ears in the ear decomposition D into k pairs of matched ears and lets all other
ears be single ears, with k being the largest possible integer. Note that the number
of pairs of matched ears in the canonical pairing of D may be less than the number
of pairs of matched ears in a maximum pairing of D.

The canonical pairing of an ear decomposition can be trivially constructed, and
it has a more uniform and simpler structure than a general pairing in the ear decom-
position. More importantly, the canonical pairing of ear decompositions has found
applications in the study of upper-embeddable subgraphs (see Theorem 5.2) and in
the study of lower bound on the maximum genus and the average genus of a graph
[13]. These results are based on the following theorem, which shows that Theorem 3.6
is still valid even if we restrict it to only canonical pairings of ear decompositions.

Theorem 3.11. Every 2-edge-connected graph G has an ear decomposition whose
canonical pairing has γM (G) pairs of matched ears.

Proof. Let D = [P1, P2, . . . , Pr] be an arbitrary maximum-paired ear decompo-
sition of the 2-edge-connected graph G. Let P be a maximum pairing of D. By
Theorem 3.6, P has γM (G) pairs of matched ears.

If the canonical pairing of D has less than γM (G) pairs of matched ears, then we
can find an index i such that in the pairing P, the ear Pi is a single ear, while the ears
Pi+1 and Pi+2 are a pair of matched ears. We show that we can always “shift” the
single ear Pi two positions to the right and the pair of matched ears Pi+1 and Pi+2

one position to the left. There are three possible cases.
Case 1. No endpoint of the ears Pi+1 and Pi+2 is an interior vertex of the ear

Pi. Then the sequence

D1 = [P1, . . . , Pi−1, Pi+1, Pi+2, Pi, Pi+3, . . . , Pr]

is also a valid maximum-paired ear decomposition of the graph G. Note that the

238 JIANER CHEN AND SAROJA P. KANCHI

single ear Pi has been shifted two positions to the right and the pair of matched ears
Pi+1 and Pi+2 has been shifted one position to the left.

Case 2. The ear Pi+1 has an endpoint on an interior vertex of the ear Pi. Then
we make the ears Pi and Pi+1 a pair of matched ears and let Pi+2 be a single ear.
Thus, in this case, we also have shifted a single ear in the pairing P two positions to
the right and shifted a pair of matched ears one position to the left.

Case 3. The ear Pi+2 has an endpoint on an interior vertex of Pi. Let the endpoint

of Pi+2 on Pi+1 be u, and let the ear Pi+1 be the path P
(1)
i+1uP

(2)
i+1, where P

(1)
i+1 and

P
(2)
i+1 are subpaths on Pi+1. Without loss of generality, we assume P

(1)
i+1 contains at

least one edge. Then we rearrange the ears Pi, Pi+1, and Pi+2 into three new ears P ′i ,
P ′i+1, and P ′i+2, as follows: P ′i = Pi, P

′
i+1 = Pi+2 + P

(2)
i+1, and P ′i+2 = P

(1)
i+1. It is easy

to verify that the sequence

D2 = [P1, . . . , Pi−1, P
′
i , P

′
i+1, P

′
i+2, Pi+3, . . . , Pr]

is a valid maximum-paired ear decomposition of the graph G. If we construct a pairing
of D2 that is identical to P except that we make P ′i and P ′i+1 a pair of matched ears
and make P ′i+2 a single ear, then again this pairing has “shifted” in the pairing P a
single ear two positions to the right and a pair of matched ears one position to the
left.

Therefore, for any maximum-paired ear decomposition D of the graph G, if the
canonical pairing has less than γM (G) pairs of matched ears, then we can start with
a maximum pairing P of D and apply the above process that constructs a maximum-
paired ear decomposition D′ of G and a maximum pairing P ′ of D′ that shifts in
the pairing P a single ear two positions to the right and a pair of matched ears one
position to the left. If the canonical pairing of the resulting ear decomposition D′

still has less than γM (G) pairs of matched ears, then we apply the above process on
D′ and P ′ again. It is easy to see that after a finite number of applications of the
process, we must end up with a maximum-paired ear decomposition of the graph G
whose canonical pairing has exactly γM (G) pairs of matched ears.

We point out that, with a careful implementation of the process presented in the
proof of Theorem 3.11, we can derive a linear-time algorithm that, given a maximum-
paired ear decomposition of a graph G, constructs a maximum-paired ear decompo-
sition of G whose canonical pairing has γM (G) pairs of matched ears. We leave the
details of this implementation to the interested reader.

4. Maximum genus embedding and Xuong tree. We have shown that con-
structing a maximum-paired ear decomposition and constructing a Xuong tree are
linear-time equivalent. It is well known that the Xuong tree of a graph is closely
related to the maximum genus embedding of the graph [10, 22], which induces a close
relationship between maximum-paired ear decompositions and maximum genus em-
beddings. In this section, we discuss the algorithmic relationship between constructing
a Xuong tree of a graph and constructing a maximum genus embedding of the graph.

An O(m2)-time algorithm was developed by Furst, Gross, and McGeoch [10],
based on the construction by Xuong [22], that constructs a maximum genus embedding
of a graph G of m edges from a Xuong tree of the graph. The basic idea of the
algorithm is to start with a one-face embedding of the Xuong tree T , for which the
cotree G − T has γM (G) pairs of matched edges, then add each pair of the matched
edges in such a way that increases the embedding genus by 1. This construction results
in a maximum genus embedding of the graph G. Recently, Chen [2] developed a new

GRAPH EAR DECOMPOSITIONS AND GRAPH EMBEDDINGS 239

Algorithm Embed-to-Xuong

Input: a maximum genus embedding ρ(G) of G
Output: a Xuong tree T of G

1. G′ = G; ρ′(G′) = ρ(G);
2. while there is an edge e on boundary of two different faces in ρ′(G′)

delete the edge e from G′ and ρ′(G′);
3. let M = φ;
4. while G′ is not empty do

3.1. find an edge e1 in G′ such that a subwalk δ1 between the two sides
of e1 is the shortest in the face boundary walk of ρ′(G′);

3.2. if δ1 is empty
then delete e1 and its degree-1 end from ρ′(G′) and G′
else let δ1 = l(e2)δ′1; delete e1 and e2 from ρ′(G′) and G′; add e1

and e2 to the set M ;
5. let G0 = G−M ; construct a spanning tree T for G0, which is a Xuong tree

for the graph G.

Fig. 4.1. The algorithm Embed-to-Xuong.

data structure for graph embeddings on which each of the basic embedding operations
such as edge insertion and edge deletion can be performed in time O(logm). Based on
this new data structure, the above construction from Xuong tree to maximum genus
embedding can be implemented in an algorithm of running time O(m logm).

Proposition 4.1 (see [2, 10]). A maximum genus embedding of a graph can be
constructed from a Xuong tree of the graph in time O(m logm).

We now consider how to construct a Xuong tree of a graph G from a maximum
genus embedding ρ(G) of the graph. This is done in two steps. First, we find a
spanning subgraph G′ of G such that the induced embedding ρ′(G′) of G′ from ρ(G)
is of genus γM (G) and has only one face. Second, we construct a Xuong tree of G
from the embedding ρ′(G′). Consider the algorithm Embed-to-Xuong in Figure 4.1.

Theorem 4.2. Given a maximum genus embedding of a graph of m edges, the
algorithm Embed-to-Xuong constructs a Xuong tree of the graph in time O(m2).

Proof. According to Proposition 2.3, deleting an edge on the boundary of two
different faces in an embedding reduces the number of faces by 1 and does not change
the embedding genus. Moreover, note that a cut-edge of a graph always has its two
sides on the boundary of the same face in any embedding of the graph. Therefore,
deleting an edge on the boundary of two different faces in an embedding does not
disconnect the graph. Consequently, step 2 results in a connected subgraph G′ of G
and a one-face embedding ρ′(G′) of genus γM (G).

Now we consider step 4. The method we use here is similar to the one used by
Gross and Tucker in establishing Xuong’s characterization of graph maximum genus
(see [12, proof of Lemma 3.4.9]). Each time, we look at the subgraph G′ and the one-
face embedding ρ′(G′). We either delete a single edge from ρ′(G′) without changing
the embedding genus, or delete a pair of adjacent edges from ρ′(G′) and decrease the
embedding genus by 1.

Consider the boundary walk of the unique face of ρ′(G′). Suppose that e1 is an
edge such that a subwalk between the two sides l(e1) and r(e1) of e1 is the shortest.
Therefore, the boundary walk of the face of ρ′(G′) can be written as l(e1)δ1r(e1)δ2,
where δ1 and δ2 are subwalks, and δ1 is the shortest in the above sense. There are
two cases.

If the subwalk δ1 is empty, then the boundary walk of the face is l(e1)r(e1)δ2,
and one end of the edge e1 must have degree 1. Thus, deleting the edge e1 and its

240 JIANER CHEN AND SAROJA P. KANCHI

degree-1 end from the embedding ρ′(G′) neither changes the embedding genus, nor
disconnects the graph G′. Moreover, the embedding after deleting the edge e1 is still
a one-face embedding.

If the subwalk δ1 is not empty, then the boundary walk of the face can be writ-
ten as l(e1)l(e2)δ′1r(e1)δ2. The other side r(e2) of the edge e2 should not be con-
tained in the subwalk δ′1, since otherwise the subwalk between the two sides of e2

would be shorter than δ1, contradicting the selection of the edge e1. Therefore,
the boundary walk of the face of the embedding ρ′(G′) can be further written as
l(e1)l(e2)δ′1r(e1)δ′2r(e2)δ′′2 . Note that the edges e1 and e2 are adjacent. We claim that
deleting the pair of adjacent edges e1 and e2 reduces the embedding genus by 1 and
does not disconnect the graph G′.

First consider the graph G′−{e1}. All edges that have an edge side in the subwalk
l(e2)δ′1 are contained in the same connected component of G′ − {e1}, and all edges
that have an edge side in the subwalk δ′2r(e2)δ′′2 are contained in the same connected
component of G′ − {e1}. Since the edge e2 is in both components, we conclude that
the graph G′ − {e1} is connected. By Proposition 2.3, deleting the edge e1 splits the
unique face l(e1)l(e2)δ′1r(e1)δ′2r(e2)δ′′2 of ρ′(G′) into two faces, l(e2)δ′1 and δ′2r(e2)δ′′2 ,
and reduces the embedding genus by 1. Now since the edge e2 is on the boundary
of these two different faces, the edge e2 is not a cut-edge in the graph G′ − {e1},
thus deleting the edge e2 still results in a connected graph. Moreover, by Proposi-
tion 2.3 again, deleting the edge e2 merges the two faces into a single face without
changing the embedding genus. Thus, after deleting the edges e1 and e2, the graph
G′ remains connected and ρ′(G′) is a one-face embedding of G′ with embedding genus
decreased by exactly 1, which prepares for the next execution of the while loop body
in step 4.

Since each deletion of a pair of adjacent edges in step 4 reduces the embedding
genus by exactly 1, we conclude that after step 4, the set M contains exactly γM (G)
pairs of adjacent edges.

We need to ensure that the subgraph G0 = G −M in step 5 is connected. This
can be proved by induction on the number of times the while loop body in step 4
adds a pair of adjacent edges to the set M . Before any pair of adjacent edges is added
to M , M = φ and G−M is a connected graph. Now suppose that a new pair (e1, e2)
of adjacent edges is to be added to the set M . By the inductive hypothesis, before
adding (e1, e2) to M , the graph G−M is connected. As we proved above, the edge e1

is not a cut-edge of the subgraph G′ and the edge e2 is not a cut-edge of the subgraph
G′ − {e1}. Therefore, the edge e1 is contained in a cycle in G′ and the edge e2 is
contained in a cycle in G′ − {e1}. Note that the graph G′ is actually a subgraph
of G −M . Thus, the edge e1 is contained in a cycle in G −M and the edge e2 is
contained in a cycle in (G −M) − {e1}. Therefore, the graph (G −M) − {e1, e2} is
connected. In consequence, after adding the adjacent pair (e1, e2) to the set M , the
graph G−M is still connected.

Since no vertex is removed, the connected subgraph G0 = G−M in step 5 is also
a spanning subgraph of G. Therefore, the tree T constructed by the algorithm Embed-
to-Xuong is a spanning tree of the graph G. Moreover, since the set M contains γM (G)
pairs of adjacent edges, the cotree G − T contains at least γM (G) pairs of adjacent
edges. By the definition of a Xuong tree, the tree T constructed by the algorithm
Embed-to-Xuong is a Xuong tree.

We analyze the algorithm. Each execution of the while loop body in step 2 takes
time O(m) by traversing the face boundaries of the embedding ρ′(G′). Thus, step 2

GRAPH EAR DECOMPOSITIONS AND GRAPH EMBEDDINGS 241

takes time O(m2). For each execution of the while loop body in step 4, we find an
edge e1 in the one-face embedding ρ′(G′) such that a subwalk between the two sides of
e1 is the shortest. This can be done by traversing the face boundaries and recording
the (circular) position for each edge side. Then the length of the subwalks between
two edge sides of an edge can be computed in constant time. Thus, finding the edge e1

takes time O(m). All other steps can also be done in time O(m). Therefore, step 4 of
the algorithm takes time O(m2). In conclusion, the time complexity of the algorithm
Embed-to-Xuong is bounded by O(m2).

5. Conclusions. Combining Theorem 3.10, Proposition 4.1, and Theorem 4.2,
we obtain the following interesting theorem.

Theorem 5.1. Constructing a maximum-paired ear decomposition of a 2-edge-
connected graph G and constructing a maximum genus embedding of the graph are
polynomial-time equivalent. More precisely, a maximum genus embedding of G can be
constructed from a maximum-paired ear decomposition of G in time O(m logm), and
a maximum-paired ear decomposition of G can be constructed from a maximum genus
embedding of G in time O(m2).

Theorem 5.1 should have further applications in the study of theory and com-
plexity of graph embeddings and graph connectivities. We illustrate two applications
of the theorem as follows.

A graph G is upper-embeddable if its maximum genus is equal to bβ(G)/2c. Upper-
embeddability of graphs has been studied extensively. Many interesting graph classes,
including complete graphs and complete bipartite graphs, are upper-embeddable (see
[18]). The following theorem relates the upper-embeddability to the connectivity of a
2-edge-connected graph.

Theorem 5.2. Every 2-edge-connected graph G contains an upper-embeddable
subgraph G′ such that G′ is 2-edge-connected and the maximum genus of G′ is γM (G).
Moreover, the subgraph G′ can be constructed from G in time O(m2n log6 n).

Proof. We first construct in time O(m2n log6 n) a maximum genus embedding
ρ(G) of the graph G using the algorithm developed in [10]. According to Theorem 4.2,
a Xuong tree T of G can be constructed from ρ(G) in time O(m2). Now based
on the Xuong tree T , we construct a maximum-paired ear decomposition D of the
graph G, using Algorithm Xuong-to-Ears. Finally, based on the maximum-paired ear
decomposition D, we construct an ear decomposition D0 whose canonical pairing has
γM (G) pairs of matched ears (Theorem 3.11 and its proof). Let the first 2γM (G)
ears in D0 be P1, P

′
1, . . . , Pt, P

′
t , where t = γM (G), and ears Pi and P ′i are matched,

i = 1, . . . , t. It is easy to verify that the subgraph G′ = P1 + P ′1 + · · ·+ Pt + P ′t of G
is upper-embeddable, has maximum genus γM (G), and is 2-edge connected.

A more complicated application of Theorem 5.1 is given by Kanchi and Chen [13],
in which, based on a maximum-paired ear decomposition of 2-edge-connected graphs,
a tight lower bound for maximum genus of 2-edge-connected graphs is derived (see
also [3]).

We believe that Theorem 5.1 may suggest an alternative and more direct approach
for developing polynomial-time algorithms for maximum genus embeddings of a graph.

Acknowledgments. The authors would like to thank Jonathan Gross, Arkady
Kanevsky, Vijaya Ramachandran, and Arthur White for their comments and discus-
sion. The authors also express their sincere thanks to two anonymous referees, whose
comments and suggestions have significantly improved the presentation of the paper.

242 JIANER CHEN AND SAROJA P. KANCHI

REFERENCES

[1] J. Chen, A linear-time algorithm for isomorphism of graphs of bounded average genus, SIAM
J. Discrete Math., 7 (1994), pp. 614–631.

[2] J. Chen, Algorithmic graph embeddings, Theoret. Comput. Sci., 181 (1997), pp. 247–266.
[3] J. Chen, D. Archdeacon, and J. L. Gross, Maximum genus and connectivity, Discrete Math.,

149 (1996), pp. 19–29.
[4] J. Chen and J. L. Gross, Limit points for average genus (I): 3-connected and 2-connected

simplicial graphs, J. Combin. Theory Ser. B, 55 (1992), pp. 83–103.
[5] J. Chen and J. L. Gross, Kuratowski-type theorems for average genus, J. Combin. Theory

Ser. B, 57 (1993), pp. 100–211.
[6] J. Chen, J. L. Gross, and R. G. Rieper, Overlap matrices and imbedding distributions,

Discrete Math., 128 (1994), pp. 73–94.
[7] J. Chen and A. Kanevsky, On assembly of four-connected graphs, in Graph-Theoretic Con-

cepts in Computer Science, Lecture Notes in Comput. Sci. 657, Springer-Verlag, New York,
1993, pp. 158–169.

[8] J. Chen, A. Kanevsky, and R. Tamassia, Algorithm for triconnected ear decomposition of a
graph, presented at 22nd Southeastern International Conference on Combinatorics, Graph
Theory, and Computing, Baton Rouge, LA, 1991.

[9] J. Cheriyan and S. N. Maheshwari, Finding nonseparating induced cycles and independent
spanning trees in 3-connected graphs, J. Algorithms, 9 (1988), pp. 507–537.

[10] M. Furst, J. L. Gross, and L. A. McGeoch, Finding a maximum-genus graph imbedding, J.
Assoc. Comput. Mach., 35 (1988), pp. 523–534.

[11] H. N. Gabow and M. Stallmann, Efficient algorithms for graphic matroid intersection and
parity, in Automata, Languages and Programming, Lecture Notes in Comput. Sci. 194,
Springer-Verlag, New York, 1985, pp. 210–220.

[12] J. L. Gross and T. W. Tucker, Topological Graph Theory, Wiley-Interscience, New York,
1987.

[13] S. P. Kanchi and J. Chen, Tight lower bound on maximum genus of a 2-connected simplicial
graph, submitted.

[14] A. Kanevsky and V. Ramachandran, Improved algorithms for graph four-connectivity, J.
Comput. System Sci., 42 (1991), pp. 288–306.

[15] L. Lovasz, Computing ears and branchings in parallel, in Proc. 26th Annual IEEE Symposium
on Foundations of Computer Science, Portland, OR, IEEE Computer Society Press, Los
Alamitos, CA, 1985, pp. 464–467.

[16] E. Nordhaus, B. Stewart, and A. White, On the maximum genus of a graph, J. Combin.
Theory Ser. B, 11 (1971), pp. 258–267.

[17] V. Ramachandran, Parallel open ear decomposition with applications to graph biconnectivity
and triconnectivity, in Synthesis of Parallel Algorithms, J. Reif, ed., Morgan-Kaufmann,
1993, pp. 275-340.

[18] R. Ringeisen, Survey of results on the maximum genus of a graph, J. Graph Theory, 3 (1979),
pp. 1–13.

[19] B. Schieber and U. Vishkin, On finding lowest common ancestors: Simplification and paral-
lelization, SIAM J. Comput., 17 (1988), pp. 1253–1262.

[20] P. J. Slater, A classification of 4-connected graphs, J. Combin. Theory Ser. B, 17 (1974),
pp. 281–298.

[21] H. Whitney, Non-separable and planar graphs, Trans. Amer. Math. Soc., 34 (1932), pp. 339–
362.

[22] N. H. Xuong, How to determine the maximum genus of a graph, J. Combin. Theory Ser. B,
26 (1979), pp. 217–225.

NEW BOUNDS ON COVERING RADIUS AS A FUNCTION OF
DUAL DISTANCE∗

TERO LAIHONEN† AND SIMON LITSYN‡

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 2, pp. 243–251

Abstract. In this paper we estimate covering radius when dual distance is known. We derive new
bounds on covering radii of linear codes. A bound for self-complementary codes is also presented. The
improvements of these bounds on the known results are based on the knowledge of the cardinality of
constant weight codes and on the behavior of Hahn polynomials and discrete Chebyshev polynomials.

Key words. covering radius, dual distance, Hahn polynomials, discrete Chebyshev polynomials

AMS subject classifications. 94B65, 94B75, 05B40

PII. S0895480197331703

1. Introduction. Covering radius is a fundamental geometric parameter of a
code, and it has applications for instance to problems of data compression and write-
once memories [1].

The problem of upperbounding the covering radius has been an object of growing
interest for a few decades. In order to estimate covering radius we may profit from
the natural parameter called dual distance. It is often known or it can be at least
estimated from the construction of the code (for a linear code it is the minimum
distance of the dual code).

Ever since the seminal articles by Delsarte [3] and Helleseth, Kløve, and Mykkeltveit
[6] there have been many papers dealing with bounds on covering radius as a function
of dual distance (see, e.g., [1, 4, 7, 12, 15, 16, 19, 9]).

Specifically, in 1990 Tietäväinen proved the following remarkable results [19, 20]:
1) Let C = (Cn)∞n=1 be a sequence of binary codes Cn of length n, dual distance

d′ = d′(n), and covering radius R = R(n), where d′/n → δ′ and R/n → ρ when
n→∞. Then

ρ ≤ 1

2
(1−

√
δ′(2− δ′)).(1.1)

2) Let 0 < δ′ < 1/2. There are sequences C such that

ρ ≥ H−1
2 (1−H2(δ′)),

where H2(x) = −x log2 x− (1− x) log2(1− x) is the binary entropy function.
The upper bound was generalized by Fazekas and Levenshtein [4] to other metric

spaces.
In 1996 Litsyn and Tietäväinen [12] introduced a new method for binary linear

codes which generalizes the approach presented in [5] and [18]. Using this method and
(regular) Chebyshev polynomials they were able to improve on the previous bounds
for relatively large values of dual distance.

∗Received by the editors December 17, 1997; accepted for publication (in revised form) September
14, 1998; published electronically April 29, 1999.

http://www.siam.org/journals/sidma/12-2/33170.html
†Department of Mathematics, University of Turku, FIN-20014 Turku, Finland (terolai@utu.fi).

The research of this author was supported by the Academy of Finland.
‡Department of Electrical Engineering-Systems, Tel Aviv University, Ramat-Aviv, 69978, Israel

(litsyn@eng.tau.ac.il).

243

244 TERO LAIHONEN AND SIMON LITSYN

Later Honkala, Litsyn, and Tietäväinen [8] used the so-called Elias argument for
further improvements.

Very recently it was shown by Honkala, Laihonen, and Litsyn [7] that by using
discrete Chebyshev polynomials instead of regular ones we get even better bounds.
The bound given was as follows.

Theorem 1.1 (See [7]). Let C = (Cn)∞n=1 be a sequence of binary linear codes
of length n, dual distance d′ = d′(n), and covering radius R = R(n), where R/n→ ρ
and d′/n → δ′ ∈ (0, 1/2) when n → ∞. Then ρ is upperbounded by any α satisfying
the inequality

H2

(
1

2
−
√
δ′(1− δ′)

)
< αH2

(
ξ

α

)
+ (δ′ + ξ)H2

(
ξ

δ′ + ξ

)
+ (1− ζ)H2

(
α− ξ
1− ζ

)
− 1

2
(α+ 1− ζ − δ′)H2

(
2α

α+ 1− ζ − δ′
)
− α,

where ζ = 1
2 −

√
1
2 (1

2 − δ′) and

ξ =
α

2(α+ 1− ζ − δ′) (α− 2δ′ +
√

4δ′2 + α2 + 4δ′(1− ζ − δ′)).

The aim of this paper is to improve on the bounds mentioned above. It is done
by combining a suitable discrete Chebyshev polynomial with information on the least
zero of a Hahn polynomial and with a bound on the cardinality of a constant weight
code. This helps us to push the point of “meaningless weights” of the dual code further
from the Elias range, thus giving better bounds. Moreover, for self-complementary
codes we can utilize the fact that the dual code is an even-weight code (in fact, our
method can be applied as well to the situation where all the weights in dual code are
divisible by some other integer). This enables us to improve on Tietäväinen’s bound
for self-complementary codes (see [19, Theorem 3]—observe that it is asymptotically
the same as (1.1) above).

2. New bounds for binary linear codes. Let C ⊂ Fn2 be a linear code with
covering radius R and dual distance d′ (d′ ≤ bn/2c). We define the weight distribution
of the translate x + C (x ∈ Fn2) to be the (n + 1)-tuple A(x) = (A0(x), . . . , An(x))
where Ai(x) = |{c ∈ C| w(x + c) = i}|. The MacWilliams transform [1, p. 227] of
A(x) is denoted by A

′
(x) = (A

′
0(x), . . . , A

′
n(x)).

It is known that we can approximate the covering radius of a code according to
the following theorem (see [1, Chapter 8]). Let Kt(x) be the Krawtchouk polynomial
[1, p. 25] of degree t.

Theorem 2.1 (See [7, 1]). Let f(x) =
∑n
t=0 αtKt(x), where αt ≤ 0 for all

t = r + 1, . . . , n. Assume that for each b ∈ Fn2

f(0) +
n∑
i=1

A
′
i(b)f(i) > 0.

Then the covering radius R of the code C is at most r.
In our situation it is convenient to use the corollary below, which is a consequence

of the fact that |A′i(b)| ≤ A′i [1, Chapter 8]. Here A
′
i denotes the number of words of

weight i in the dual code C⊥. Let l and e be positive integers which satisfy l+ e < d′.

COVERING RADIUS AND DUAL DISTANCE 245

(Notice that it would be enough for the corollary to demand that l + e ≤ n− d′, but
for later use we shall prefer this stronger condition.)

Corollary 2.2. Let f(x) be a polynomial of degree r with real coefficients.
Assume that l + e < d′ and

f(0)−
n−l−e∑
i=d′

A
′
i|f(i)| −

n−l−1∑
i=n−l−e+1

A
′
i|f(i)| −

n∑
i=n−l

A
′
i|f(i)| > 0.(2.1)

Then R ≤ r.
In order to use the previous corollary efficiently we would like to find a polynomial

of low degree such that |f(i)| is small compared to f(0) whenever i 6= 0. We define

Dm
r (x) =

r∑
j=0

(−1)j
(
r

j

)(
x

j

)(
m− x
r − j

)
to be the discrete Chebyshev polynomial of degree r on the interval [0,m] (see [17, p.
33] or [14, p. 267]). It is known that these polynomials are orthogonal in the following
sense [17, p. 34] (see also [14, p. 268]):

m∑
i=0

Dm
r (i)Dm

l (i) = δr,l

(
m+ r + 1

2r + 1

)(
2r

r

)
,(2.2)

where δr,l is the Kronecker symbol. Because maxi∈{0,...,m} x2
i ≤

∑m
i=0 x

2
i , one gets by

choosing r = l in (2.2) that

max
i∈{0,...,m}

|Dm
r (i)| ≤

√(
m+ r + 1

2r + 1

)(
2r

r

)
.(2.3)

The discrete Chebyshev polynomial [17, p. 39] gives the minimum value of
∑m
i=0 p(i)

2

among the polynomials p(x) of degree r with leading coefficient 1.
Let C = (Cn)∞n=1 be a sequence of binary linear codes of length n, dimension

kdim = kdim(n), dual distance d′ = d′(n), and covering radius R = R(n), where
R/n→ ρ and d′/n→ δ′ when n→∞. Assume also that 0 < δ′ < 1/2.

Let λ be a positive number less than the Elias range, i.e., 0 < λ < ζ, and we
choose l = bλnc and e = bεnc, where ε > 0. Assume that λ+ ε < δ′. In (2.1) we take
the polynomial

F(x) :=
Dm
r (x− d′)
Dm
r (−d′) ,

where m = n− l − d′ − e. Observe that

Dm
r (−d′) =

r∑
j=0

(
r

j

)(
d′ + j − 1

j

)(
m+ d′

r − j
)
.(2.4)

Our goal in the next two lemmas is to show that the last two sums on the left-
hand side of (2.1) tend to zero as n approaches to infinity. Denote r = dγne. Let us
first check the last sum.

Lemma 2.3. We have

n∑
i=n−l

A
′
i|F(i)| → 0, n→∞.

246 TERO LAIHONEN AND SIMON LITSYN

Proof. Evidently,

n∑
i=n−l

A
′
i|F(i)| ≤ max

i=n−l,...,n
|F(i)|

n∑
i=n−l

A
′
i.

It is known (see, e.g., [11, p. 61]) that

∑
i≥n−l

A
′
i
<∼

1
2δ
′

λ2 − λ+ 1
2δ
′ , n→∞.(2.5)

The notation F (n)
<∼ G(n) means that F (n) ≤ G(n)(1 + ε(n)), where ε(n) → 0 as

n→∞.
Let 0 ≤ j ≤ r ≤ m. By the symmetry of discrete Chebyshev polynomials with

respect to m/2 we have |Dm
r (n− d′)| = |Dm

r (−l− e)|. For the ratio of corresponding
summands of Dm

r (−l − e) and Dm
r (−d′) we get according to (2.4) that(

r
j

)(
l+e+j−1

j

)(
m+l+e
r−j

)(
r
j

)(
d′+j−1

j

)(
m+d′
r−j

) ≤ (l + e+ j

d′ + j

)j (
l + e+m

d′ +m

)r−j
≤
(
m+ l + e

m+ d′

)r
.

Therefore, since λ+ ε < δ′, one has Dm
r (−l−e)/Dm

r (−d′)→ 0 as n→∞. Combining
this with (2.5) finishes the proof of the claim.

By (2.5) we know that the cardinality of a code (with the minimum distance d′)
inside a Hamming ball of radius less than Elias range is subexponential in n. In order
to deal with the weights, which are more than Elias range away from the “all-one”
word, we need to develop a different approach.

Let us now consider the sum

n−l−1∑
i=n−l−e+1

A
′
i|F(i)|.

We denote the maximum cardinality of constant weight code of length n, minimum
distance d, and weight w by M(n, d, w). Consequently,

n−l−1∑
i=n−l−e+1

A
′
i|F(i)| ≤ max

i=n−l−e+1,...,n−l−1
|F(i)|

n−l−1∑
i=n−l−e+1

M(n, d′, i).

Since the method of the preceding corollary works best for relatively large values of
(normalized) dual distance, we upperbound the value M(n, d′, w) by the inequality
stated below (see [13, inequality (4.11)]):

M(n, d, w) ≤
(
n

k

)
(n2 − (2k − 1)n− 2k)2(w − k)(n− w − k)

x
(k+1)
1 (k + 1)(n− k + 1)(n− 2k − 1)(n− 2k)(n− 2k + 1)

(2.6)

provided that k < w ≤ n/2 and x
(k)
1 ≤ d/2, where x

(k)
1 is the least zero of the Hahn

polynomial

Jk(x) =
k∑
j=0

(−1)j

(
k
j

)(
n+1−k

j

)(
w
j

)(
n−w
j

) (x
j

)
.

COVERING RADIUS AND DUAL DISTANCE 247

The Hahn polynomials form an orthogonal family of polynomials [10]. In general,

the exact value of x
(k)
1 is not known and the usual asymptotic approximations (cf.

[13]) are not strong enough for our purposes. However, Levenshtein [10, subsection 5.2]
has recently given in his chapter of Handbook of Coding Theory general estimates on
extreme roots of orthogonal polynomials. We use his estimate for Hahn polynomials.
With some effort one can deduce that (see [10, Lemma 5.13])

x
(k)
1 ≤ 1

2
w

(
2

l′
+

2(n+ 2)3

l′k(n− 2k)2

)
(2.7)

+

(
1− 2

l′

)w(n− w)− (k − b√kc)(n− (k − b√kc))
n+ 2

√
(k − b√kc)(n− (k − b√kc))

provided that k > 1 and k < 1

2 (n+ 1−√(n+ 1)2 − 4w(n− w)). Here l′ = b√kc+ 1.
We denote the right-hand side of (2.7) by U(n,w, k). Now we are in a position to
investigate the second sum of (2.1).

Lemma 2.4. Suppose that

α(1− α)− β(1− β)

1 + 2
√
β(1− β)

<
δ′

2
,(2.8)

where α = λ+ ε and 0 < β < λ < 1/2. Then

max
i=n−l−e+1,...,n−l−1

|F(i)|
n−l−1∑

i=n−l−e+1

M(n, d′, i)→ 0, n→∞,

if (
1− λ− δ′
1− λ− ε

)γ
2H2(β) < 1.(2.9)

Proof. Let k = dβne where β satisfies (2.8). Denote w′ = l + e− 1. Since

U(n,w′, k)

n
→ α(1− α)− β(1− β)

1 + 2
√
β(1− β)

, n→∞,

we know by virtue of (2.8) that U(n,w′, k) < d′/2 for large enough n. Furthermore,
since U(n,w, k) is increasing with respect to w (n and k are fixed), the same k = dβne
satisfies U(n,w, k) < d′/2 for smaller values of w (l + 1 ≤ w ≤ w′). It should
be noticed that the assumption β < λ guarantees that the condition k < 1

2 (n +

1 − √(n+ 1)2 − 4w(n− w)) holds also for small w’s when n is sufficiently large.
Therefore, one gets according to (2.7) and (2.6) that for large enough n

M(n, d′, w) ≤ (x
(k+1)
1)−1

(
n

k

)
n6(2.10)

for all weights l + 1 ≤ w ≤ w′. It follows from β < λ also that k + 1 < 1
2 (n +

1 −√(n+ 1)2 − 4w(n− w)) and so it implies that x
(k+1)
1 ≥ 1. Consequently, since

M(n, d, w) = M(n, d, n− w) and in addition

max
i=n−l−e+1,...,n−l−1

|F(i)| ≤ Dm
r (−e+ 1)

Dm
r (−d′) ≤

(
m+ e

m+ d′

)r
,

248 TERO LAIHONEN AND SIMON LITSYN

we obtain (recalling from [1, p. 33] that
(
n
k

) ≤ 2nH2(k/n))

max
i=n−l−e+1,...,n−l−1

|F(i)|
n−l−1∑

i=n−l−e+1

M(n, d′, i)

≤
(
m+ e

m+ d′

)r
(e− 1)

(
n

k

)
n6

≤
((

n− l − d′
n− l − e

)γ
2H2(k/n)+ 1

n log2 n
6(e−1)

)n
.

Therefore, if (1−λ−δ′
1−λ−ε)γ2H2(β) < 1, the assertion is true.

Suppose now that β and γ are chosen so that they satisfy the assumptions in the
previous lemma. Denote

σn = −
n−l−1∑

i=n−l−e+1

A
′
i|F(i)| −

n∑
i=n−l

A
′
i|F(i)|.

Combining lemmas with (2.1) we conclude that R ≤ r if

1− max
i=d′,...,n−l−e

|F(i)|2n−kdim + σn > 0,

where limn→∞ σn = 0. By virtue of (2.3)

1− max
i=d′,...,n−l−e

|F(i)|2n−kdim ≥ 1−
√(

m+r+1
2r+1

)(
2r
r

)
Dm
r (−d′) 2n−kdim .

Thus, R ≤ r for large enough n if

2n−kdim ≤ 1

2

Dm
r (−d′)√(

m+r+1
2r+1

)(
2r
r

) .
Evidently, any summand of the sum (2.4) provides a lower bound on Dm

r (−d′). With
some effort one can show that asymptotically the best choice is the summand corre-
sponding to the index

j =

⌊
r

2(r +m)
(r − 2d′ +

√
4d′2 + r2 + 4d′m)

⌋
.

Consequently, R ≤ r for sufficiently large n if

2n−kdim+1 ≤
(
r

j

)(
d′ + j − 1

j

)(
m+ d′

r − j
)(

m+ r + 1

2r + 1

)−1/2(
2r

r

)−1/2

.(2.11)

Assume that limn→∞ j/n = ξ. It is well known (see [11, p. 21]) that

lim
a →∞

1

a
log2

(
a

b

)
= H2(τ),

where limn→∞ b/a = τ . Because [13]

n− kdim

n

<∼ H2

(
1/2−

√
δ′(1− δ′)

)
,

COVERING RADIUS AND DUAL DISTANCE 249

Table 2.1
A comparison of bounds for binary linear codes.

(1.1) [8] Theorem 1.1 Theorem 2.5
δ′ = 0.28 0.1530 0.1520 0.1504 0.1442

we obtain that ρ ≤ γ if

0 < γH2

(
ξ

γ

)
+ (δ′ + ξ)H2

(
ξ

δ′ + ξ

)
+ (1− λ− ε)H2

(
γ − ξ

1− λ− ε
)

−1

2
(1− λ− δ′ − ε+ γ)H2

(
2γ

1− λ− δ′ − ε+ γ

)
−γ −H2(1/2−

√
δ′(1− δ′))(2.12)

provided that the assumptions of the preceding lemma hold. Recalling that this is
true for all λ < ζ and the left-hand side of (2.9) is continuous with respect to λ, it is
not hard to check that we get the following main theorem.

Theorem 2.5. Let C = (Cn)∞n=1 be a sequence of binary linear codes of length
n, dual distance d′ = d′(n), and covering radius R = R(n), where R/n → ρ and
d′/n→ δ′ when n→∞. Assume that 0 < δ′ < 1/2 and α = ζ + ε. Suppose that

α(1− α)− β(1− β)

1 + 2
√
β(1− β)

<
δ′

2

and 0 < β < ζ. Assume also that ζ + ε < δ′ and(
1− ζ − δ′
1− ζ − ε

)γ
2H2(β) < 1.

Then ρ ≤ γ for every γ satisfying inequality (2.12) when λ is replaced by ζ.
This result is better than Tietäväinen’s bound when δ′ ≥ 0.271, and it improves

on Theorem 1.1 (see Table 2.1).

3. Improvement for self-complementary codes. Let us now consider a se-
quence C = (Cn)∞n=1 where all the codes are linear and self-complementary. As before,
suppose limn→∞R/n = ρ and limn→∞ d′/n = δ′. Denote the cardinality of Cn by
kdim = kdim(n). Now we may combine the previous approach with the fact that the
dual codes are of even weight. Moreover, this method applies to the situation where
all the weights in dual codes are divisible by some other integer as well. The goal of
this section is to find a better upper bound than the one for self-complementary codes
in [19, Theorem 3].

Denote m = n−l−e−d′, where l = bλnc, e = bεnc. Suppose λ < ζ and λ+ε < δ′.
We now apply the modified polynomial

F(x) :=
D
dm2 e
r ((x− d′)/2)

D
dm2 e
r (−d′/2)

to (2.1). Since

D
dm2 e
r (−d l+e2 e)
D
dm2 e
r (−d′/2)

≤
(
d l+e2 e+ dm2 e
d′/2 + dm2 e

)r
,

we may deduce that Lemma 2.3 holds also for this polynomial.

250 TERO LAIHONEN AND SIMON LITSYN

Similarly, because

D
dm2 e
r (−d e2e)

D
dm2 e
r (−d′/2)

≤
(d e2e+ dm2 e
d′/2 + dm2 e

)r
,

Lemma 2.4 is valid for our current polynomial.
Moreover,

1−
n−l−e∑
i=d′

A
′
i|F(i)|

≥
{

1−maxi=d′,d′+2,...,n−l−e |F(i)|2n−kdim if 2 | n− l − e,
1−maxi=d′,d′+2,...,n−l−e+1 |F(i)|2n−kdim otherwise,

= 1− 2n−kdim

D
dm2 e
r (−d′/2)

max
i=0,1,...,dm2 e

|Ddm2 er (i)|.

Now the same arguments as in Theorem 2.5 yield the statement below.
Theorem 3.1. Let C = (Cn)∞n=1 be a sequence of linear self-complementary codes

of length n, dual distance d′ = d′(n), and covering radius R = R(n), where R/n→ ρ
and d′/n→ δ′ when n→∞. Assume that 0 < δ′ < 1/2 and α = ζ + ε. Suppose that

α(1− α)− β(1− β)

1 + 2
√
β(1− β)

<
δ′

2

and 0 < β < ζ. Assume also that ζ + ε < δ′ and (1−ζ−δ′
1−ζ−ε)γ2H2(β) < 1. Then any γ

satisfying

0 < γH2

(
ξ

γ

)
+ (δ′/2 + ξ)H2

(
ξ

δ′/2 + ξ

)
+

1

2
(1− ζ − ε)H2

(
2(γ − ξ)
1− ζ − ε

)
−1

2

(
1

2
(1− ζ − δ′ − ε) + γ

)
H2

(
2γ

1
2 (1− ζ − δ′ − ε) + γ

)
−γ −H2(1/2−

√
δ′(1− δ′)),(3.1)

where

ξ =
γ

2(γ + 1
2 (1− ζ − δ′ − ε)) (γ − δ′ +

√
δ′2 + γ2 + δ′(1− ζ − δ′ − ε))

gives an upper bound on ρ.
This bound improves on Tietäväinen’s result when δ′ ≥ 0.265. It is also better

than Theorem 1.1 (at δ′ = 0.28 the improvement is 0.01).

Acknowledgments. The first author is very grateful to professor Levenshtein
for sending the chapter of Handbook of Coding Theory. We would also like to thank
I. Honkala and A. Tietäväinen for fruitful discussions.

REFERENCES

[1] G. Cohen, I. Honkala, S. Litsyn, and A. Lobstein, Covering Codes, Elsevier, Amsterdam,
1997.

[2] C. Delorme and P. Solé, Diameter, covering index, covering radius and eigenvalues, Euro-
pean J. Combin., 12 (1991), pp. 95–108.

COVERING RADIUS AND DUAL DISTANCE 251

[3] P. Delsarte, Four fundamental parameters of a code and their combinatorial significance,
Inform. and Control, 23 (1973), pp. 407–438.

[4] G. Fazekas and V. I. Levenshtein, On upper bounds for code distance and covering radius of
designs in polynomial metric spaces, J. Combin. Theory Ser. A, 70 (1995), pp. 267–288.

[5] T. Helleseth, On the covering radius of cyclic linear codes and arithmetic codes, Discrete
Appl. Math., 11 (1985), pp. 157–173.

[6] T. Helleseth, T. Kløve, and J. Mykkeltveit, On the covering radius of binary codes,
IEEE Trans. Inform. Theory, 24 (1978), pp. 627–628.

[7] I. Honkala, T. Laihonen, and S. Litsyn, On covering radius and discrete Chebyshev poly-
nomials, Appl. Algebra Engrg. Comm. Comput., 8 (1997), pp. 395–402.

[8] I. Honkala, S. Litsyn, and A. Tietäväinen, On algebraic methods in covering radius prob-
lems, in Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Lecture
Notes in Comput. Sci. 948, G. Cohen, M. Giusti, and T. Mora, eds., Springer-Verlag,
Berlin, Heidelberg, New York, 1995, pp. 21–32.

[9] T. Laihonen and S. Litsyn, On upper bounds for minimum distance and covering radius of
non-binary codes, Des. Codes Cryptogr., 14 (1998), pp. 71–80.

[10] V. I. Levenshtein, Universal bounds for codes and designs, in Handbook of Coding Theory,
V. S. Pless, W. C. Huffman, and R. A. Brualdi, eds., to appear.

[11] J. van Lint, Introduction to Coding Theory, Springer-Verlag, New York, Berlin, 1982.
[12] S. Litsyn and A. Tietäväinen, Upper bounds on the covering radius of a code with a given

dual distance, European J. Combin., 173 (1996), pp. 265–270.
[13] R. J. McEliece, E. R. Rodemich, H. C. Rumsey, and L. R. Welch, New upper bounds

on the rate of the code via the Delsarte-MacWilliams inequalities, IEEE Trans. Inform.
Theory, 23 (1977), pp. 157–166.

[14] W. Milne, Numerical Calculus, Princeton University Press, Princeton, NJ, 1949.
[15] P. Solé, Asymptotic bounds on the covering radius of binary codes, IEEE Trans. Inform.

Theory, 36 (1990), pp. 1470–1472.
[16] P. Solé and P. Stokes, Covering radius, codimension, and dual-distance width, IEEE Trans.

Inform. Theory, 39 (1993), pp. 1195–1203.
[17] G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ. 23, revised ed., AMS,

Providence, RI, New York, 1959.
[18] A. Tietäväinen, Codes and character sums, in Coding Theory and Applications, Lecture

Notes in Comput. Sci. 388, Springer-Verlag, New York, 1989, pp. 3–12.
[19] A. Tietäväinen, An upper bound on the covering radius as a function of its dual distance,

IEEE Trans. Inform. Theory, 36 (1990), pp. 1472–1474.
[20] A. Tietäväinen, Covering radius and dual distance, Des. Codes Cryptogr., 1 (1991), pp.

31–46.

INTERCONNECTING HIGHWAYS∗

DING-ZHU DU† , FRANK K. HWANG‡ , AND GUOLIANG XUE§

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 2, pp. 252–261

Abstract. We present the problem of constructing roads of minimum total length to interconnect
n highways under the constraint that the roads can intersect each highway only at one point in a
designated interval which is a line segment. We present a set of optimality conditions for the problem
and show how to construct a solution to meet this set of optimality conditions.

Key words. interconnecting networks, optimality conditions, Steiner trees

AMS subject classifications. 05C05, 90C27

PII. S089548019732653X

1. Introduction. We present the problem of constructing roads of minimum
total length to interconnect n existing highways H1, H2, . . ., Hn under the constraint
that the roads can intersect Hi only at one point, called an exit of Hi, in a designated
interval Ii. To avoid unnecessary complexity, we assume that all Ii’s are disjoint. In
this paper, we consider the case where Ii is a line segment, including the two extreme
cases where Ii is a point or a line. The case where Ii is a point for all i = 1, 2, . . . , n is
the Steiner minimum tree problem which is NP-hard [5]. Thus, the current problem
is also NP-hard. Some special cases for n = 3 have been studied by Chen [3] and
Weng [15]. More applications and the relation to facility allocation problems can be
found in [3, 8, 18].

We will first establish a set of optimality conditions and then show how to con-
struct a solution to meet this set of conditions by generalizing Melzak’s construction
for Steiner trees. Finally, we will use those results to determine global optimal solu-
tions for n = 2 and n = 3.

2. Optimality conditions. Let us call each intersection of roads, which is not
an exit, a Steiner point. Consider an optimal solution for the problem of intercon-
necting highways. Clearly, this solution must be the Steiner minimum tree for the
n exits at the current positions. Thus, it must have properties for Steiner minimum
trees as stated in the following [6, 8].

Lemma 2.1. An optimal solution for the problem of interconnecting highways
must satisfy the following conditions:

(a) Every Steiner point has degree three (Figure 2.1(a)).

(b) Two roads meeting at a point form an angle of at least 120◦ (Figure 2.1(b)).

Since each exit can move in the designated interval Ii, we have additional opti-
mality conditions at exits.

∗Received by the editors July 18, 1997; accepted for publication May 7, 1998; published electron-
ically April 29, 1999.

http://www.siam.org/journals/sidma/12-2/32653.html
†Department of Computer Science, University of Minnesota, Minneapolis, MN 55455, and Insti-

tute of Applied Mathematics, Chinese Academy of Sciences, Beijing, China (dzd@cs.umn.edu). The
research of this author was supported in part by NSF grants CCR-9530306 and OSR-9350540.
‡Department of Applied Mathematics, Chiao-Tung University, Hsin-Chu 30050, Taiwan, Republic

of China (fhwang@math.nctu.edu.tw).
§Department of Computer Science, The University of Vermont, Burlington, VT 05405-0156

(xue@ecs.uvm.edu). The research of this author was supported in part by US Army Research Office
grant DAAH04-96-1-0233 and by NSF grants ASC-9409285 and OSR-9350540.

252

INTERCONNECTING HIGHWAYS 253

120

120120

(f)

o

oo o
> 120=

> 90
o

=

xIi x

x

Ii x

> 90 o
=

x

(a) (b) (c)

(d) (e)

Fig. 2.1. Optimality conditions.

Lemma 2.2. Let x be an exit in interval Ii. An optimal solution for the problem
of interconnecting highways must satisfy the following conditions:

(c) If exit x is connected to only one road and x is an interior point of Ii, then
this road is perpendicular to Ii (Figure 2.1(c)).

(d) If exit x is connected to only one road and x is an endpoint of Ii, then this
road together with Ii forms an angle of at least 90◦ (Figure 2.1(d)).

(e) If exit x is connected to exactly two roads and x is an interior point of Ii, then
the angle formed by one road and a part of Ii equals the angle formed by the other
road and the other part of Ii (Figure 2.1(e)).

(f) If exit x is connected to exactly two roads and x is an endpoint of Ii, then
the bisector of the relative angle of the two roads and Ii form an angle of at least 90◦

(Figure 2.1(f)).

Proof. Suppose Ii = [A,B].

(c) Suppose exit x is connected to only one road (x,C). Since x is an interior
point of [A,B], if xC is not perpendicular to [A,B], then either 6 AxC < 90◦ or
6 BxC < 90◦. In the former case, moving x in direction xA would decrease distance
xC (Figure 2.2). In the latter case, moving x in direction xB would decrease xC.
Thus, x is not at an optimal position.

(d) A similar argument to (c) could apply (Figure 2.2).

(e) Suppose that exit x is connected to two roads (x,C) and (x,D). If C and
D lie on different sides of line AB, then C, x, and D must be on the same line.
Otherwise, a little perturbation would make a shorter solution (Figure 2.3). If C and
D are on the same side of line AB, then find the point C ′ which is symmetric to C
with respect to line AB. Then, C ′, x, and D must be on the same line. Otherwise, a
little perturbation would make a shorter solution (Figure 2.3). In both case, we have
6 AxC = 6 BxD.

(f) An argument similar to (e) could apply.

We call a tree satisfying conditions (a)–(f) a legitimate tree. A legitimate tree is
full if every exit is a leaf.

Theorem 2.3. The optimal solution of the highway interconnection problem must
be a legitimate tree.

Since a legitimate tree is a Steiner tree for a current position of exits, we may

254 D.-Z. DU, F. K. HWANG, AND G. XUE

A B

(b)

C C

A xx

(a)

Fig. 2.2. Moving x in direction xA decreases xC.

A

x

AB

C

D

x

C’

DC

B

Fig. 2.3. A little perturbation would shorten the tree.

extend some concepts about Steiner trees to legitimate trees as follows: A topology
is the graph structure of a legitimate tree. The topology is full if the legitimate tree
is full. A topology can be degenerated by shrinking an edge between a Steiner point
and an exit. A topology is called a degenerate one of another topology if the former
can be obtained from the latter by a sequence of degenerate operations.

Theorem 2.4. Among a full topology and its degenerate topologies, if there exists
one with which the legitimate tree exists, then it is minimum among all trees with the
full topology and its degenerate ones.

Proof. Consider the problem of finding the shortest one among all trees under
a full topology (including its degenerate topologies) interconnecting n exits each in
a designated interval. This problem has a convex objective function with respect to
coordinates of Steiner points and exits, which is a sum of Euclidean distances, and
linear constraints on coordinates of exits. Therefore, it is a convex programming. Any
local optimal solution is also a global optimal solution. In the following, we will show
that if a legitimate tree with the full topology or its degenerate one exists, then it is a
local minimum for the convex programming. To do so, we show that at the legitimate
tree, every feasible direction is not descending. That is, the directional derivative of
the objective function is nonnegative.

Let t be the full topology and E(t) the edge set of t. Then, the objective function
of the convex programming is

f(V (t)) =
∑

(u,v)∈E(t)

‖u− v‖,

where V (t) is the vertex set of t and all coordinates of vertices are variables of function
f . A feasible direction ∆V of V (t) consists of moving direction ∆v for every vertex
v ∈ V (t). For a Steiner point, every direction can be feasible. For an exit, only

INTERCONNECTING HIGHWAYS 255

direction along the exit’s interval can be feasible. Suppose the feasible direction ∆V
of V (t) has unit length. Then, its directional derivative is

lim
λ→0

f(V (t) + λ∆V)− f(V (t))

λ

=
∑

(u,v)∈E(t)

lim
λ→0

‖(u+ λ∆u)− (v + λ∆v)‖ − ‖u− v‖
λ

.

We will first calculate this derivative and then show that it is nonnegative.
For u 6= v,

lim
λ→0

‖(u+ λ∆u)− (v + λ∆v)‖ − ‖u− v‖
λ

=
(∆u−∆v)T (u− v)

‖u− v‖
=

(∆u)T (u− v) + (∆v)T (v − u)

‖u− v‖ .

For u = v,

lim
λ→0

‖(u+ λ∆u)− (v − λ∆v)‖ − ‖u− v‖
λ

= lim
λ→0
‖∆u−∆v‖

= ‖∆u−∆v‖.
Now, suppose V (t) is the vertex set of a legitimate tree. If u is a Steiner point

and its three edges in the legitimate tree are all of nonzero length, then there are
three terms involving ∆u in the directional derivative,

(∆u)T (u− v1)

‖u− v1‖ +
(∆u)T (u− v2)

‖u− v2‖ +
(∆u)T (u− v3)

‖u− v3‖ = 0,

since any two of three vectors u− v1, u− v2, and u− v3 form an angle of 120◦.
If u is an exit and its only edge in the legitimate tree has nonzero length, then

∆u is involved in only one term of the directional derivative,

(∆u)T (u− v)

‖u− v‖ ≥ 0,

since ∆u and v − u form an angle of at least 90◦, that is, (∆u)T (v − u) ≤ 0.
Note that if degeneration occurs, it must occur around an exit v. If in the legiti-

mate tree v is incident to two edges, this means that the edge (v, u) in t, where u is
a Steiner point, has been shrunk to a point. If in the legitimate tree v is incident to
three edges, then two edges (v, u) and (u,w), where u and w are Steiner points, have
been shrunk to one point in the legitimate tree.

In the former case, i.e., edge (u, v), where u is a Steiner point and v is an exit
in t, having length 0 in the legitimate tree, then the directional derivative has three
terms involving ∆u and ∆v as follows:

‖∆u−∆v‖+
(∆u)T (u− v2)

‖u− v2‖ +
(∆u)T (u− v3)

‖u− v3‖ .

256 D.-Z. DU, F. K. HWANG, AND G. XUE

Denote

w =
v2 − u
‖u− v2‖ +

v3 − u
‖u− v3‖ .

Since v2 − u and v3 − u form an angle of at least 120◦, we have

‖w‖ ≤ 1.

In addition, since w and ∆v form an angle of at least 90◦, we have

(∆v)Tw ≤ 0.

Therefore,

‖∆u−∆v‖ − (∆u)Tw

≥ ‖∆u−∆v‖+ (∆v −∆u)Tw

≥ 0.

Finally, we consider the case where, in the legitimate tree, v is incident to three
edges, i.e., two edges (v, u) and (u,w) in t, where u and w are Steiner points, have
been shrunk to one point in the legitimate tree. In this case, the directional derivative
has five terms involving ∆u, ∆v, and ∆w as follows:

‖∆v −∆u‖+ ‖∆u−∆w‖+
(∆u)T (u− v1)

‖u− v1‖ +
(∆w)T (w − v2)

‖w − v2‖ +
(∆w)T (w − v3)

‖w − v3‖ .

Denote this summation by s. Note that in the legitimate tree, u and w are identical
and any two of three vectors u− v1, w− v2, and w− v3 form an angle of 120◦. Thus,

(u− v1)

‖u− v1‖ +
(w − v2)

‖w − v2‖ +
(w − v3)

‖w − v3‖ = 0.

It follows that

s = ‖∆v −∆u‖+ ‖∆u−∆w‖+
(∆u−∆w)T (u− v1)

‖u− v1‖ ≥ 0.

By summarizing the above, we know that the directional derivative is nonnegative.
This completes our proof.

3. Generalized Melzak construction. In this section, we study the following
question: If a legitimate tree exists, how do we construct it?

First, we show how to construct a legitimate tree with full topology if it exists.
Let us start by recalling Melzak’s construction [11].

Melzak’s construction works for a Steiner tree with a full topology. In each step,
it first finds a Steiner point adjacent to two exits (they are fixed in a Steiner tree
problem). Then, it constructs an equilateral triangle with the two exits as its two
vertices and replaces them by the third vertex (Figure 3.1), considered a new exit.
After several steps, when only two exits exist, it connects them by a straight line
segment and in reverse ordering, then finds all edges of the full Steiner tree.

Now, we also want to replace two exits (adjacent to the same Steiner point) by a
new exit. However, a new situation is that each exit has a feasible region. (For each
original exit, its feasible region is a line segment.) Thus, we also need to construct

INTERCONNECTING HIGHWAYS 257

(AB)

A B

Fig. 3.1. Melzak’s construction.

Fig. 3.2. The feasible region of this new exit is a parallelogram.

a feasible region for the new exit. Initially, a new exit is obtained from two original
exits and the feasible region of this new exit is a parallelogram, as shown in Figure
3.2. In general, what is the feasible region for a new exit if it is obtained from k
original exits through k− 1 steps of Melzak’s construction? An answer is given in the
following.

Let us call a convex central symmetric 2k-polygon a parallel 2k-polygon if its 2k
edges can be divided into k pairs of parallel edges with equal length (Figure 3.3).
Note that every parallel 2k-polygon can be covered in the following way: Choose an
edge. Moving this edge along an adjacent edge will obtain a parallel 4-polygon (or
a parallelogram). Moving the parallel 4-polygon along an adjacent edge will obtain
a parallel 6-polygon. Continuing in this way, finally the parallel 2k-polygon will be
obtained (Figure 3.3) and all points in this parallel 2k-polygon are covered by moving
images.

Theorem 3.1. Let v be a new exit obtained from k original exits through k − 1

258 D.-Z. DU, F. K. HWANG, AND G. XUE

Fig. 3.3. Parallel 2k-polygon.

steps of Melzak’s construction. The feasible region of v is a parallel 2k-polygon.
Proof. We prove it by induction on k. Suppose v is obtained from two exits u

and w. Suppose u is obtained from i original exits and w is obtained from j original
exits. Clearly, i + j = k and i < k and j < k. By the induction assumption, the
feasible region of u is a parallel 2i-polygon P and the feasible region of w is a parallel
2j-polygon Q.

First, we fix u at a position in P and move w over region Q. It is easy to see that
v will describe a region Q′ isomorphic to Q. Actually, this region Q′ can be obtained
from Q by turning Q around center u in an angle of 60◦.

Next, we move u along an edge e1 of P . As u moves, Q′ will move along a certain
direction and all images will cover a parallel 2(j + 1)-polygon Q′′.

Now, we move edge e1 along an adjacent edge e2 of P . As all images of e1

cover a parallel 4-polygon P ′, all images of Q′′ cover a parallel 2(j + 2)-polygon Q′′′.
Continue in this way. As all points in the parallel 2i-polygon P are covered, a parallel
2(i+ j)-polygon will be covered by images of Q′ (Figure 3.4).

P

Q

u

e1

e2

Q’

e1’

e2’

e1’

e1’

e2’

e2’

e2’

Fig. 3.4. The proof of Theorem 3.1.

For degenerate topology, Melzak’s method for a Steiner tree is to decompose
it into an edge-disjoint union of small full topologies. However, for the problem of
interconnecting highways, such a decomposition does not exist since the position of
an exit v connected to two roads (v, u) and (v, w) has to be determined by considering
both roads. If the feasible region of u (or w) is known, then we may need to consider

INTERCONNECTING HIGHWAYS 259

A

B C

D
A

B

(c)

C

D
A

B

C

D

> 90 > 90

>= 90

=
=

(a) (b)

Fig. 4.1. Two highways.

two cases: v is in the interior of the designated interval Ii or v is at one of two
endpoints of Ii. In the former case, we can replace Ii by one of its endpoints and then
decompose the topology at v. In the latter case, we replace (v, u) and (v, w) by (w, u)
and meanwhile replace the feasible region of u by its symmetric image with respect
to Ii if u and w are in the same side of Ii.

From the above analysis, one may see that constructing the legitimate tree with
a degenerate topology is much more complicated than the Steiner tree in a similar
situation. It is indeed not a construction which can be finished in polynomial time
with respect to the number of exits. However, Xue, Du, and Hwang [18] showed that
there exists a fast way to construct a tree with length almost as short as the legitimate
tree. This work draws from many previous contributions on shortest network under
a given topology [7, 9, 13, 14, 16, 17].

4. Two or three highways. If our interest is only on highway interconnection,
then n = 2 and n = 3 are the most practical cases. In these two cases, there is a unique
full topology. Thus, a tree being legitimate is necessary and sufficient for optimality.
In this section, we will apply the results from previous sections to determine the
legitimate tree in these two cases.

For n = 2, suppose AB and CD are two line segments. Assume that BD and DA
do not intersect, that is, ABCD form a quadrilateral. Since 6 A+ 6 B + 6 C + 6 D =
360◦, either 6 A+ 6 D ≥ 180◦ or 6 B+ 6 C ≥ 180◦. Without loss of generality, assume
the former occurs and 6 A ≥ 6 D. Then 6 A ≥ 90◦. Now, we have three cases.

Case 1. 6 D ≥ 90◦. In this case, the line segment AD is the legitimate tree
interconnecting AB and CD (Figure 4.1(a)).

Case 2. 6 D < 90◦ and 6 ACD < 90◦. In this case, draw line segment AE
perpendicular to CD at E. Then AE is the legitimate tree (Figure 4.1(b)).

Case 3. 6 D < 90◦ and 6 ACD ≥ 90◦. In this case, AC is the legitimate tree
(Figure 4.1(c)).

For n = 3, there are four possible topologies for the legitimate tree. We first
construct the one with full topology (Figure 4.2). If successful, then the work is done.
If unsuccessful, then we construct the other three topologies in turn until a legitimate
tree is found (Figure 4.3).

To construct the one with full topology, first replace two line segments I1 and I2 by
a parallelogram with Melzak’s construction. Then, find the shortest distance between
the parallelogram and the third line segment I3. Suppose this happens between point
A in the parallelogram and point B in I3. Note that A corresponds to two points C
and D in I1 and I2, respectively. Draw the full Steiner tree for B,C,D. If it exists,
the legitimate tree with the full topology is found; if not, then it means that the
legitimate tree with the full topology does not exist.

260 D.-Z. DU, F. K. HWANG, AND G. XUE

Fig. 4.2. Three highways (1).

I

3

I

I

I’

1

2

3

Fig. 4.3. Three highways (2).

To explain how to construct a legitimate tree with a degenerate topology, we
may assume the topology consists of two edges between I1 and I2 and I2 and I3,
respectively. Suppose I ′3 is the mirror image of I3 with respect to I2. Find the
shortest distance between I1 and I3 and the shortest distance between I1 and I ′3.
If a segment realizing either one of the two shortest distances intersects segment
I2, then the legitimate tree is found. If no such segment exists, then consider two
endpoints of I2. For each endpoint, find the shortest segments to connect it to I1
and I3, respectively. Check whether the two shortest segments form a legitimate
tree. If no legitimate tree is found in this way, then it means that the legitimate
tree with this degenerate topology does not exists and we should consider another
degenerate topology. By Theorem 2.3, we would find a legitimate tree before all
possible topologies are examined.

5. Discussion. A variation of the problem considered in this paper is to use a
spanning tree instead of a Steiner tree, interconnecting points with each on a spec-
ified line segment, and to find the shortest one. So far, we do not know if such a
spanning tree problem has a polynomial time solution. Therefore, approximation
for the highway interconnection problem is also an open problem. No polynomial
time approximation with constant performance ratio for this problem has been found,
although many polynomial time approximations with good performance for Steiner
minimum trees have been known [1, 2, 10].

When a new Steiner tree problem appears, one usually also considers the corre-
sponding Steiner ratio problem. Note that a Steiner minimum tree interconnecting n
line segments is also the Steiner minimum tree connecting the n exits. Let us fix these

INTERCONNECTING HIGHWAYS 261

n exits. Then, a minimum spanning tree for n line segments is not longer that the
minimum spanning tree for the fixed n exits. Therefore, the ratio of lengths between
the Steiner minimum tree and the minimum spanning tree for n line segments is at
least

√
3/2. It follows that the Steiner ratio for the highway interconnection problem

is the same as that for the Euclidean Steiner tree problem [4, 12].

REFERENCES

[1] S. Arora, Polynomial time approximation schemes for Euclidean TSP and other geometric
problems, in Proc. 37th IEEE Symposium on Foundations of Computer Science, IEEE
Computer Society Press, Los Alamitos, CA, 1996, pp. 2–11.

[2] A. Borchers and D.-Z. Du, The k-Steiner ratio in graphs, SIAM J. Comput., 26 (1997),
pp. 857–869.

[3] G. X. Chen, The shortest path between two points with a (linear) constraint, Knowledge Appl.
Math., 4 (1980), pp. 1–8.

[4] D.-Z. Du and F. K. Hwang, A proof of Gilbert-Pollak’s conjecture on the Steiner ratio,
Algorithmica, 7 (1992), pp. 121–135.

[5] M. R. Garey, R. L. Graham, and D. S. Johnson, The complexity of computing Steiner
minimal trees, SIAM J. Appl. Math., 32 (1977), pp. 835–859.

[6] E. N. Gilbert and H. O. Pollak, Steiner minimal trees, SIAM J. Appl. Math., 16 (1968),
pp. 1–29.

[7] F. K. Hwang, A linear time algorithm for full Steiner trees, Oper. Res. Lett., 4 (1986), pp. 235–
237.

[8] F. K. Hwang, D. S. Richard, and P. Winter, The Steiner Tree Problem, North–Holland,
Amsterdam, 1992.

[9] F. K. Hwang and J. F. Weng, The shortest network under a given topology, J. Algorithms,
13 (1992), pp. 468–488.

[10] M. Karpinski and A. Zelikovsky, New approximation algorithms for the Steiner tree prob-
lems, J. Combin. Optim., 1 (1997), pp. 47–65.

[11] Z. A. Melzak, Companion to Concrete Mathematics, Vol. II, John Wiley, New York, 1976.
[12] J. L. Rubinstein and J. F. Weng, Compression theorems and Steiner ratios on spheres, J.

Combin. Optim., 1 (1997), pp. 67–78.
[13] D. Trietsch and F. K. Hwang, An improved algorithm for Steiner trees, SIAM J. Appl.

Math., 50 (1990), pp. 244–263.
[14] A. Underwood, A modified Melzak procedure for computing node-weighted Steiner trees, Net-

works, 27 (1996), pp. 73–79.
[15] J. F. Weng, Generalized Steiner problem and hexagonal coordinate, Acta Math. Appl. Sinica,

8 (1985), pp. 383–397 (in Chinese).
[16] G. Xue and Y. Ye, An efficient algorithm for minimizing a sum of Euclidean norms with

applications, SIAM J. Optim., 7 (1997), pp. 1017–1036.
[17] G. L. Xue and D.-Z. Du, An O(n logn) average time algorithm for computing the shortest

network under a given topology, Algorithmica, to appear.
[18] G. L. Xue, D.-Z. Du, and F. K. Hwang, Faster algorithm for shortest network under given

topology, in Topics in Semidefinite and Interior-Point Methods, Fields Inst. Commun. 18,
AMS, Providence, RI, 1998, pp. 137–152.

BOUNDED STABLE SETS: POLYTOPES AND COLORINGS∗

JEANNETTE JANSSEN† AND KYRIAKOS KILAKOS‡

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 2, pp. 262–275

Abstract. A k-stable set in a graph is a stable set of size at most k. We study the convex
hull of the k-stable sets of a graph, aiming for a complete inequality description. We also consider
colorings of weighted graphs by k-stable sets, aiming for a relation between the values of an optimal
coloring and an optimal fractional coloring. Results for k = 2 and k = 3 as well as a number of
general conjectures linking fractional and integral colorings are given.

Key words. fractional graph coloring, bounded coloring, stable set polytope

AMS subject classifications. 05C15, 90C27

PII. S089548019630978X

1. The results. Let G = (V,E) be a graph. A stable set of G is a set of mutually
nonadjacent nodes of G. The stable set polytope of G is the convex hull of incidence
vectors of its stable sets.

Let c ∈ Z
V (G)
+ . An (integral) coloring of G with respect to c, or simply a coloring

of (G, c), is an assignment φ of colors to the nodes of G such that
• φ(v) is a set of c(v) colors, for all v ∈ V (G), and
• φ(v) ∩ φ(u) = ∅ for any two adjacent nodes v and u of G.

Let J be the family of stable sets of G. In terms of vectors, a coloring of (G, c) is
any element of

PI(G, c) =

{
y ∈ ZJ+ :

∑
v∈S∈J

yS = c(v), v ∈ V (G)

}
.

A fractional coloring of (G, c) is any element of

P (G, c) =

{
y ∈ QJ+ :

∑
v∈S∈J

yS = c(v), v ∈ V (G)

}
.

For any given coloring y, fractional or integral, those stable sets S for which
yS > 0 are its color classes. The interest is in finding colorings of (G, c) that use as
few colors as possible. The number of colors used by any optimal (integral) coloring
of (G, c), known as the chromatic number of (G, c), is denoted by χ(G, c). In other
words,

χ(G, c) = min{1 · y : y ∈ PI(G, c)},
where 1 is the all-one row vector. The fractional chromatic number of (G, c), denoted
η(G, c), is the number

η(G, c) = min{1 · y : y ∈ P (G, c)}.
∗Received by the editors September 25, 1996; accepted for publication (in revised form) December

4, 1998; published electronically April 29, 1999.
http://www.siam.org/journals/sidma/12-2/30978.html
†Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, B3H 3J5

Canada (janssen@mscs.dal.ca).
‡Centre of Discrete and Applicable Mathematics, London School of Economics, Houghton Street,

London WC2A 2AE, England (kyri@cdam.lse.ac.uk).

262

BOUNDED STABLE SETS 263

A k-stable set of G is a stable set of cardinality at most k. By letting J be the
family of k-stable sets of G, we have the analogous notion of a coloring (fractional
or integral) by k-stable sets. The corresponding values of optimal colorings will be
denoted by χk(G, c) and ηk(G, c). The convex hull of incidence vectors of k-stable
sets of G will be referred to as the k-stable set polytope of G. This is a polytope
of full dimension in QV (G), since all unit vectors and the zero vector correspond to
k-stable sets of G.

There are two related problems we deal with in this paper. The first involves
“slicing off” the stable set polytope of a graph G with the inequality

∑
v∈V (G) x(v) ≤

k, for some positive integer k, and studying the remaining polytope. The integral
points of this polytope correspond to the k-stable sets of G, and we are interested in
the inequalities that define their convex hull.

For k = 2 we give a complete inequality description of the k-stable set polytope
of any graph. For k = 3 we give an analogous result for the k-stable set polytope of
bipartite graphs. In either case, the system described is totally dual integral and each
inequality is facet defining.

The second problem involves the study, for any c ∈ Z
V (G)
+ , of the relationship

between integral and fractional colorings by k-stable sets. A description of the k-
stable set polytope of a graph G gives a formula for ηk(G, c), the value of an optimal

fractional coloring of (G, c) by k-stable sets for any c ∈ Z
V (G)
+ . This formula can be

used as a starting point for studying (integral) colorings of (G, c) by k-stable sets. In
particular, when χk(G, c) = dηk(G, c)e, the corresponding polytope yields necessary
and sufficient conditions on the colorability of G by k-stable sets. In general, it is
desirable to obtain upper bounds on χk(G, c) expressed as functions of ηk(G, c).

For k = 2 we show that χk(G, c) ≤ ηk(G, c) + η(G)
2 , where η(G) = η(G,1). For

k = 3 we show that χk(G, c) ≤ dηk(G, c)e + 1 when G is bipartite. In terms of
polytopes, and in view of the results of Baum and Trotter, Jr. [2], the first inequality
shows that for every vector x in the 2-stable set polytope of G and every p ∈ Z+, px

can be written as the sum of dηk(G, c) + η(H)
2 e incidence vectors of 2-stable sets. An

analogous statement holds also for the second result.

Colorings by k-stable sets, or, as they are better known, k-bounded node colorings,
arise in chromatic scheduling problems when the number of rooms, machines, or other
resources is limited (see [11]). Chen and Lih [4] have established a formula for the k-
bounded chromatic number of an unweighted tree. Lower bounds, upper bounds, and
complexity results on k-bounded colorings are given by Hansen, Hertz, and Kuplinsky
[7].

For colorings in general, there is no relationship between the fractional and in-
tegral chromatic number of a graph. In [12] a family of graphs G is given such that
η(G)→ 2, whereas χ(G)→∞ as |V (G)| → ∞. However, for special classes of graphs,
relationships between fractional and integral colorings have been established even for
weighted graphs (see [10]). Colorings of line graphs (or edge colorings) in particular
have attracted great attention. Several high profile conjectures attempt to link frac-
tional and integral colorings in these graphs, but so far the results have been limited.
We refer the reader to [9] and [8] for further explanations on the problems involved.

The stable set polytope of graphs G with stability number at most 2 has been
described by Cook [5]. A proof of this result is also given in [15]. The stable set
polytope in general has been studied extensively. The reader is referred to [16] and
[1], where links to the corresponding literature can be found.

264 JEANNETTE JANSSEN AND KYRIAKOS KILAKOS

2. Definitions and preliminaries. The graph-theoretical and polyhedral con-
cepts not defined here can be found in Bondy and Murty [3] and Schrijver [14], re-
spectively.

A graph G is an ordered pair (V,E), consisting of a node set V (G) and an edge
set E(G). The edges of G form a subset of {{u, v} : u, v ∈ V (G), u 6= v}. An
edge {u, v} is simply denoted by uv. The complement of G, denoted Ḡ, is the graph
(V (G), {uv : u, v ∈ V (G), uv 6∈ E(G)}). A matching of G is a set of independent
edges. A clique of G is a subset of mutually adjacent nodes of G. For v ∈ V (G),
N(v) denotes the set {v ∈ V (G) : uv ∈ E(G)}, and for T ⊆ V (G), N(T) denotes the
set
⋃
v∈T N(v)\T . For a subset F of V (G), the subgraph of G induced by F , denoted

G[F], is the graph (F, {uv ∈ E(G) : u, v ∈ F}). We will use the following well-known
result.

Theorem 2.1 (Hall’s theorem). If G is a bipartite graph with partition (A,B),
then G has a matching of cardinality |A| if and only if for every T ⊆ A, |N(T)| ≥ |T |.

Let c ∈ Z
V (G)
+ and v ∈ V (G). We denote by α(G, c) the number max{c(S) :

S is a stable set of G}, and α(G) (= α(G,1)) is the stability number of G. Any stable
set that yields this maximum is referred to as a maximum weight stable set of (G, c).
We use the analogous notion for k-stable sets and the corresponding maximum is
denoted by αk(G, c). Denote by δ(v) the edges of G that contain v. An edge covering
(respectively, a b-matching) of (G, c) is collection of edges F such that for every
v ∈ V (G), |δ(v) ∩ F | ≥ c(v) (respectively, |δ(v) ∩ F | ≤ c(v)). In terms of vectors, an
edge covering of (G, c) is any point in

{x ∈ Z
E(G)
+ : x(δ(v)) ≥ c(v), v ∈ V (G)},

and a b-matching of (G, c) is any point in

{x ∈ Z
E(G)
+ : x(δ(v)) ≤ c(v), v ∈ V (G)}.

In both case, by letting x ∈ Q
E(G)
+ we obtain the corresponding notions of frac-

tional edge coverings and fractional b-matchings of (G, c).
Let c be a vector indexed by V (G), F a subset of V (G). The restriction of c to

F is the |F |-dimensional vector whose components correspond to the components of
c indexed by F . We denote by c(v), v ∈ V (G), the component of c indexed by v and
by c(F) the number

∑
v∈F c(v). The incidence vector of F , denoted χF , is a vector

indexed by V (G), with a component equal to one if the corresponding node belongs
to F and is equal to zero otherwise. The support of c are those nodes of G that index
nonzero components of c.

To avoid confusion, we digress from the above notation when a vector y is indexed
by a family S of subsets of V (G). In this case, we use yS to denote the component of
y indexed by S ∈ S.

An inequality c · x ≤ δ is implied by a system of linear inequalities Ax ≤ b if
every x that satisfies the system also satisfies c · x ≤ δ.

Theorem 2.2 (Farkas’s lemma). Suppose that the inequality system Ax ≤ b,
x ≥ 0 has a solution. Then c · x ≤ δ is implied by this system if and only if there
exists a row vector λ ≥ 0 such that λA ≥ c and λ · b ≤ δ.

In terms of k-stable sets, Farkas’s lemma tells us that Ax ≤ b, x ≥ 0 defines the

k-stable set polytope of a graph G if and only if for every c ∈ Z
V (G)
+ , c · x ≤ αk(G, c)

is implied by Ax ≤ b. When λ in the above theorem can be chosen to be integral,
the system Ax ≤ b, x ≥ 0 is said to be totally dual integral.

BOUNDED STABLE SETS 265

Given a polytope Q, an inequality a · x ≤ β is facet defining if it is valid for all
points of Q and the set {x ∈ Q : a · x = β} is a facet of Q.

Padberg [13] has introduced a procedure, called sequential lifting, which can be
used to build facet defining inequalities for the k-stable set polytope of a graph G
from those for induced subgraphs of G. Let X ⊆ V (G), and let a · x ≤ β be a facet
defining inequality for the k-stable set of G[X]. Let v be any node of V (G)\X, and
let π = β−max{a ·χS : S is a (k − 1)-stable set of G[X\N(v)]}. Then the inequality
πx(v) + a · x ≤ β is facet defining for the k-stable set polytope of G[X ∪ {v}]. A
lift of a · x ≤ β (in G) is any inequality obtained by a sequential application of this
procedure.

3. Polytopes. In this section we describe the 2-stable set polytope of graphs in
general and the 3-stable set of bipartite graphs. We begin with 2-stable sets.

The following theorem includes results of Cook and Shepherd and its proof can
be found in [15]. For a subset K of V (G), we denote by Ñ(K) the set

⋂
v∈K N(v)\K.

Theorem 3.1. For any graph G with α(G) ≤ 2, the following system describes
the stable set polytope of G and is totally dual integral, and each inequality is facet
defining.

(0) x(v) ≥ 0 for all v ∈ V (G).
(1) x(K) ≤ 1 for all maximal cliques K.
(2) 2x(K) + x(Ñ(K)) ≤ 2 for each clique K such that none of the connected

components of the complement of G[Ñ(K)] is a bipartite graph.
(3) x(V (G)) ≤ 2 if no connected component of the complement of G is bipartite.
Given the above theorem, it is rather easy to describe the 2-stable set of any

graph.
Definition 3.2. For a graph G, the system A2x ≤ b consists of the inequalities

(1)–(3) of Theorem 3.1 as well as the following:
(4) x(A) + 2x(K) + x(Ñ(K)\A) ≤ 2, for each set A such that every maximal

stable set in G[A] has size at least 2 and G[A] has a stable set of size at least
3, and for every clique K maximal in Ñ(A).

Note that all inequalities of type (4) can be obtained from the inequality x(S) ≤ 2,
where S is a stable set of size 3, by sequential lifting. If S = {v1, v2, v3}, the vectors
χ{v1,v2}, χ{v1,v3}, χ{v2,v3} are affinely independent, and they satisfy x(S) ≤ 2 with
equality. So the inequality x(S) ≤ 2 is facet defining for G[S]. When we lift this
inequality sequentially to all vertices of a set A that has the property that all stable
sets of G[A] have size at least 2, then all vertices of A will have coefficient 1, and we
obtain the inequality x(A) ≤ 2, facet defining for G[A]. If we then lift this inequality
to a vertex v in Ñ(A), this vertex will get coefficient 2, since the maximal stable set in
G[A\N(v)] is of size 0. The same is true for all vertices in a maximal clique K in Ñ(A)
that includes v. So we obtain the inequality x(A) + 2x(K) ≤ 2. When we lift this
inequality to the rest of the graph, any vertex v will get coefficient 0 if K 6⊆ N(v) and
coefficient 1 otherwise. So we obtain the inequality x(A) + 2x(K) + x(Ñ(K)\A) ≤ 2,
an inequality of type (4).

Note also that the inequality x(V (G)) ≤ 2 is implied by the inequality system
whenever α(G) ≥ 3. If no connected component of the complement of G is bipartite,
then this inequality is included in type (3). Suppose then that a connected component
of the complement of G is bipartite. This means that G contains two cliques, K1 and
K2, such that Ñ(K1) = Ñ(K2) = V (G)\(K1 ∪K2). If V (G)\(K1 ∪K2) contains a
stable set of size at least 3, then the inequality x(V) ≤ 2 is implied by two inequalities
of type (4), one with K1 ⊆ K, one with K2 ⊆ K, and both with A ⊆ V (G)\(K1∪K2).

266 JEANNETTE JANSSEN AND KYRIAKOS KILAKOS

If V (G)\(K1 ∪K2) does not contain a stable set of size at least 3, then α(G) = 2.

Theorem 3.3. For a graph G, the system A2x ≤ b, x ≥ 0 describes the 2-stable
set polytope of G and is totally dual integral, and each of the inequalities is facet
defining.

Proof. In view of Theorem 3.1, for each inequality of types (1)–(3) with support
X, there exists a collection of |X| affinely independent stable sets which satisfy it
with equality and which are subsets of X of size at most 2. Therefore, each of
these inequalities is facet defining for the 2-stable set polytope of G[X]. When the
inequalities are lifted to the rest of V (G), they remain facet defining.

For the inequalities of type (4), it is already noted that they can be obtained
by lifting the facet defining inequality x(S) ≤ 3, where S is a stable set of size 3.
Therefore, all inequalities of the system A2x ≤ b are facet defining.

For the rest of the proof, let c be a nonnegative integral vector indexed by the
nodes of G. We show that there exists an integral, nonnegative row vector λ indexed
by the rows of A2 such that λA ≥ c and λ · b ≤ α2(G, c).

We apply induction on α2(G, c). If α2(G, c) = 0, then c = 0, because every
vertex is by itself a stable set. So we can choose λ = 0. Next, we assume that the
theorem holds for any c′ with α2(G, c′) < α2(G, c). Furthermore, we may assume
without loss of generality that c(v) > 0 for all v ∈ V (G), since nodes with zero weight
can be deleted from the graph. (This is because any of the above inequalities can be
lifted to an inequality in G that contains v and is of one of the specified types.)

Note that it suffices to find an inequality a · x ≤ β of the system A2x ≤ b such
that α2(G, c − a) ≤ α2(G, c) − β and c − a ≥ 0. Then, by induction, there exists
a nonnegative integral vector λ′ such that λ′A2 ≥ c − a and λ′ · b ≤ α2(G, c − a).
Let λ be obtained from λ′ by simply increasing the coordinate of λ′ indexed by this
inequality by 1. This yields λA2 ≥ c and λ · b ≤ α2(G, c− a) + β ≤ α2(G, c).

If α(G) ≤ 2, then we are done by Theorem 3.1. Thus we assume that α(G) ≥ 3.
If every maximum weight 2-stable set has cardinality 2, then let a · x ≤ β be the
inequality x(V (G)) ≤ 2, if either this inequality or the weighted sum of the two
inequalities of type (4) that implies the inequality x(V (G)) ≤ 2 are included in the
system (see the note following the statement of the Theorem). In this case it is
immediate that α2(G, c − a) ≤ α2(G, c) − β. Otherwise, there exists a node v such
that c(v) = α2(G, c) (and α2(G, c) ≥ 2), and thus N(v) = V (G)\{v}. Let K be
a clique of G that contains v such that Ñ(K) = V (G)\K and K is maximal with
this property. Let a · x ≤ β be the inequality 2x(K) + x(Ñ(K)) ≤ 2. Because of
the maximality condition on K, all stable sets in G[V (G)\K] have size at least 2, so
this inequality is of type (4), with A = V (G)\K. Note that every maximum weight
2-stable set of G consists of either an element of K or two elements of Ñ(K). Thus,
since c(v) ≥ 2 and because K must include all vertices v such that c(v) = α2(G, c),
α2(G, c− a) ≤ α2(G, c)− β. The proof is complete.

Before we can adequately describe the facet defining inequalities of the 3-stable
set polytope of bipartite graphs, we need a few definitions.

Definition 3.4. A 2-star is a graph whose node set can be partitioned into
two sets T = {v1, v2} and B such that T is a stable set and B = N(T). With
any given 2-star we identify the sets L = N(v1)\N(v2), M = N(v1) ∩ N(v2), and
R = N(v2)\N(v1). A 2-star is full if |N(v1)|, |N(v2)| ≥ 3 and |L|, |R| ≥ 2.

Definition 3.5. For a bipartite graph G, the inequality system A3x ≤ b consists
of the following inequalities:

(1) x(K) ≤ 1 for all maximal cliques K of G (i.e., edges and isolated nodes);

BOUNDED STABLE SETS 267

(2) x(V (G)) ≤ 3 if both parts of a bipartition of G have at least four elements;
(3) the lift of x(S) ≤ 3 for each stable set S of size at least 4;
(4) 2x(T) + 2x(u) + x(B\{u}) ≤ 4 for each full 2-star with M 6= ∅ and for each

node u ∈M ;
(5) 4x(v1) + 2x(v2) + 2x(N(v1)) + x(R) ≤ 6 for each full 2-star with |R| ≥ 3 and
|N(v1)| ≥ 4 if M 6= ∅ and each ordering (v1, v2) of T .

When the inequality x(S) ≤ 3, where S is a stable set of size at least 4, is lifted to
the rest of the graph, and a vertex v is encountered that is adjacent to all previously
lifted vertices, then v will get coefficient 3 in the inequality. All other vertices will
then have coefficient 1 if they are adjacent to v, and 0 if this is not the case. If a
vertex v is adjacent to all previously lifted vertices except one single vertex or two
adjacent vertices, then v will get coefficient 2. All other vertices will get coefficient 1
if they are adjacent to v, or 0 if this is not the case. Otherwise, the inequality will be
lifted to x(V (G)) ≤ 3. So the type (3) inequalities are of the following form:

(3a) 3x(v) + x(N(v)) ≤ 3 for all v ∈ V (G) with |N(v)| ≥ 4;
(3b) 2x(v) + x(N(v)) + x(K) ≤ 3 for all v ∈ V (G) and each clique K with no

element in common with N(v) ∪ {v};
(3c) x(V (G)) ≤ 3 if G cannot be obtained from Km,n, m ≥ 1, n ≥ 4, by deleting

a (possibly empty) matching.

Theorem 3.6. For a bipartite graph G, the normalized version of the system
A3x ≤ b (i.e., where all inequalities have been divided by the right-hand side), x ≥ 0
is totally dual integral and describes the 3-stable set polytope of G, and each inequality
is facet defining.

Proof. We begin by showing that each of the inequalities given is facet defining.
This is done by exhibiting, in each case, the appropriate sets of affinely independent
vectors that satisfy the given inequality with equality. For convenience, we will say
that we find affinely independent stable sets, instead of affinely independent incidence
vectors of stable sets. The following fact can be proved by using the notion of lifting
as in the proof of Theorem 3.3.

Step 3.6.1. If S, |S| ≥ 4 (respectively, |S| ≥ 3), is a stable set of G, then it has
|S| affinely independent subsets of size 3 (respectively, 2).

The inequalities x ≥ 0 and those of type (1) are well known to be facet defining.
From (3.6.1) and the lifting procedure, it is immediate that the inequalities of type (3)
are facet defining. The same lemma may also be applied to each part of a bipartition
of G and thus the inequality of type (2) is facet defining as well. Consider now an
inequality of type (4). By (3.6.1), B\{u} has |B| − 1 affinely independent stable sets
of two nodes and thus, by including u to all these sets, B has |B|−1 such sets of three
nodes. Adding also the sets {v1, v2}, {v1, u3, u4}, and {v2, u1, u2}, where u1, u2 ∈ L
and u3, u4 ∈ R, we obtain a collection of |B| + |T | affinely independent 3-stable sets
that satisfy the given inequality with equality.

Finally, consider an inequality of type (5), and assume that |N(v1)| ≥ 4. N(v1)
contains |N(v1)| affinely independent stable sets of size 3. Also, R has |R| affinely
independent stable sets of size 2. By including v1 to these sets, we have that R ∪
{v1} has |R| affinely independent stable sets of size 3. Adding the sets {v1, v2} and
{v2, u1, u2}, where u1, u2 ∈ L, we obtain the required collection of affinely independent
stable sets. When |N(v1)| = 3 instead of N(v1), we use L∪{v2} to obtain |L| affinely
independent 3-stable sets.

We continue with the rest of the proof. Let c be a nonnegative integral vector
indexed by the nodes of G. We show that there exists an integral, nonnegative row

268 JEANNETTE JANSSEN AND KYRIAKOS KILAKOS

vector λ indexed by the rows of A3 such that λA′3 ≥ c and λ · 1 ≤ α3(G, c), where
A′3x ≤ 1 is the normalized version of the system A3x ≤ b.

The proof is by induction on α3(G, c). If α3(G, c) = 0, then c = 0, so we can take
λ = 0. Next, we assume that the lemma holds for any c′ with α3(G, c′) < α3(G, c).
Furthermore, we may assume without loss of generality that c(v) > 0 for all v ∈ V (G).
(This is because any of the above inequalities for G − v, v ∈ V (G), can be lifted
to an inequality of G that contains v and is of one of the specified types.) As in
the proof of Theorem 3.3, it suffices to find an inequality a · x ≤ β which is the
sum (with the appropriate coefficients) of inequalities of A3x ≤ b and such that
α3(G, c− a) ≤ α3(G, c)− β and c− a ≥ 0.

If every stable set of G is of size at most 3, then the stable set and 3-stable set
polytopes ofG coincide, and it is well known that the former is given by the inequalities
of types (0) and (1). Otherwise, if every maximum weight 3-stable set of G is of size
exactly 3 and for all v ∈ V (G), c(v) < α3(G, c) − 1, then the required inequality is
x(V (G)) ≤ 3. Clearly, α3(G, c−χV (G)) = α3(G, c)−3. If the inequality x(V (G)) ≤ 3
is not of type (2) or (3c), then by the definition of A3x ≤ b, each bipartition of G has
a part with less than four nodes, and G can be obtained from Km,n, m ≥ 1, n ≥ 4 by
deleting a matching. If G can be obtained from K3,n, n ≥ 4, by deleting a matching,
then x(V (G)) ≤ 3 is the sum (with coefficients 1

3) of three inequalities of type (3b). If
G can be obtained from K2,n or K1,n by deleting a matching, then x(V (G) is implied
by an inequality of type (3b) or (3a).

Thus we may assume that G has a maximal 3-stable set T of size 1 or 2 and if
|T | = 2, then T is of maximum weight. Let B = N(T). By increasing the weight
of components of c that correspond to vertices that are not part of maximum weight
stable sets, if necessary, we may thus assume the following.

Step 3.6.2. Every node of G belongs to a maximum weight 3-stable set of (G, c).

We now distinguish two cases.

Case 1. G is not a full 2-star.

If T has only one element v, then every 3-stable set of maximum weight consists of
either v or three nodes in N(v). Thus 3x(v) + x(N(v)) ≤ 3 is the required inequality,
since by (3.6.2), c(v) = α3(G, c) ≥ 3.

Thus we may assume that G is a 2-star, although not a full one, and since α3(G) >
3, |B| ≥ 4. Let v1 and v2 be the elements of T , ordered so that |N(v2)| ≤ |N(v1)|. It
can be argued from the fact that c(v1)+c(v2) = α3(G, c) that c(v1) ≥ 2. Let a ·x ≤ β.
be the inequality 2x(v1) +x(N(v1)) +x(K) ≤ 3 (of type (3b)), where K is a maximal
clique in {v2} ∪R. Every maximum weight 3-stable set of (G, c) is also of maximum
weight in (G,a) and c− a ≥ 0. Thus α3(G, c− a) ≤ α3(G, c)− β, as required.

Case 2. G is a full 2-star.

We adopt the notation introduced in Definition 3.4. To proceed, we need to
identify certain nodes of G and introduce a simple lemma. Let t1 and t2 be the
weights of v1 and v2, and let m1,m2, . . . be the weights of the nodes of M , `1, `2, . . .
the weights of the nodes of L, and r1, r2, . . . the weights of the nodes of R, all in
decreasing order.

Step 3.6.3. There is no 3-stable set S of maximum weight such that S ∩ L 6= ∅,
S ∩R 6= ∅, and S ∩M = ∅.

This can be deduced from the fact that r1 + r2 ≤ t2 and `1 + `2 ≤ t1 (because
t1 + t2 = α3(G, c)), and thus both `1 + r1 + r2 and `1 + `2 + r1 are less than t1 + t2.

We consider three subcases.

The simplest case arises when no maximum weight 3-stable set of G is a subset

BOUNDED STABLE SETS 269

of B. Let a · x ≤ β denote the inequality 2x(T) + x(B) ≤ 4. Since t1 + t2 = α2(G, c),
t1 ≥ `1 + `2 ≥ 2, t2 ≥ r1 + r2 ≥ 2 and thus c − a ≥ 0. In addition, α3(G, c − a) ≤
α3(G, c) − β. Now if M 6= ∅, then a · x ≤ β is implied by an inequality of type (4);
if M = ∅, then it is implied by the two inequalities of type (5) (with coefficients 1

3)
that correspond to the two orderings of T .

Next, suppose there is a 3-stable set of maximum weight that contains nodes from
each of L, R, and M—in other words, r1 + `1 +m1 = t1 + t2. Our analysis depends
on whether or not |M | ≥ 2 and m1 = m2.

If |M | ≥ 2 and m1 = m2, then let a · x ≤ β be the inequality 3x(T) + x(B) +
x({u`, ur}), where u` and ur are the nodes of weight `1 and r1, respectively. Now by
(3.6.3), r1 + `1 + l2 < α3(G, c) = `1 +m1 + r1, so `2 < m1, and thus `1 +m1 +m2 >
`1 + `2 +m1. By symmetry, r1 +m1 +m2 > r1 + r2 +m2. Therefore, u` and ur are
the only nodes from L and R, respectively, that are contained in maximum weight
stable sets. Also, since `1 > `2 ≥ 1 and r1 > r2 ≥ 1, `1, r1 ≥ 2, and since `1 + `2 ≤ t1
and r1 + r2 ≤ t2, we have that t1, t2 ≥ 3. It follows that a · x ≤ b has the property
that all the maximum weight 3-stable sets of (G, c) are also maximum weight stable
sets of (G,a), and thus α3(G(c − a)) ≤ α3(G, c) − β, since c − a ≥ 0. In addition,
a · x ≤ β is the sum of two inequalities of type (3b).

If |M | = 1 or m1 > m2, then all maximum weight 3-stable sets in B have to
include the node u ∈ M of weight m1. Also, since `1 + `2 ≤ t2, r1 + r2 ≤ t1,
and because, by (3.6.3), r1 + r2 + `1 ≤ α3(G, c) = r1 + m1 + `1 (so m1 > r2), we
have that t1, t2, m1 ≥ 2. Thus by taking a · x ≤ β to be the type (4) inequality
2x(T) + 2x(u) + x(B\{u}) ≤ 4, we have c− a ≥ 0 and α3(G, c− a) ≤ α3(G, c)− β.

To conclude, we assume that every maximum weight 3-stable set that is contained
in B is also contained in, say, N(v1). The inequality a · x ≤ β of the form 4x(v1) +
2x(v2) + 2x(N(v1)) + x(R) ≤ 6 has the property that every maximum weight stable
set of (G, c) is also a maximum weight stable set of (G,a). If |R| = 2, this inequality
is the sum of two inequalities of type (3b); if M 6= ∅ and |N(v1)| = 3, it is the sum of
two inequalities of type (1) and one inequality of type (4); otherwise it is an inequality
of type (5). In either case we are done, provided that t1 ≥ 4, t2 ≥ 2, and c(u) ≥ 2 for
all u ∈ N(v1).

Since t1 + t2 = α3(G, c), t1 + t2 ≥ t1 + r1 + r2 and thus t2 ≥ 2. Next we show
that c(u) ≥ 2 for all u ∈ N(v1). If u ∈ M , then by (3.6.2), there is a 3-stable
set S = {u,w1, w2} of maximum weight that contains u. Since u ∈ M , S ⊆ B.
By the assumption that every maximum weight stable set is contained in N(v1),
c(w1) + c(w2) + r1 < α3(G, c) = c(u) + c(w1) + c(w2). Thus c(u) ≥ 2. Now if u ∈ L
we may assume that c(u) is minimal. Suppose that every maximum weight stable
set that contains u also contains v2. (If this is not so, we are done by the same
reasoning as for u ∈ M .) Then c(u) ≥ `2, and since c(u) is minimal, c(u) = `2 and
`1+2`2 < α3(G, c). By assumption, there is a maximum weight stable set S′ contained
in B, but by the above, it does not contain a node with weight `2. Thus |M | ≥ 2 and
m1+m2+`1 ≤ α3(G, c) = `1+`2+t2. But, by (3.6.2), r1+r2 = t2 ≥ m1+m2−`2 and
thus `2 ≥ m1+m2−r1−r2. But we saw thatmi > r1 (somi−r1 ≥ 1) for all i, so `2 ≥ 2.
Thus for all u ∈ N(v1), c(u) ≥ 2. Finally, since t1+t2 = α3(G, c) ≥ t2+`1+`2 ≥ t2+4,
we have t1 ≥ 4, as required.

Parenthetically, we remark that the ideas behind the inequalities of types (4) and
(5) of Definition 3.5 can be extended to construct facet defining inequalities for the
stable set polytopes of graphs. Let H be a graph such that x(V (H)) ≤ α(H) is a facet
defining inequality for the stable set polytope of H and H has two stable sets S1, S2

270 JEANNETTE JANSSEN AND KYRIAKOS KILAKOS

with |S1| = |S2| = α(H) and S1∩S2 = ∅. Let G be a graph obtained from H by adding
three new nodes v1, v2, u and for i = 1, 2 the edges {viu} ∪ {viv : v ∈ V (H)\Si}. Let
α = α(G). Then the inequality

(α− 1)x({v1, v2, u}) + x(V (H)) ≤ 2α− 2

is facet defining for the stable set polytope of G. Alternatively, let H1 and H2 be
two graphs such that the inequalities x(V (H1)) ≤ α(H1) and x(V (H2)) ≤ α(H1)
are facet defining for the stable set polytope of H1 and H2, respectively. Let G
be obtained from H1 and H2 by adding two new nodes v1 and v2 and the edges
∪2
i=1{viv : v ∈ V (Hi)} ∪ {vw : v ∈ V (H1), w ∈ V (H2)}. Let α = α(G). Then the

inequality

(α(α− 2) + 1)x(v1) + (α− 1)x(v2) + (α− 1)x(V (H1)) + x(V (H2)) ≤ α(α− 1)

is facet defining for the stable set polytope of G. The proof in both cases is analogous
to the one given in Theorem 3.6. (Examples illustrating both constructions are shown
in Figure 3.1; the coefficients not shown are equal to 1 and the right-hand sides are,
respectively, 6 and 12; in both cases α = 4.) We note that the above constructions
can be generalized to obtain many families of facet defining inequalities for the stable
set polytopes of graphs, but this falls beyond the scope of the present paper.

(a)

3 3

3

(b)

3

3

3

3

3

3

3

9 3

Fig. 3.1. An illustration of facet defining inequalities for the stable set polytope.

4. Colorings. We will now use the results of the previous section to obtain
upper bounds on the value of integral colorings of the corresponding cases involved.

Note first that a description of the k-stable set polytope of a graph G provides
necessary and sufficient conditions on the fractional colorability of (G, c) by k-stable

sets, where c is any vector in Z
V (G)
+ . Indeed, by definition, y is a fractional coloring

of (G, c) of value r if and only if 1
rc belongs to the k-stable set of G, i.e., if and only

if Akc ≤ rb, where Akx ≤ b, x ≥ 0 is an inequality description of the k-stable set of
G. Thus,

ηk(G, c) = max{ 1
β (a · c) : a · x ≤ β is an inequality of Akx ≤ b}.

We will use this min-max equality throughout. To begin, we introduce a simple lemma
that explains how color classes from optimal fractional colorings intersect with the
support of any given valid inequality of the k-stable set polytope of a graph.

BOUNDED STABLE SETS 271

Lemma 4.1. Let G be a graph and c ∈ Z
V (G)
+ . Let a · x ≤ β, β 6= 0, (a, β)

integral and nonnegative, be a valid inequality for the k-stable set polytope of G. If
a · c = (ηk(G, c)− t)β, then in any optimal fractional coloring y of (G, c) by k-stable
sets,

∑
{S∈S:a(S)<β} yS ≤ tβ.

Proof. Let S0 (respectively, S1) consist of those k-stable sets S ∈ S such that
a(S) = β (respectively, a(S) ≤ β− 1). Let p0 =

∑
S∈S0

yS and p1 =
∑
S∈S1

yS . Since∑
S∈S0

ySχ
S +

∑
S∈S1

ySχ
S ≥ c,

β(ηk(G, c)− t) = a · c
≤ a · (∑S∈S0

ySχ
S +

∑
S∈S1

ySχ
S)

=
∑
S∈S0

ySa(S) +
∑
S∈S1

ySa(S)

≤ p0β + p1(β − 1)

= ηk(G, c)− p1,

as required.
Next we show that an upper bound on colorings by 2-stable sets can be obtained

as the solution of two linear programs.
Theorem 4.2. For any graph G and any (strictly) positive vector c ∈ ZV (G),

χ2(G, c) ≤ η2(G, c) + η(G)
2 .

Proof. We proceed by induction on η2(G, c). That is, we assume that the theorem

holds for any graph G′ and c′ ∈ Z
V (G′)
+ with η2(G′, c′) ≤ η2(G, c) − 1. In the base

case, G is the empty graph and the theorem holds trivially.
If the only inequality a ·x ≤ β of A2x ≤ b for which a · c > (η2(G, c)− 1)β is the

inequality x(V (G)) ≤ 2 (of type (3)), then let S be any 2-stable set of G of size 2. Let
d = c− χS . Then A2d ≤ (η2(G, c)− 1)b, and consequently η2(G,d) ≤ η2(G, c)− 1.
Let G′ = G − {v ∈ V (G) : d(v) = 0} and let c′ be the restriction of d to V (G′′).
By induction, χ2(G′, c′) ≤ η2(G′, c′) + η(G)

2 . Since any coloring of (G, c′) can be
augmented with S to form a coloring of (G, c),

χ2(G, c) ≤ η2(G′, c′) + η(G)
2 + 1 ≤ η2(G, c) + η(G)

2 ,

as required.
Thus we assume that there is an inequality a · x ≤ β of A2x ≤ b that is not of

type (3) such that a · c > η2(G, c) − 1. Choose this inequality so that for any other
inequality a′ · x ≤ β′ that is not of type (3), 1

β (a · c) ≥ 1
β′ (a

′ · c). Let K be the clique

involved in the definition of the support of a. If the support of a is K, let G′ be the
empty graph and G′′ be G itself. Otherwise, let G′ be the subgraph G[Ñ(K)] of G
and G′′ the subgraph G− Ñ(K) of G. Let c′ be the restriction of c to V (G′), and let
c′′ be the restriction of c to V (G′′). We now use induction to color (G′, c′), whereas
we color (G′′, c′′) explicitly.

Consider (G′, c′) and assume that G′ is nonempty. By definition of the support of
a, every stable set in the graph G[V (G′)∪K] that contains an element of K is of size
1. Also, by the choice of a ·x ≤ β, G[V (G′)∪K] with c restricted to V (G′)∪K has a
fractional coloring by 2-stable sets of value 1

β (a ·c). If we remove from this coloring all
stable sets of size 1 that consist of a node of K, we are left with a fractional coloring of
G′ of value 1

β (a ·c)−c(K). Thus η2(G′, c′) ≤ 1
β (a ·c)−c(K). It follows, by induction,

that

χ2(G′, c′) ≤ η2(G′, c′) + η(G′

2 ≤ 1
β (a · c)− c(K) + η(G′)

2 .

272 JEANNETTE JANSSEN AND KYRIAKOS KILAKOS

Consider (G′′, c′′). Let P be the node set of G− (V (G′)∪K). Let t = η2(G, c)−
1
β (a · c). Note that t = 0 or t = 1

2 . We show that χ2(G′′, c′′) ≤ c(K) + 2t.

We construct a bipartite graph H with node set A ∪ B as follows. For each
v ∈ K (respectively, v ∈ P), let Av (respectively, Bv) be a set of c(v) nodes. Let
A = ∪v∈KAv, B = ∪v∈PBv. To define the edges of H, consider an optimal fractional
coloring of (G, c) by 2-stable sets and join all elements of Au to all elements of Bv if
and only if there is a color class that consists of u and v. If |A| > |B|, we expand B
with |A| − |B| additional nodes, each joined to all nodes of A. Note that the way H
is constructed guarantees that |N(T)| ≥ |T | for each T ⊆ A. Thus, by Theorem 2.1,
H has a matching of size A. Also, at most 2t nodes of B are not contained in this
matching. This is because, by Lemma 4.1, there are at most weight 2t color classes S
of the fractional coloring that do not contain an element of K and S∩ (V (G)\P) ≤ 1.
Now in an obvious manner, this matching and the node not saturated by it, if it
exists, correspond to a coloring of (G′′, c′′) with at most c(K) + 2t 2-stable sets.
Thus, χ2(G′′, c′′) ≤ c(K) + 2t.

The proof is now complete:

χ2(G, c) ≤ χ2(G′′, c′′) + χ2(G′, c′) ≤ c(K) + 2t+ 1
β (a · c)− c(K) + η(G′)

2

≤ η2(G, c) + η(G)−1
2 + t ≤ η2(G, c) + η(G)

2 ,

since η(G′) ≤ η(G)− 1, 1
β (a · c) + t = η2(G, c), and t ≤ 1

2 .

Note that in the above proof, if c(V (G)) < 2η2(G, c), then there must be an
inequality that is not of type (3) for which 1

β (a · c) = η2(G, c). Thus we are in the
second case and t = 0. In this case the proof has demonstrated the following, slightly
stronger, statement. We will use it in the next theorem.

Corollary 4.3. Let G be a graph, c ∈ ZV (G), c > 0, and r ≥ η2(G, c). If

c(V (G)) < 2r, then χ2(G, c) < r + η(G)
2 .

The upper bound of Theorem 4.2 is tight. If, for instance, G is the complete
p-partite graph with each color class having an odd number of nodes, then χ2(G) =

η2(G) + η(G)
2 .

We note that for any graphG and any vector c ∈ Z
V (G)
+ , χ2(G, c) can be computed

efficiently using the theory of matchings. First observe that any v ∈ V (G) such that
N(v) ∪ {v} = V (G) will account for c(v) color classes in any optimal coloring of
(G, c) by 2-stable sets. Thus, we can ignore them and assume that every node of G
belongs to a stable set of size 2. As a consequence, we may further assume that in
any optimal coloring of (G, c) by 2-stable sets, all color classes are of cardinality 2.
Thus optimal colorings of (G, c) correspond to optimal edge coverings of (Ḡ, c). Now
in turn, it is well known that optimal edge coverings of (Ḡ, c) can be computed with
the aid of optimal b-matchings of (G, c). Namely, given an optimal b-matching x of

(Ḡ, c), greedily construct a vector x′ ∈ Z
E(Ḡ)
+ such that x + x′ is an edge covering of

(Ḡ, c). (Note that 1 · (x + x′) = 1 · c.) It is straightforward to verify that x + x′ is an
optimal edge cover of (Ḡ, c). We note finally that the problem of finding an optimal
b-matching in (Ḡ, c) can be solved efficiently using Edmonds’s matching polyhedron
theorem [6].

We would like to mention that the relationship between b-matchings and edge
coverings outlined here is based on Gallai’s theorem (see [3]) concerning the case
where c is the all-ones vector. Also, this relationship can be extended to the fractional
counterparts of edge coverings and b-matchings. In this case, for any graph G and

BOUNDED STABLE SETS 273

any positive c ∈ ZV (G) the inequality of Theorem 4.2 implies that

µ(G, c) ≥ µ′(G, c)− η(H)
2 ,

where µ(G, c) and µ′(G, c) are the values of an optimal b-matching and an optimal
fractional b-matching of (G, c), respectively, and H = Ḡ− {v : N(v) = ∅}.

We now turn our attention to colorings by 3-stable sets.

Theorem 4.4. For any bipartite graph G and c ∈ Z
V (G)
+ , χ3(G, c) ≤ dη3(G, c)e+

1.
The crux of the proof is the following result.

Lemma 4.5. Let G be a bipartite graph and c ∈ Z
V (G)
+ . If one of the following

two conditions holds, then χ3(G, c) = dη3(G, c)e.
(i) c(V (G)) < η3(G, c) and 1

β (a · c) = η3(G, c) for an inequality a · x ≤ β of

A3x ≤ b, which is not of type (1).
(ii) G can be obtained from a 2-star by deleting zero or more nodes.
Proof. Any coloring is also a fractional coloring and thus χ3(G, c) ≥ dη3(G, c)e.

We show the reverse inequality by induction on η3(G, c). That is, we assume that the

lemma holds for any c′ ∈ Z
V (G)
+ such that η3(G, c′) ≤ dη3(G, c)e − 1. With no loss

of generality, c(v) > 0 for all v ∈ V (G). Denote by S the color classes of an optimal
fractional coloring y of (G, c). We distinguish two cases.

Case 1. (G, c) fulfills condition (ii).
Suppose that G is a 2-star. With the notation of Definition 3.4, we assume that

|R| ≥ |L|. Let S be a member of S that contains v1. If necessary, include additional
nodes in S so that it is either maximal or |S| = 3. Let a · x ≤ β be an inequality of
A3x ≤ b. If a · c = βη3(G, c), then by Lemma 4.1, a · c − a · χS = β(η3(G, c) − 1).
Otherwise, it can be readily checked that a · c − a · χS ≤ β(dη3(G, c)e − 1). Thus
η3(G, c−χS) ≤ dη3(G, c)e− 1 and, by induction, χ3(G, c−χS) ≤ dη3(G, c−χS)e. It
follows that

χ3(G, c) ≤ χ3(G, c− χS) + 1 ≤ dη3(G, c− χS)e+ 1 ≤ d(η3(G, c)e,
as required.

So assume that G is not a 2-star. If there is a node v such that |N(v)| ≥ 4, let
S be a member of S that contains v. Otherwise, let S be any member of S. It is
routine to check that χ3(G, c − χS) ≤ dη3(G, c)e − 1. Again the theorem follows by
induction.

Case 2. G does not fulfill condition (ii).
Let a · x ≤ β be such that 1

β (a · c) = η3(G, c). Denote by P the nodes of G

that do not belong to the support of a. Our goal will be to reduce (G, c) into two
weighted graphs (G′, c′) and (G′′, c′′) and then color the first one using induction and
the second one using Corollary 4.3.

Let S ′ =

{
{S ∈ S : S ∩ P 6= ∅ or |S| = 2} if a · x ≤ β is of type (3b),

{S ∈ S : S ∩ P 6= ∅} otherwise.

Let p =
∑
S∈S′ yS . By Lemma 4.1 and by the definition of a ·x ≤ β, there exists a

node v ∈ V (G) such that v ∈ S for all S ∈ S ′. (When a ·x ≤ β is of type (3a) or (3b)
v is a node with coefficient 2 or 3, respectively, and in the other cases it is any node
from the set T of the support of a.) Thus v is not adjacent to any other node that
belongs to a member of S ′. Let G′ be the graph induced by the nodes different from

274 JEANNETTE JANSSEN AND KYRIAKOS KILAKOS

v that belong to some member of S ′, and let c′ be the restriction of
∑
S∈S′ ySχ

S to
V (G′). Let G′′ be the graph induced by the support of a, and let c′′ be the restriction
of c−∑S∈S′ ySχ

S − dpeχ{v} to V (G′′).
Suppose for the moment that both c′ and c′′ are integral (so p = dpe). Because

c(V (G)) ≤ 3η3(G, c), not every S ∈ S ′ is of size 3. Thus c′(V (G′)) < 2p and by
Corollary 4.3, (G, c′) has a coloring with at most p 2-stable sets. Each one of these
stable sets can be extended to include v. In addition, y restricted to S\S ′ gives a
coloring of (G′′, c′′) of value η3(G, c) − p. Moreover, (G′′, c′′) fulfills condition (ii);
therefore, by Case 1, (G′′, c′′) has a coloring of value dη3(G, c)− pe. Combining these
two colorings gives a coloring of (G, c) of value dη3(G, c) − pe + p = dη3(G, c)e, as
required.

To conclude the case and the lemma, we now show that, if necessary, the coloring
vector y can be altered (while keeping S unchanged) so that it is still an optimal
fractional coloring and both c′ and c′′ are integral.

If c′ and c′′ are nonintegral, then a · x ≤ β must be an inequality of the form
2x(v) + x(N(v)) + x(K) ≤ 3, where v is the special node identified earlier and K has
exactly two elements u and w. This follows from Lemma 4.1 and the fact that c(P) is
integral. (The mentioned inequality is the only one for which there can be more than
one color class of size less than 3 in the optimal fractional coloring of its support.)
Note that since c is integral, u and w index the only nonintegral components of c′ and
c′′. Let pu =

∑
{S∈S′:u∈S} yS and pw =

∑
{S∈S′:w∈S} yS . By Lemma 4.1, any member

of S that contains v must also contain u or w, so pu + pw = c(v) and p = pu + pw.
So p is an integer and, by assumption, pu and pw are both not integers. Consider the
set of nodes Q ⊆ P that belong to some member of S ′ together with {v, u}. Since
c(Q) is an integer, either y{u,v} 6∈ Z or there exists a z ∈ Q such that y{u,v,z} 6∈ Z. In
the former case, if y{u,v} 6∈ Z, then since c(P) =

∑
{S∈S′:|S|=3} yS ∈ Z we have that

y{v,u} + y{v,w} ∈ Z. Now decrease y{v,u} by y{v,u} − by{v,u}c and increase y{v,w} by
the same amount. In the latter case, {v, w, z} must also be in S ′ since c(z) ∈ Z and
y{v,u,z} 6∈ Z. Then decrease y{v,u,z} by y{v,u,z} − by{v,u,z}c and increase y{v,w,z} by
the same amount. Repetition of this procedure yields the desired coloring.

Proof of Theorem 4.4. We prove the theorem by induction on dη3(G, c)e. If (G, c)
fulfills one of the conditions of Lemma 4.5, we are done. If not, then choose any color
class S from an optimal fractional coloring of (G, c) by 3-stable sets and, if necessary,
add nodes until S is either maximal of size 3. If η3(G, c− χS) < dη3(G, c)e − 1, then
we can apply induction and find a coloring of (G, c − χS) with dη3(G, c − χS)e + 1
3-stable sets. Otherwise, it must be that (G, c − χS) fulfills condition (i) of Lemma
4.5 and the result follows.

Again, the upper bound of the theorem is tight, for if G is a complete bipartite
graph where every color class is larger than 3 and equal to 1 mod 3, then χ3(G) =
dη3(G)e+ 1.

Acknowledgments. We thank P. Hansen for introducing us to the subject and
O. Marcotte for helpful discussions.

REFERENCES

[1] F. Barahona, J. Fonlupt, and A.R. Mahjoub, Compositions of graphs and polyhedra IV:
Acyclic spanning subgraphs, SIAM J. Discrete Math., 7 (1994), pp. 390–402.

[2] S. Baum and L.E. Trotter Jr., Integer rounding for polymatroid and branching optimization
problems, SIAM J. Alg. Discrete Methods, 2 (1981), pp. 416–425.

BOUNDED STABLE SETS 275

[3] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, North–Holland, New York,
1976.

[4] B.-L. Chen and K.-W. Lih, A note on the m-bounded chromatic number of a tree, European
J. Combin., 14 (1993), pp. 311–312.

[5] W. Cook, private communication.
[6] J. Edmonds, Maximum matching and a polyhedron with 0, 1 vertices, J. Res. Nat. Bureau

Standards, 69 (1965), pp. 125–130.
[7] P. Hansen, A. Hertz, and J. Kuplinsky, Bounded vertex colorings of graphs, Discrete Math.,

111 (1993), pp. 305–312.
[8] T.R. Jensen and B. Toft, Graph Coloring Problems, John Wiley, Toronto, 1995.
[9] K. Kilakos, Colorings and Fractional Colorings, Ph.D. thesis, University of Waterloo, Water-

loo, Ontario, Canada, 1993.
[10] K. Kilakos and O. Marcotte, Fractional and integral colorings, Math. Programming Ser.

A, 76 (1997), pp. 333–347.
[11] J. Krarup and D. de Werra, Chromatic optimization: Limitations, objectives, uses, refer-

ences, European J. Oper. Res., 11 (1982), pp. 1–9.
[12] L. Lovász, Kneser’s conjecture, chromatic number and homotopy, J. Combin. Theory Ser. B,

25 (1978), pp. 319–324.
[13] M.W. Padberg, On the facial structure of the set packing polydedra, Math. Programming, 5

(1973), pp. 199–215.
[14] A. Schrijver, Theory of Linear and Integer Programming, John Wiley, Chichester, UK, 1986.
[15] F.B. Shepherd, Near-Perfection and Stable Set Polyhedra, Ph.D. thesis, University of Water-

loo, Waterloo, Ontario, Canada, 1990.
[16] F.B. Shepherd, Near-perfect matrices, Math. Programming, 64 (1994), pp. 295–323.

INDEPENDENT SETS IN ASTEROIDAL TRIPLE-FREE GRAPHS∗

HAJO BROERSMA† , TON KLOKS‡ , DIETER KRATSCH§ , AND HAIKO MÜLLER§

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 2, pp. 276–287

Abstract. An asteroidal triple (AT) is a set of three vertices such that there is a path between
any pair of them avoiding the closed neighborhood of the third. A graph is called AT-free if it does
not have an AT. We show that there is an O(n4) time algorithm to compute the maximum weight
of an independent set for AT-free graphs. Furthermore, we obtain O(n4) time algorithms to solve
the independent dominating set and the independent perfect dominating set problems on
AT-free graphs. We also show how to adapt these algorithms such that they solve the corresponding
problem for graphs with bounded asteroidal number in polynomial time. Finally, we observe that
the problems clique and partition into cliques remain NP-complete when restricted to AT-free
graphs.

Key words. graph algorithms, AT-free graphs, independent set, independent dominating set

AMS subject classifications. 68R10, 05C85

PII. S0895480197326346

1. Introduction. Asteroidal triples (ATs) were introduced in 1962 to charac-
terize interval graphs as those chordal graphs that do not contain an AT [20]. Graphs
not containing an AT are called AT-free graphs. They form a large class of graphs
containing interval, permutation, trapezoid, and cocomparability graphs. Since 1989,
AT-free graphs have been studied extensively by Corneil, Olariu, and Stewart. They
have published a collection of papers presenting many structural and algorithmic
properties of AT-free graphs (see, e.g., [6, 7]). Further results on AT-free graphs were
obtained in [2, 18, 23].

Until now, knowledge of the algorithmic complexity of NP-complete graph prob-
lems when restricted to AT-free graphs was relatively small compared to that of other
graph classes. The problems treewidth, pathwidth, and minimum fill-in remain
NP-complete on AT-free graphs [1, 28]. On the other hand, various domination-type
problems like connected dominating set [2, 7], cardinality steiner tree [2],
dominating set [19], and total dominating set [19] can be solved by polyno-
mial time algorithms for AT-free graphs. However, there is a collection of classical
NP-complete graph problems for which the algorithmic complexity when restricted
to AT-free graphs was not known. Prominent representatives are independent set,
clique, graph k-colorability, partition into cliques, hamiltonian circuit,
and hamiltonian path.

A crucial reason for the lack of progress in designing efficient algorithms for NP-
complete problems on AT-free graphs seemed to be that none of the typical repre-
sentations, which are useful for the design of efficient algorithms on special graph
classes, are known for AT-free graphs. Contrary to well-known graph classes such as
chordal, permutation, and circular-arc graphs, no geometric representation of AT-free

∗Received by the editors August 20, 1997; accepted for publication (in revised form) August 11,
1998; published electronically April 29, 1999.

http://www.siam.org/journals/sidma/12-2/32634.html
†University of Twente, Faculty of Applied Mathematics, P.O. Box 217, 7500 AE Enschede, the

Netherlands (H.J.Broersma@math.utwente.nl).
‡Department of Applied Mathematics and DIMATIA, Charles University, Malostranské nám. 25,

11800 Praha 1, Czech Republic (ton@kam.ms.mff.cuni.cz).
§Friedrich-Schiller-Universität Jena, Fakultät für Mathematik und Informatik, 07740 Jena, Ger-

many (kratsch@minet.uni-jena.de, hm@minet.uni-jena.de).

276

INDEPENDENT SETS IN AT-FREE GRAPHS 277

graphs is known. Furthermore no representation of AT-free graphs by an elimination
scheme of vertices or edges, small separators, or a small number of certain separators
is known. Fortunately, it turns out that the design of all our algorithms is supported
by a simple structural property of AT-free graphs that can be obtained from the
definition of AT-free graphs rather easily.

Our approach in this paper is similar to the one used to design algorithms for prob-
lems such as treewidth [14, 17], minimum fill-in [17], and vertex ranking [18]
on AT-free graphs. However, these algorithms have polynomial running time only
under the additional constraint that the number of minimal separators is bounded by
a polynomial in the number of vertices of the graph. (Notice that all three problems
are NP-complete on AT-free graphs.) Technically, for the three different independent
set problems in this paper, we are able to replace the set of all minimal separators,
used in [14, 17, 18] (which might be “too large” in size) by the “small” set of all closed
neighborhoods of the vertices of the graph.

Finding out the algorithmic complexity of independent set on AT-free graphs
is a challenging task. Besides the fact that independent set is a classical and well-
studied NP-complete problem, the problem is also interesting because, contrary to
well-known subclasses of AT-free graphs such as cocomparability graphs, not all AT-
free graphs are perfect. Thus the polynomial time algorithm for perfect graphs of
Grötschel, Lovász, and Schrijver [11] that solves the independent set problem does
not apply to AT-free graphs.

We present the first polynomial time algorithm solving the NP-complete problem
independent set, when restricted to AT-free graphs. More precisely, our main result
is an O(n4) algorithm to compute the maximum weight of an independent set in an
AT-free graph. Furthermore, we present O(n4) time algorithms to solve the problem
independent dominating set and independent perfect dominating set (also
called efficient dominating set). We also observe that the problems clique and
partition into cliques remain NP-complete when restricted to AT-free graphs.

A natural generalization of ATs are the so-called asteroidal sets. Structural results
for asteroidal sets and algorithms for graphs with bounded asteroidal number were
obtained in [15, 21, 25, 27]. Computing the asteroidal number (i.e., the maximum
cardinality of an asteroidal set) turns out to be NP-complete in general, but solvable
in polynomial time for many graph classes [16]. Furthermore, the results for problems
such as treewidth and minimum fill-in on AT-free graphs can be generalized to
graphs with bounded asteroidal number [15].

We show how to adapt our algorithms to obtain polynomial time algorithms for
graphs with bounded asteroidal number solving the problems independent set,
independent dominating set, and independent perfect dominating set.

2. Preliminaries. We denote the number of vertices of a graph G = (V,E) by
n and the number of edges by m.

Recall that an independent set in a graph G is a set of pairwise nonadjacent
vertices. The independence number of a graph G denoted by α(G) is the maximum
cardinality of an independent set in G.

For a graph G = (V,E) and W ⊆ V , G[W] denotes the subgraph of G induced
by the vertices of W ; we write α(W) for α(G[W]). For convenience, for a vertex x
of G we write G − x instead of G[V \ {x}]. Analogously, for a subset X ⊆ V , we
write G − X instead of G[V \ X]. We consider components of a graph as maximal
connected subgraphs as well as vertex subsets. For a vertex x of G = (V,E), N(x) =
{y ∈ V : {x, y} ∈ E} is the neighborhood of x and N [x] = N(x) ∪ {x} is the closed

278 H. BROERSMA, T. KLOKS, D. KRATSCH, AND H. MÜLLER

neighborhood of x. For W ⊆ V , N [W] =
⋃
x∈W N [x].

A set S ⊆ V is a separator of the graph G = (V,E) if G− S is disconnected.
Definition 2.1. Let G = (V,E) be a graph. A set Ω ⊆ V is an asteroidal set

if for every x ∈ Ω the set Ω \ {x} is contained in one component of G − N [x]. An
asteroidal set with three vertices is called an AT.

Notice that every asteroidal set is an independent set.
Remark 2.1. A triple {x, y, z} of vertices of G is an AT if and only if for every

two of these vertices there is a path between them avoiding the closed neighborhood
of the third.

Definition 2.2. A graph G = (V,E) is called AT-free if G has no AT.
It is well known that the independent set problem, “Given a graph G and

a positive integer k, decide whether α(G) ≥ k,” is NP-complete [9]. The problem
remains NP-complete, even when restricted to triangle-free, 3-connected, cubic planar
graphs [26]. Moreover, the independence number is hard to approximate within a
factor of n1−ε for any constant ε > 0 [12]. Despite this discouraging recent result
on the complexity of approximation, the independence number can be computed in
polynomial time on many special classes of graphs (see [13]). For example, the best
known algorithm to solve the problem on cocomparability graphs has running time
O(n+m) (see [24]).

The main result of this paper is an O(n4) algorithm to compute the maximum
weight of an independent set in an AT-free graph with real vertex weights. The
structural properties enabling the design of our algorithms are given in the next three
sections. For convenience, we deal with the cardinality case of our problems first, and
point out how to extend the method to graphs with real vertex weights in section 9.

3. Intervals. Let G = (V,E) be an AT-free graph, and let x and y be two
distinct nonadjacent vertices of G. Throughout the paper we use Cx(y) to denote the
component of G−N [x] containing y, and r(x) to denote the number of components
of G−N [x].

Definition 3.1. A vertex z ∈ V \ {x, y} is between x and y if x and z are in
one component of G−N [y] and y and z are in one component of G−N [x].

Equivalently, z is between x and y in G if there is an x, z-path avoiding N [y] and
there is an y, z-path avoiding N [x].

Definition 3.2. The interval I = I(x, y) of G is the set of all vertices of G that
are between x and y.

Thus I(x, y) = Cx(y) ∩ Cy(x).

4. Splitting intervals. Let G = (V,E) be an AT-free graph; let I = I(x, y) be
a nonempty interval of G; and let s ∈ I. Let I1 = I(x, s) and I2 = I(s, y).

Lemma 4.1. x and y are in different components of G−N [s].
Proof. Assume x and y would be in the same component of G − N [s]. Then

there is an x, y-path avoiding N [s]. However, s ∈ I implies that there is an s, y-path
avoiding N [x] and an s, x-path avoiding N [y]. Thus {s, x, y} is an AT of G, which is
a contradiction.

Corollary 4.2. I1 ∩ I2 = ∅.
Proof. Assume z ∈ I1 ∩ I2. Then z ∈ I1 implies that there is a component Cs

of G −N [s] containing both x and z. Furthermore, z ∈ I2 implies also that y ∈ Cs,
contradicting Lemma 4.1.

Lemma 4.3. I1 ⊆ I and I2 ⊆ I.
Proof. Let z ∈ I1. Clearly s ∈ I implies s ∈ Cx(y). Thus z ∈ I1 implies

z ∈ Cx(y). Clearly z ∈ Cs(x) since z ∈ I1. By Lemma 4.1, Cs(x) is contained in a

INDEPENDENT SETS IN AT-FREE GRAPHS 279

component of G−N [y], and obviously this component contains x. This proves z ∈ I.
Consequently I1 ⊆ I.

I2 ⊆ I can be shown analogously.

Theorem 4.4. There exist components Cs1 , C
s
2 , . . . , C

s
t of G−N [s] such that

I \N [s] = I1 ∪ I2 ∪
t⋃
i=1

Csi .

Proof. By Lemma 4.3, we have I1 ⊆ I \N [s] and I2 ⊆ I \N [s]. By Lemma 4.1, x
and y belong to different components Cs(x) and Cs(y) of G−N [s]. Let z ∈ I \N [s].

Assume z ∈ Cs(x). There is a z, y-path avoiding N [x]. This path must contain a
vertex of N [s], showing the existence of a z, s-path avoiding N [x]. Hence z ∈ I1.

Similarly z ∈ Cs(y) implies z ∈ I2.

Assume z 6∈ Cs(x) and z 6∈ Cs(y). Since z 6∈ N [s], z belongs to the component
Cs(z) of G−N [s]. For any vertex p ∈ Cs(z), there is a p, z-path avoiding N [x], since
Cs(z) 6= Cs(x). Since z ∈ I, there is a z, y-path avoiding N [x]. Hence there is also a
p, y-path avoiding N [x]. This shows Cs(z) ⊆ I \N [s].

Corollary 4.5. Every component of G[I \ (N [s] ∪ I1 ∪ I2)] is a component of
G−N [s].

5. Splitting components. Let G = (V,E) be an AT-free graph. Let Cx be a
component of G−N [x] and let y be a vertex of Cx. Thus Cx = Cx(y). We study the
components of the graph Cx −N [y].

Theorem 5.1. Let D be a component of the graph Cx − N [y]. Then N [D] ∩
(N [x] \N [y]) = ∅ if and only if D is a component of G−N [y].

Proof. Let D be a component of Cx −N [y] with N [D]∩ (N [x] \N [y]) = ∅. Since
no vertex of D has a neighbor in N [x] \N [y], D is a component of G−N [y].

Now let D ⊆ Cx be a component of G−N [y]. Then N [D] ∩N [x] ⊆ N [y].

Corollary 5.2. Let B be a component of the graph Cx − N [y]. Then N [B] ∩
(N [x] \N [y]) 6= ∅ if and only if B ⊆ Cy(x).

Theorem 5.3. Let B1, . . . , B` denote the components of the graph Cx − N [y]

that are contained in Cy(x). Then I(x, y) =
⋃`
i=1Bi.

Proof. Let I = I(x, y). First we show that Bi ⊆ I for every i ∈ {1, . . . , `}. Let
z ∈ Bi. There is an x, z-path avoiding N [y], since some vertex in Bi has a neighbor
in N [x] \N [y]. Clearly, there is also a z, y-path avoiding N [x], since z and y are both

in Cx. This shows that z ∈ I. Consequently
⋃`
i=1Bi ⊆ I.

Suppose z ∈ I \⋃`i=1Bi. Since z 6∈ ⋃`i=1Bi, the component D of Cx −N [y] that
contains z does not contain a vertex with a neighbor in N [x] \N [y]. Thus z 6∈ Cy(x),
implying z 6∈ I, a contradiction.

6. Computing the independence number. In this section we describe our
algorithm to compute the independence number of an AT-free graph. The algorithm
we propose uses dynamic programming on intervals and components. All intervals and
all components are sorted according to a nondecreasing number of vertices. Following
this order, the algorithm determines the independence number of each component
and of each interval using the formulas given in Lemmas 6.1, 6.2, and 6.3.

We start with an obvious lemma.

280 H. BROERSMA, T. KLOKS, D. KRATSCH, AND H. MÜLLER

Lemma 6.1. Let G = (V,E) be any graph. Then

α(G) = 1 + max
x∈V

r(x)∑
i=1

α(Cxi)

 ,

where Cx1 , C
x
2 , . . . , C

x
r(x) are the components of G−N [x].

Applying Lemma 6.1 to the decomposition given by Theorems 5.1 and 5.3, we
obtain the following lemma.

Lemma 6.2. Let G = (V,E) be an AT-free graph. Let x ∈ V and let Cx be a
component of G−N [x]. Then

α(Cx) = 1 + max
y∈Cx

(
α(I(x, y)) +

∑
i

α(Dy
i)

)
,

where the Dy
i ’s are the components of G−N [y] contained in Cx.

Applying Lemma 6.1 to the decomposition given by Theorem 4.4, we obtain the
following lemma.

Lemma 6.3. Let G = (V,E) be an AT-free graph. Let I = I(x, y) be an interval
of G. If I = ∅ then α(I) = 0. Otherwise

α(I) = 1 + max
s∈I

(
α(I(x, s)) + α(I(s, y)) +

∑
i

α(Csi)

)
,

where the Csi ’s are the components of G−N [s] contained in I(x, y).
Remark 6.1. Notice that the components Dy

i and Csi as well as the intervals
I(x, s) and I(s, y) on the right-hand sides of the formulas in Lemmas 6.2 and 6.3 are
proper subsets of Cx and I, respectively. Hence α(Cx) (respectively, α(I)) can be
computed by table look-up to components and intervals with a smaller number of
vertices.

Consequently we obtain the following algorithm to compute the independence
number α(G) for a given AT-free graph G = (V,E), which is based on dynamic
programming.
Step 1. For every x ∈ V compute all components Cx1 , C

x
2 , . . . , C

x
r(x) of G−N [x].

Step 2. For every pair of nonadjacent vertices x and y compute the interval I(x, y).
Step 3. Sort all the components and intervals according to nondecreasing number of

vertices.
Step 4. Compute α(C) and α(I) for each component C and each interval I in the

order of Step 3.
Step 5. Compute α(G).

Theorem 6.4. There is an O(n4) time algorithm to compute the independence
number of a given AT-free graph.

Proof. The correctness of the algorithm follows from the formulas of Lemmas 6.1,
6.2, and 6.3 as well as the order of the dynamic programming.

We show how to obtain the stated time complexity. Clearly, Step 1 can be imple-
mented such that it takes O(n(n+m)) time using a linear time algorithm to compute
the components of the graph G − N [x] for each vertex x of G. For each compo-
nent of G − N [x], a sorted linked list of all its vertices and its number of vertices
is stored. For all nonadjacent vertices x and y there is a pointer P (x, y) to the list
of Cx(y). Thus in Step 2, an interval I(x, y) can be computed using the fact that

INDEPENDENT SETS IN AT-FREE GRAPHS 281

I(x, y) = Cx(y) ∩ Cy(x). Hence a sorted vertex list of I(x, y) can be computed in
time O(n) for each interval. Consequently the overall time bound for Step 2 is O(n3).
There are at most n2 components and at most n2 intervals and each has at most n
vertices. Thus, using the linear time sorting algorithm bucket sort, Step 3 can be
done in time O(n2).

The bottleneck for the time complexity of our algorithm is Step 4. First consider a
component Cx of G−N [x] and a vertex y ∈ Cx. We need to compute the components
of G−N [y] that are contained in Cx. Each component D of G−N [y] except Cy(x)
is contained in Cx if and only if D ∩ Cx 6= ∅. Thus the components D of G − N [y]
with D ⊆ Cx are exactly those components of G−N [y] addressed by P (y, z) for some
z ∈ Cx. Thus all such components can be found in time O(|Cx|) for fixed vertices
x and y ∈ Cx. Hence the computation of α(C) for all components C takes time∑
{x,y}/∈E O(|Cx(y)|) = O(n3).

Now consider an interval I = I(x, y), and a vertex s ∈ I. We need to add
up the independence numbers of the components Csi of G − N [s] that are con-
tained in I. The components of G − N [y] that are contained in I are exactly those
components addressed by P (y, z) for some z ∈ I, except Cs(x) and Cs(y). Thus
all such components can be found in time O(|I(x, y)|) for a fixed interval I(x, y)
and s ∈ I(x, y). Hence the computation of α(I) for all intervals I takes time∑
{x,y}/∈E

∑
s∈I(x,y)O(|I(x, y)|) = O(n4).

Clearly Step 5 can be done in O(n2) time. Thus the running time of our algorithm
is O(n4).

7. Independent domination. The approach used to design the presented poly-
nomial time algorithm to compute the independence number for AT-free graphs
can also be used to obtain a polynomial time algorithm solving the independent
dominating set problem on AT-free graphs. The best known algorithm to solve
the weighted version of the problem on cocomparability graphs has running time
O(n2.376) [4].

Definition 7.1. Let G = (V,E) be a graph. Then S ⊆ V is a dominating set
of G if every vertex of V \ S has a neighbor in S. A dominating set S ⊆ V is an
independent dominating set of G if S is an independent set.

We denote by γi(G) the minimum cardinality of an independent dominating set
of the graph G. Given an AT-free graph G, our next algorithm computes γi(G). It
works very similarly to the algorithm of the previous section.

We present only the formulas used in Steps 4 and 5 of the algorithm (which are
similar to those in Lemmas 6.1, 6.2, and 6.3).

Lemma 7.2. Let G = (V,E) be a graph. Then

γi(G) = 1 + min
x∈V

r(x)∑
j=1

γi(C
x
j)

 ,

where Cx1 , C
x
2 , . . . , C

x
r(x) are the components of G−N [x].

Lemma 7.3. Let G = (V,E) be an AT-free graph. Let x ∈ V and let Cx be a
component of G−N [x]. Then

γi(C
x) = 1 + min

y∈Cx

γi(I(x, y)) +
∑
j

γi(D
y
j)

 ,

282 H. BROERSMA, T. KLOKS, D. KRATSCH, AND H. MÜLLER

where the Dy
j ’s are the components of G−N [y] contained in Cx.

Lemma 7.4. Let G = (V,E) be an AT-free graph. Let I = I(x, y) be an interval.
If I = ∅ then γi(I) = 0. Otherwise

γi(I) = 1 + min
s∈I

γi(I(x, s)) + γi(I(s, y)) +
∑
j

γi(C
s
j)

 ,

where the Csj ’s are the components of G−N [s] contained in I(x, y).
The design and analysis of the algorithm is done similarly to the one in the

previous section. This gives the following theorem.
Theorem 7.5. There exists an O(n4) time algorithm to compute the indepen-

dence domination number γi of a given AT-free graph.

8. Independent perfect domination. The independent perfect domi-
nating set problem is a variant of the independent dominating set problem.
The best known algorithm to solve the weighted version of the problem on cocompa-
rability graphs has running time O(n2) [5].

Definition 8.1. A perfect dominating set of a graph G = (V,E) is a set S ⊆ V
such that every vertex of V \ S is adjacent to exactly one vertex in S. A perfect
dominating set S is an independent perfect dominating set of G if S is an independent
set. (An independent perfect dominating set is also called an efficient dominating
set.)

We denote the minimum cardinality of an independent perfect dominating set in
G by γip(G). If G does not have an independent perfect dominating set, we define
γip(G) =∞.

There is a close relationship between the problems independent perfect dom-
inating set and independent dominating set which can often be exploited to
transform an algorithm solving the independent dominating set problem into
an algorithm solving the independent perfect dominating set problem. We
demonstrate this for our algorithm of the previous section.

We present the formulas for an O(n4) algorithm to compute γip(G) for a given
AT-free graph G. Let x be a vertex of G and let Cx be a component of G − N [x].
Let ∆(x,Cx) = {z ∈ Cx | dG(z, x) > 2}. We denote by γip(x,Cx) the minimum
cardinality of an independent perfect dominating set S of Cx with S ⊆ ∆(x,Cx).

Lemma 8.2. Let G = (V,E) be a graph. Then

γip(G) = 1 + min
x∈V

r(x)∑
i=1

γip(x,Cxi)

 ,

where Cx1 , C
x
2 , . . . , C

x
r(x) are the components of G−N [x].

Let I = I(x, y) be an interval of G. Let ∆(x, y, I) = {z ∈ I | dG(z, x) >
2 ∧ dG(z, y) > 2}. We denote by γip(x, y, I(x, y)) the minimum cardinality of an
independent perfect dominating set S of G[I(x, y)] with S ⊆ ∆(x, y, I).

Lemma 8.3. Let G = (V,E) be an AT-free graph. Let x ∈ V and let Cx be a
component of G−N [x]. If ∆(x,Cx) = ∅ then γip(x,Cx) =∞. If ∆(x,Cx) 6= ∅ then

γip(x,Cx) = 1 + min
y∈∆(x,Cx)

γip(x, y, I(x, y)) +
∑
j

γip(y,Dy
j)

 ,

INDEPENDENT SETS IN AT-FREE GRAPHS 283

where the Dy
j ’s are the components of G−N [y] contained in Cx.

Lemma 8.4. Let G = (V,E) be an AT-free graph. Let I(x, y) be an interval
of G. For s ∈ I, let I1 = I(s, x) and I2 = I(s, y). If ∆(x, y, I) = ∅ and |I| = 0 then
γip(x, y, I) = 0. If ∆(x, y, I) = ∅ and |I| > 0 then γip(x, y, I) = ∞. If ∆(x, y, I) 6= ∅
then

γip(x, y, I) = 1 + min
s∈∆(x,y,I)

(
γip(x, s, I1) + γip(s, y, I2) +

∑
j

γip(s, Csj)

)
,

where the Csj ’s are the components of G−N [s] contained in I(x, y).
Our algorithm first computes the distance matrix of the given graph and then

applies the approach of the previous two sections.
Theorem 8.5. There exists an O(n4) time algorithm to compute the independent

perfect domination number γip of a given AT-free graph.

9. Weights on the vertices. In this section we consider AT-free graphs with
real weights. Since we assume a unit-cost RAM as computational model, weights can
be compared and added in constant time.

Definition 9.1. A weighted graph is a pair (G,w), where G = (V,E) is a
graph and every vertex x of G is assigned a real weight w(x). Let S ⊆ V . Then
w(S) =

∑
x∈S w(x) is the weight of S.

For a weighted graph (G,w) the maximum weight of an independent set of G is
denoted by αw(G), and the minimum weight of an independent dominating set of G
is denoted by γwi (G). Clearly, αw(G) = αw(G[{x ∈ V : w(x) > 0}]).

First we prove a version of Lemma 6.1 extended to weighted graphs.
Lemma 9.2. Let (G,w) be a weighted graph, G = (V,E). Then

αw(G) = max
x∈V,w(x)>0

w(x) +

r(x)∑
i=1

αw(Cxi)

 ,

where Cx1 , C
x
2 , . . . , C

x
r(x) are the components of G−N [x].

Proof. If w(x) ≤ 0 for all x ∈ V then αw(G) = 0, since the empty set is
independent. Otherwise G has a nonempty independent set S of maximum weight
containing vertices of positive weight only. For such a set we have x ∈ S if and

only if w(S) = w(x) +
∑r(x)
i=1 α

w(Cxi), where Cx1 , C
x
2 , . . . , C

x
r(x) are the components of

G−N [x].
The two remaining lemmas of section 6 generalize to weighted AT-free graphs in

a similar way. We obtain the formulas

αw(Cx) = max
y∈Cx,w(y)>0

(
w(y) + αw(I(x, y)) +

∑
i

αw(Dy
i)

)
,

αw(I) = max
s∈I,w(s)>0

(
w(s) + αw(I(x, s)) + αw(I(s, y)) +

∑
i

αw(Csi)

)
,

analogously to the formulas in Lemmas 6.2 and 6.3, respectively. Therefore, the algo-
rithm given in section 6 applied to a weighted AT-free graph computes the maximum
weight of an independent set and runs in time O(n4).

284 H. BROERSMA, T. KLOKS, D. KRATSCH, AND H. MÜLLER

For the problem independent dominating set on weighted AT-free graphs, we
obtain the formulas

γwi (G) = min
x∈V

w(x) +

r(x)∑
j=1

γwi (Cxj)

 ,

γwi (Cx) = min
y∈Cx

w(y) + γwi (I(x, y)) +
∑
j

γwi (Dy
j)

 ,

γwi (I) = min
s∈I

w(s) + γwi (I(x, s)) + γwi (I(s, y)) +
∑
j

γwi (Csj)

 ,

analogously to the formulas in Lemmas 7.2, 7.3, and 7.4, respectively. Consequently,
there exists an algorithm computing γwi (G) for a weighted AT-free graph G in time
O(n4).

10. Bounded asteroidal number. In this section we show that the indepen-
dence number of graphs with bounded asteroidal number can be computed in poly-
nomial time.

Definition 10.1. The asteroidal number of a graph G is the maximum cardi-
nality of an asteroidal set in G.

Hence a graph is AT-free if and only if its asteroidal number is at most 2. Further-
more, the asteroidal number of a graph G is bounded by α(G), since every asteroidal
set is an independent set. Computing the asteroidal number of a graph is NP-complete
in general, but solvable in polynomial time for many graph classes [16].

Definition 10.2. Let Ω be an asteroidal set of G. The lump L(Ω) is the set of
vertices v such that for all x ∈ Ω there is a component of G−N [x] containing v and
Ω \ {x}.

Let Ω = {x1, . . . , xκ} be an asteroidal set of cardinality κ ≥ 2 and consider the
lump L = L(Ω).

Let s be an arbitrary vertex in L. Now we show how N [s] splits the lump analo-
gously to Theorem 4.4.

Consider the components of G − N [s]. These components partition Ω into sets
Ω1, . . . ,Ωτ , where each Ωi is a maximal subset of Ω contained in a component of
G−N [s].

Lemma 10.3. For each i = 1, . . . , τ , the set Ω∗i = Ωi ∪ {s} is an asteroidal set
in G.

Proof. Consider x ∈ Ωi. Then, by definition, Ω \ {x} and s are contained in one
component of G−N [x]. Hence, Ω∗i \ {x} is contained in one component of G−N [x].
This proves the claim.

Lemma 10.4. Let z ∈ L be in some component C∗ of G−N [s] that contains no
vertices of Ω. Then C∗ ⊆ L.

Proof. Let p ∈ C∗ \ {z}. There is a p, z-path avoiding N [x] for any vertex x ∈ Ω.
This proves the claim.

First we consider the case where τ = 1, i.e., where Ω is in one component of
G−N [s]. Then Ω ∪ {s} is an asteroidal set.

Lemma 10.5. If Ω is contained in one component C of G−N [s], then L(Ω∪{s}) =
L ∩ C.

INDEPENDENT SETS IN AT-FREE GRAPHS 285

Proof. Clearly L(Ω ∪ {s}) ⊆ L ∩ C. Let z ∈ L ∩ C and consider a vertex x ∈ Ω.
Clearly, there is an x, z-path avoiding N [s], since z and x are in the component C of
G−N [s]. Hence z is in the component of G−N [s] containing Ω. Consider any other
vertex y ∈ Ω. (Such a vertex exists since |Ω| ≥ 2.) Then there is a z, y-path avoiding
N [x] since z ∈ L. Furthermore, there is a y, s-path avoiding N [x] since Ω ∪ {s} is an
asteroidal set. Hence z is in the component of (Ω ∪ {s}) \ {x} of G−N [x].

Now we consider the case where τ > 1. Let Li = L(Ωi ∪ {s}) for i = 1, . . . , τ .
Clearly, Li ∩ Lj = ∅ for every i 6= j.

Lemma 10.6. Assume τ > 1 and let C be the component of G−N [s] containing
Ωi. Then Li = L ∩ C.

Proof. First let z ∈ L∩C. Then for all x and y in Ωi there is a z, x-path avoiding
N [s] since z ∈ C (showing that z and Ωi are in one component of G − N [s]), and
there is a z, x-path avoiding N [y] since z ∈ L. For y′ ∈ Ωj for any j 6= i there is
a z, y′-path avoiding N [x], since z ∈ L. Such a path contains a vertex of N [s], and
consequently there is a z, s-path avoiding N [x]. This shows that z, s and Ωi \ {x} are
in one component of G−N [x] and hence L ∩ C ⊆ Li.

Now let z ∈ Li. This clearly implies z ∈ C. For a vertex y ∈ Ωj , j 6= i, s and
the set Ω \ {y} are in one component of G −N [y] since s ∈ L. There is an s, y-path
avoiding N [y] since y and z belong to different components of G−N [s]. Consequently,
z and Ω \ {y} are in one component of G−N [y].

For a vertex x ∈ Ωi, there is a component of G−N [x] containing s and Ω \ {x},
since s ∈ L. Since z ∈ Li, there is an s, z-path avoiding N [x]. Hence also z is in this
component of G−N [x] and therefore Li ⊆ L ∩ C.

Theorem 10.7. There exist components C1, . . . , Ct of G − N [s] which contain
no vertex of Ω such that

L \N [s] =

t⋃
i=1

Ci ∪
τ⋃
j=1

Lj .

Proof. Let C1, . . . , Ct be the components of G − N [s] which contain a vertex of
L but no vertex of Ω. Then by Lemma 10.4 we have

⋃t
i=1 Ci ⊆ L \ N [s], and by

Lemmas 10.5 and 10.6 we have
⋃τ
j=1 Lj ⊆ L \N [s].

Now let l ∈ L \N [s]. If l is in a component containing Ωi, 1 ≤ i ≤ τ , then l ∈ Li
by Lemma 10.5 or 10.6. Otherwise there is an index i, 1 ≤ i ≤ t, such that l ∈ Ci.
This completes the proof.

Theorem 10.7 enables us to generalize Lemmas 6.3, 7.4, and 8.4 in the following
way.

Lemma 10.8. Let L = L(Ω) be a lump of G. If L = ∅ then α(L) = γi(L) =
γip(Ω, L) = 0. Otherwise

α(L) = 1 + max
s∈L

 t∑
j=1

α(Cj) +
τ∑
i=1

α(Li)

 ,

γi(L) = 1 + min
s∈L

 t∑
j=1

γi(Cj) +
τ∑
k=1

γi(Lk)

 ,

γip(Ω, L) = 1 + min
s∈∆(Ω,L)

 t∑
j=1

γip(s, Cj) +
τ∑
k=1

γi(Ωk + s, Lk)

 ,

286 H. BROERSMA, T. KLOKS, D. KRATSCH, AND H. MÜLLER

where C1, . . . , Ct are the components of G − N [s] which contain no vertex of Ω,
L1, . . . , Lτ are the lumps L(Ωi + s) as used in Lemma 10.3, ∆(Ω, L) = {z ∈ L |
dG(z,Ω) > 2}, and γip(Ω, L) is the minimum cardinality of an independent perfect
dominating set of G[L] contained in ∆(Ω, L). Moreover, if L 6= ∅ but ∆(Ω, L) = ∅,
then γip(Ω, L) =∞.

Together with Lemmas 6.1 and 6.2, 7.2 and 7.3, and 8.2 and 8.4, the formulas of
Lemma 10.8 lead to algorithms computing α(G), γi(G), and γip(G) for a graph G. For
any positive integer k, these algorithms can be implemented to run in time O(nk+2) for
all graphs with asteroidal number at most k. Analogously to the proof of Theorem 6.4,
the time complexity is now dominated by the term

∑
Ω

∑
s∈L(Ω)O(|L(Ω)|) = O(nk+2),

where the sum is taken over all asteroidal sets Ω of G and all s ∈ L(Ω).
As before, our algorithms for graphs with a bounded asteroidal number can be

extended to the weighted cases of the problems and the corresponding algorithms run
within the same time bounds.

11. Cliques. Contrary to the independent set problems considered so far, the
NP-complete graph problems clique and partition into cliques, that are closely
related to independent set, both remain NP-complete when restricted to the class of
AT-free graphs. Concerning clique, recall that Poljak has shown that independent
set remains NP-complete on triangle-free graphs (see [9]). Consequently clique
remains NP-complete on graphs with independence number at most 2, and thus on
AT-free graphs.

Similarly, it follows from a recent result due to Maffray and Preissman (showing
that the problem graph k-colorability remains NP-complete when restricted to
triangle-free graphs [22]), that the problem partition into cliques remains NP-
complete on AT-free graphs.

Therefore clique and partition into cliques are the first NP-complete graph
problems known to us which are NP-complete on AT-free graphs, but solvable in
polynomial time on the class of cocomparability graphs. The latter graph class is the
largest well-studied subclass of AT-free graphs which is also a class of perfect graphs.

12. Conclusions. In this paper we have shown that the maximum weight of an
independent set in a weighted AT-free graph can be computed in time O(n4). The
same approach can be used to obtain O(n4) algorithms to solve the (weighted) inde-
pendent dominating set problem and the independent perfect dominating
set problem on AT-free graphs. We have also shown how to adapt the algorithm
computing the independence number in such a way that the new algorithm computes
the independence number of a graph with a bounded asteroidal number in polynomial
time.

All our algorithms can be modified such that they not only compute the optimal
weight of a set of certain type (e.g., the maximum weight of an independent set)
but also a set realizing the optimal weight (e.g., a maximum weight independent set)
within the same time bound.

From the current knowledge it would be interesting to find out the algorithmic
complexity of the following well-known NP-complete graph problems when restricted
to AT-free graphs: graph k-colorability, hamiltonian circuit, hamiltonian
path. These three problems are all known to have polynomial time algorithms for
cocomparability graphs [8, 10].

INDEPENDENT SETS IN AT-FREE GRAPHS 287

REFERENCES

[1] S. Arnborg, D. G. Corneil, and A. Proskurowski, Complexity of finding embeddings in a
k-tree, SIAM J. Algebraic Discrete Methods, 8 (1987), pp. 277–284.

[2] H. Balakrishnan, A. Rajaraman, and C. Pandu Rangan, Connected domination and
Steiner set on asteroidal triple-free graphs, in Proceedings of WADS’93, Lecture Notes
in Computer Science 709, Springer-Verlag, New York, 1993, pp. 131–141.

[3] A. Brandstädt, Special graph classes – A survey, Schriftenreihe des Fachbereichs Mathematik,
SM-DU-199, Universität Duisburg Gesamthochschule, Duisburg, Germany, 1991.

[4] H. Breu and D. G. Kirkpatrick, Algorithms for Domination and Steiner Tree Problems in
Cocomparability Graphs, University of British Columbia, Vancouver, manuscript 1993.

[5] M. S. Chang, Weighted domination on cocomparability graphs, in Proceedings of ISAAC’95,
Lecture Notes in Computer Science 1004, Springer-Verlag, New York, 1996, pp. 122–131.

[6] D. G.Corneil, S. Olariu, and L. Stewart, Asteroidal triple-free graphs, SIAM J. Discrete
Math., 10 (1997), pp. 399–430.

[7] D. G. Corneil, S. Olariu, and L. Stewart, A linear time algorithm to compute dominat-
ing pairs in asteroidal triple-free graphs, in Proceedings of ICALP’95, Lecture Notes in
Computer Science 944, Springer-Verlag, New York, 1995, pp. 292–302.

[8] J. S. Deogun and G. Steiner, Polynomial algorithms for Hamiltonian cycle in cocomparability
graphs, SIAM J. Comput., 23 (1994), pp. 520–552.

[9] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman, San Francisco, 1979.

[10] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York,
1980.

[11] M. Grötschel, L. Lovász, and A. Schrijver, Polynomial algorithms for perfect graphs, Ann.
Disc. Math., 21 (1984), pp. 325–356.

[12] J. Hastad, Clique is hard to approximate within n1−ε, in Proceedings of the 37th Annual IEEE
Symposium on Foundations of Computer Science, Burlington, VT, 1996, pp. 627–636.

[13] D. S. Johnson, The NP-completeness column: An ongoing guide, J. Algorithms, 6 (1985),
pp. 434–451.

[14] T. Kloks, Treewidth – Computations and Approximations, Lecture Notes in Computer Science
842, Springer-Verlag, New York, 1994.

[15] H. J. Broersma, T. Kloks, D. Kratsch, and H. Müller, A generalization of AT-free graphs
and a generic algorithm for solving triangulation problems, in Proceedings of WG’98,
Lecture Notes in Computer Science 1517, Springer-Verlag, New York, 1998, pp. 88–89.

[16] T. Kloks, D. Kratsch, and H. Müller, Asteroidal sets in graphs, in Proceedings of WG’97,
Lecture Notes in Computer Science 1335, Springer-Verlag, New York, 1997, pp. 229–241.

[17] T. Kloks, D. Kratsch, and J. Spinrad, On treewidth and minimum fill-in of asteroidal
triple-free graphs, Theoret. Comput. Sci., 175 (1997), pp. 309–335.

[18] T. Kloks, H. Müller, and C. K. Wong, Vertex ranking of asteroidal triple-free graphs, in
Proceedings of ISAAC’96, Lecture Notes in Computer Science 1178, Springer-Verlag, New
York, 1996, pp. 174–182.

[19] D. Kratsch, Domination and Total Domination on Asteroidal Triple-Free Graphs, Forschungs-
ergebnisse Math/Inf/96/25, FSU Jena, Germany, 1996.

[20] C. G. Lekkerkerker and J. Ch. Boland, Representation of a finite graph by a set of intervals
on the real line, Fund. Math., 51 (1962), pp. 45–64.

[21] I. J. Lin, T. A. McKee, and D. B. West, Leafage of chordal graphs, Discuss. Math. Graph
Theory, 18 (1998), pp. 23–48.

[22] F. Maffray and M. Preissman, On the NP-completeness of the k-colorability problem for
triangle-free graphs, Discrete Math., 162 (1996), pp. 313–317.

[23] R. H. Möhring, Triangulating graphs without asteroidal triples, Discrete Appl. Math., 64
(1996), pp. 281–287.

[24] R. M. McConnell and J. P. Spinrad, Linear time transitive orientation, in Proceedings of
the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia,
PA, 1997, pp. 19–25.

[25] E. Prisner, Representing triangulated graphs in stars, Abh. Math. Sem. der Univ. Hamburg,
62 (1992), pp. 29–41.

[26] R. Uehara, NP-Complete Problems on a 3-Connected Cubic Planar Graph and Their Appli-
cations, Technical report TWCU-M-0004, Tokyo Woman’s Christian University, 1996.

[27] J. R. Walter, Representations of chordal graphs as subtrees of a tree, J. Graph Theory, 2
(1978), pp. 265–267.

[28] M. Yannakakis, Computing the minimum fill-in is NP-complete, SIAM J. Algebraic Discrete
Methods, 2 (1981), pp. 77–79.

A 2-APPROXIMATION ALGORITHM FOR THE UNDIRECTED
FEEDBACK VERTEX SET PROBLEM∗

VINEET BAFNA† , PIOTR BERMAN‡ , AND TOSHIHIRO FUJITO§

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 3, pp. 289–297

Abstract. A feedback vertex set of a graph is a subset of vertices that contains at least one
vertex from every cycle in the graph. The problem considered is that of finding a minimum feedback
vertex set given a weighted and undirected graph. We present a simple and efficient approximation
algorithm with performance ratio of at most 2, improving previous best bounds for either weighted
or unweighted cases of the problem. Any further improvement on this bound, matching the best
constant factor known for the vertex cover problem, is deemed challenging.

The approximation principle, underlying the algorithm, is based on a generalized form of the
classical local ratio theorem, originally developed for approximation of the vertex cover problem, and
a more flexible style of its application.

Key words. approximation algorithm, performance guarantee, feedback vertex set problem,
local ratio theorem

AMS subject classifications. 68Q25, 90C27, 05C85, 05C38

PII. S0895480196305124

1. Introduction. We are concerned with polynomial time approximation of the
feedback vertex set problem on weighted, undirected graphs. A feedback vertex set
(FVS) of a graph G is a set of vertices such that every cycle in G contains at least
one vertex of the set. In a general setting some rational value is associated with each
vertex of G as its weight. The FVS problem is then defined to be that of finding
an FVS of minimum total weight in a given graph. In this paper we always assume
the case of weighted (i.e., arbitrary weights on vertices) and undirected graphs unless
otherwise specified.

This problem is of fundamental importance in combinatorial optimization. One
typical application appears, as suggested by the name, in the context of combinatorial
circuit design. The circuits are represented by graphs in which cycles potentially imply
a “racing condition”; that is, some circuit element might receive new inputs before it
stabilizes. One way to avoid such a condition is by placing a clocked register at each
cycle in the circuit; in that case, we would like to keep the number of clocked registers
as low as possible. The minimum FVS for the graph gives a bound on the number of
registers needed. For other applications, e.g., in the areas of constraint satisfaction
problems and Bayesian inference, see Bar-Yehuda et al. [4].

1.1. Short history and related work. The FVS problem is NP-hard; for
directed graphs Karp showed its NP-completeness even if graphs are unweighted [12],
and essentially the same transformation shows that it is equally hard for undirected

∗Received by the editors June 12, 1996; accepted for publication (in revised form) November 23,
1998; published electronically September 7, 1999. A preliminary version of this paper was presented
at the Sixth Annual International Symposium on Algorithms and Computation, Cairns, Australia,
1995.

http://www.siam.org/journals/sidma/12-3/30512.html
†DIMACS Center, Piscataway, NJ 08854 (bafna@dimacs.rutgers.edu). The work of this author

was supported by Special Year National Science Foundation grant BIR-9412594.
‡Department of Computer Science and Engineering, Pennsylvania State University, University

Park, PA 16802 (berman@cse.psu.edu).
§ Department of Electrical Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-

Hiroshima 739-8527 Japan (fujito@huis.hiroshima-u.ac.jp).

289

290 VINEET BAFNA, PIOTR BERMAN, AND TOSHIHIRO FUJITO

graphs. Given this intractability it is natural to consider a next best approach: a
polynomial time algorithm for computing a near optimal FVS. The quality of an
approximation algorithm is measured by its performance ratio: the worst case ratio of
weight of an approximate solution computed by the algorithm to the optimal solution
weight. An algorithm with performance ratio r is also called an r-approximation
algorithm.

The first nontrivial (i.e., better than |V | = n) approximation ratio of 2 logn for
unweighted graphs appeared in the early work of Erdős and Pósa [6], where they
studied the number of (vertex) disjoint cycles in a graph. It was later improved to√

logn by Monien and Schulz [14], who considered and compared various approaches
to the problem. Only recently, Bar-Yehuda et al. were able to show that the smallest
cardinality FVS (i.e., unweighted version) can be approximated within a constant
factor of 4 [4]. Moreover, they considered the weighted version as well and obtained
a performance ratio of min{4 logn, 2∆2}, where ∆ is the maximum vertex degree of
a graph.

As for a lower bound on the performance ratio, the problem is known to be MAX
SNP-hard [13, 16], implying that the ratio cannot go down arbitrarily close to 1 unless
P = NP [1]. In fact, a more direct implication is available due to the fact that the
vertex cover (VC) problem is reducible to the FVS problem in an approximation
preserving manner [13], so that any performance ratio r for the FVS problem would
imply the same ratio r for the VC problem. A better approximation of the VC
problem has been a subject of extensive research over the years, yet the best constant
approximation ratio has remained at 2. (The overall best one is 2−log logn/2 logn [3,
15].) On the other hand, a lower bound on the performance ratio for the VC problem
has been continuously improved in the last few years, and currently it is known to be
NP-hard to guarantee a factor of 7/6− ε for any ε > 0 [11], implying the same bound
for the FVS problem.

The FVS problem (or feedback edge set problem) for directed graphs, largely
due to more versatile nature of its applicability, has drawn even more attention in
various areas. It appears, however, that the problem is harder to approximate, with
O(logn log logn) being the best ratio known today [7].

1.2. Our contributions.

Factor-2 approximation. We will present an approximation algorithm for the
weighted FVS problem (in section 3) and show that its performance ratio is bounded
above by 2 (in section 4), improving upon the previous best of min{4 logn, 2∆2}.
Independently of our work, Becker and Geiger have recently discovered a different
2-approximation algorithm [5], their analysis of which is more complicated than ours,
without any elucidation of underlying approximation principles. In light of the facts
mentioned earlier concerning the approximability of the VC problem and its reducibil-
ity to the FVS problem, achieving a better performance ratio, if at all possible, is
deemed quite challenging. Our algorithm is also quite simple and efficient; it can be
implemented to run in time O(min{|E| log |V |, |V |2}).

Generalized local ratio approximation. Our approximation method is based
on the local approximation principle. In a most simple form it was used already in the
Gavril’s maximal matching–based approximation for the unweighted VC problem [9,
p. 134], and later it was explicitly formalized as the local ratio theorem by Bar-Yehuda
and Even [3].

This principle, however, has been known mostly only in a doubly limited form;

2-APPROXIMATION ALGORITHM FOR THE FVS PROBLEM 291

the formulation allowed extraction of only uniformly weighted subgraphs from an
arbitrarily weighted graph and, as its name suggests, allowed its application only
to subgraphs of small size, e.g., short odd cycles for VC approximation [3] and short
cycles for weighted FVS approximation [4]. An easy but crucial observation presented
in this paper is that neither restriction is necessary, leading to a generalization of the
theorem (section 2) and demonstration of the effectiveness resulting from more flexible
applications of it. Moreover, the principle is applicable not only to the VC or FVS
problems but also to other weighted optimization problems of covering type, and
hence this approximation technique could be of independent interest. For a simpler
presentation, however, we restrict ourselves to the FVS problem in this paper.

1.3. Definitions and notation. We use the following definitions and notation
throughout the paper. For any graph G let V (G) denote the vertex set of G and
G[U] the subgraph of G induced by U for U ⊆ V (G). A (vertex) weighted graph G
with a weight function w : V (G) → Q+ is denoted as (G,w), where a nonnegative
rational w(u) represents a weight associated with each vertex u of G. The sum of
weights of vertices in U is denoted by w(U)(=

∑
u∈U w(u)). A collection {(Gi, wi)}

of weighted graphs is called a decomposition of (G,w) if Gi is a subgraph of G ∀i and∑
i:u∈V (Gi)

wi(u) ≤ w(u) ∀u ∈ V . A weight function w : V → Q+ is called degree-

proportional if, for some constant c > 0, w(u) = c(d(u) − 1) for every u ∈ V , where
d(u) denotes degree of u. A graph is called clean if it contains no vertex of degree
less than 2, and a cycle C is semidisjoint if, for every vertex u of C, d(u) = 2 with at
most one exception. Let opt(G,w) denote any optimal FVS in (G,w). An FVS F is
minimal in G if no smaller FVS is contained in F or, equivalently, if F − {u} is not
an FVS in G for all u ∈ F .

2. Generalization of the local ratio theorem. The local ratio approxima-
tion, in its most elementary use, is based on the following principle: If an (unweighted)
structure G contains a substructure H such that every optimal solution occupies a
large portion of H, one can afford to take the whole of H into a solution and reduce
the problem by removing H from G. More specifically and when G is a weighted
graph, this idea can be implemented by the following operations:

1. Choose a suitable subgraph H (i.e., local structure) of usually small size.
2. “Subtract” H with a uniform weight distribution on it from G (i.e., entire

structure).
3. Accept into a solution all the vertices of weight reduced to zero.

We extend this technique in two directions, one in its formulation and the other in
its application. First it will be allowed to include nonuniformly weighted subgraphs in
our target local structures. This change enables us to choose not only a subgraph but
also a weight distribution on it to be sliced off from the whole distribution. Formally,
we have the following theorem.

Theorem 2.1. Let {(Gi, wi)} be a decomposition of (G,w) and F be any FVS
in G such that w(F) =

∑
i wi(F ∩ V (Gi)). Then,

w(F)

w(opt(G,w))
≤ max

i

{
wi(F ∩ V (Gi))

wi(opt(Gi, wi))

}
Proof. Since {(Gi, wi)} is a decomposition of (G,w), w(X) ≥∑i wi(X ∩ V (Gi))

for any set X ⊆ V . Thus, using the assumption on w(F),

w(F)

w(opt(G,w))
≤

∑
i wi(F ∩ V (Gi))∑

i wi(opt(G,w) ∩ V (Gi))
.

292 VINEET BAFNA, PIOTR BERMAN, AND TOSHIHIRO FUJITO

Besides, if F is an FVS in G, so is its restriction F ∩ V (Gi) in every subgraph Gi.
Therefore, we have wi(opt(G,w) ∩ V (Gi)) ≥ wi(opt(Gi, wi)) for all i, which gives∑

i wi(F ∩ V (Gi))∑
i wi(opt(G,w) ∩ V (Gi))

≤
∑
i wi(F ∩ V (Gi))∑
i wi(opt(Gi, wi))

.

Since every summand appearing in the fraction on the right-hand side is nonnegative,
it can be bounded above by maxi{wi(F ∩ V (Gi))/wi(opt(Gi, wi))}.

In this way the ratio of an FVS weight to the optimal one in (G,w) can be reduced
to the ones in its subgraphs (Gi, wi).

For a subgraph G1 of G let γ
def
= min{w(v) : v ∈ V (G1)}, w1, be a function on

V (G1) whose value is constantly γ, w2
def
= w − w1, and let V0 be a set of vertices u

with w2(u) = 0. Then {(G1, w1), (G[V − V0], w2)} is easily a decomposition of (G,w)

and, for any FVS F2 for G[V − V0], F
def
= V0 ∪ F2 is an FVS for G. Let c∗ denote the

cardinality of an optimal FVS for unweighted G1. The original local ratio theorem of
Bar-Yehuda and Even [3] states that the approximation ratio of F is bounded by

max

{ |V (G1)|
c∗

,
w2(F2)

w2(opt(G[V − V0], w2))

}
,

and this follows easily from Theorem 2.1 since w1(F ∩ V (G1)) ≤ w1(V (G1)) =
γ|V (G1)|; thus w1(F ∩ V (G1))/w1(opt(G1, w1)) ≤ γ|V (G1)|/γc∗ = |V (G1)|/c∗ and
F ∩ V (G2) = F ∩ (V − V0) = F2.

The second extension of the local ratio technique will be demonstrated in the next
section, where our algorithm slices up a weight distribution from the entire structure.

3. Approximation algorithm. Our algorithm, called FEEDBACK, is presented
in Figure 3.1, where text in square brackets are comments used for analysis only.

Given a graph (G,w) with G = (V,E), any vertex of weight zero is removed from
G and placed in the solution set F at the outset. FEEDBACK then decomposes (G,w)
into subgraphs (Gi, wi)’s (in the first While loop) by iteratively subtracting wi from
w, removing vertices of weight reduced to zero, adding them into F , and cleaning up
G (by procedure Cleanup, which recursively deletes vertices of degree ≤ 1), until G
becomes empty.

The subgraph Gi derived in the ith iteration is either a semidisjoint cycle C
contained in G or, otherwise, G itself. Note that the first case has precedence over the
second; that is, Gi is a semidisjoint cycle whenever G contains one. When Gi is a cycle
C it is uniformly weighted with wi(u) = γ = min{w(u) : u ∈ V (C)}, the minimum
weight on C, for all u ∈ Gi. Otherwise, Gi is clean and degree-proportionally weighted
with wi(u) = γ(d(u)−1) ∀u ∈ V . In either case the value of γ is determined such that
wi is maximal without exceeding w, and hence some vertex u of G necessarily has its
weight w(u) reduced to zero when wi is subtracted from w. Such vertices are removed
from G, making progress toward emptying G, and at the same time we collect them
all in F . The sole purpose of using an auxiliary stack data structure, STACK, is to
keep track of the (reverse) order in which these vertices are added into F .

The graph G eventually becomes empty (in at most |V | iterations). At this point
(i.e., right after the first While) every vertex was swept out in the process, or otherwise
it is kept in F . Observe that F is indeed an FVS for the original G because any vertex
was cleaned up only after it was found to be useless.

The second While loop examines vertices of this F , one by one, in the reverse
order of their inclusion into F . Whenever a vertex is found to be extraneous, it is

2-APPROXIMATION ALGORITHM FOR THE FVS PROBLEM 293

Input: an undirected graph G = (V,E) with vertex weights w : V → Q+

Output: a feedback vertex set F

Initialize F = {u ∈ V : w(u) = 0}, V = V − F . [i = 0]
Cleanup(G)
While V 6= ∅ do

[i← i+ 1]
If G contains a semidisjoint cycle C, then

Let γ ← min{w(u) : u ∈ V (C)}.
Set w(u)← w(u)− γ, ∀u ∈ V (C).

[Gi = C and wi(u) = γ, ∀u ∈ V (C)]
Else [G is clean and contains no semidisjoint cycle]

Let γ ← min{w(u)/(d(u)− 1) : u ∈ V }.
Set w(u)← w(u)− γ(d(u)− 1), ∀u ∈ V .

[Gi = G and wi(u) = γ(d(u)− 1), ∀u ∈ V]
For each u ∈ V with w(u) = 0 do

Remove u from V , add it to F , and push it onto STACK.
Cleanup(G)

While STACK 6= ∅ do
Let u← pop(STACK).
If F − {u} is an FVS in original G, then [u is redundant]

Remove u from F .

Cleanup(G):
While G contains a vertex of degree at most 1, remove it along with

any incident edges.

Fig. 3.1. 2-approximation algorithm FEEDBACK for the FVS problem.

discarded from F . As will be seen later, this process ensures not only that F is a
minimal FVS in original G but also that F ∩ V (Gi) in Gi ∀i.

Running time. The running time of FEEDBACK is dominated by the first While
loop. All the operations of cleaning up vertices (along with edges), detecting semi-
disjoint cycles, computing the minimum weights on them, and deleting them from a
graph can be done in timeO(|V |+|E|) by maintaining a collection of existent (disjoint)
paths consisting solely of degree-2 vertices. Since each iteration takes O(|V |) time for
other operations and there are at most |V | of them, the running time is O(|V |2).

Alternatively, we may maintain the value of w(u)/(d(u) − 1) for each u ∈ V
in a priority queue P , instead of individual vertex weights. The computation of
γ = min{w(u)/(d(u)− 1) : u ∈ V } is then supported by the Extract-Min operation
(O(log |V |)). There are two types of updates for these values: one by subtraction
of wi from w and the other caused by decrement of degrees. In the former case,
the new value, after subtraction of wi, becomes (w(u) − γ(d(u) − 1))/(d(u) − 1) =
w(u)/(d(u) − 1) − γ, the old value less γ for each vertex. Thus, the actual value
for any vertex in V can be recovered from a sequence of γ values, without changing
key values stored in P . For the second case, however, some key values must be
changed, but only for those vertices adjacent to u, for each removal of vertex u. We
do so using both Insert and Delete operations, each of which takes O(log |V |) by
the standard implementations, and O(1) time calculation of a new value. Since key

294 VINEET BAFNA, PIOTR BERMAN, AND TOSHIHIRO FUJITO

values of elements in P need to be modified at most |E| times, it takes O(|E| log |V |)
overall, better than O(|V |2) when a graph is sparse.

4. Performance ratio. To avoid any possible ambiguity in the following argu-
ment, let us fix an input graph (G = (V,E), w̄) and the output FVS F̄ . Recall that
our goal is to achieve a globally good approximation ratio by ensuring a good ratio
locally at every derived subgraph in a decomposition of the given graph, and our
algorithm FEEDBACK is designed exactly to do so. Toward this end it will be shown
below, in this order, that the following hold:

1. FEEDBACK computes F̄ and a decomposition {(Gi, wi)} of (G, w̄) such that
(i) w̄(F̄) =

∑
i wi(F̄ ∩ V (Gi)) (Lemma 4.1, precondition for application of

Theorem 2.1), and
(ii) F̄ ∩ V (Gi) is a minimal FVS in Gi for all i (Lemma 4.2).
2. The weight of any minimal FVS in any clean, degree-proportionally weighted

graph without semidisjoint cycles is small relative to the optimal weight (Lemmas 4.3
and 4.4).

Lemma 4.1. w̄(F̄) =
∑
i wi(F̄ ∩ V (Gi)).

Proof. Recall that any vertex u of G can enter F̄ only after its weight w(u) is
reduced completely to zero by a sequence of subtractions, and hence partial weights
wi(u)’s must sum up to the total w̄(u) for any u in F̄ . (On the other hand, V − F̄
consists of those vertices cleaned up from G prematurely with nonzero weights).

Lemma 4.2. F̄ ∩ V (Gi) is a minimal FVS in Gi ∀i.
Proof. Let Gi denote the graph remaining right after the (i− 1)st iteration of the

first While is completed. We first claim that F̄ ∩ V (Gi) is a minimal FVS in Gi. Let
F∞ denote the FVS constructed by the entire run of the first While. Since vertices
in F∞ are examined, in the second While, in the reverse order of their addition to
F∞, all the vertices in F∞ ∩ V (Gi) are tested for their redundancy before those in
F∞−V (Gi). Let F i denote the FVS obtained from F∞, during the second While, by
removing any vertices in F∞ ∩ V (Gi) which are redundant in G. Then, F i ∩ V (Gi)
must be a minimal FVS in Gi since otherwise, i.e., if (F i ∩V (Gi))−{u} is an FVS in
Gi for some u ∈ F i ∩ V (Gi), F i − {u} would be an FVS in G, a contradiction. Since
F i ∩ V (Gi) = F̄ ∩ V (Gi), the claim follows.

It remains to observe that if F̄ ∩V (Gi) is a minimal FVS in Gi, so is F̄ ∩V (Gi) in
Gi. Recall that Gi is chosen such that either Gi = Gi or Gi = C, some semidisjoint
cycle contained in Gi. It is obvious when Gi = Gi, and now suppose Gi = C. Then,
F̄ ∩ Gi contains exactly one vertex of Gi, and hence minimal in Gi, because any
minimal FVS in Gi, such as F̄ ∩ V (Gi), can contain only one vertex from semi-
disjoint C.

We next consider how large the weight of F̄ is when estimated in subgraphs
(Gi, wi)’s, relative to the optimal weights for them. Recall that (Gi, wi) is in the form
of either

1. a simple cycle of identically weighted vertices, or
2. a clean and degree-proportionally weighted graph containing no semidisjoint

cycles.
In the first case, the minimality of FVS F̄ ∩ V (Gi) in Gi actually implies its

optimality in Gi. The second case is more interesting. We show that, in this case,
the weight of any minimal FVS is bounded above by twice the optimum weight.

Clearly, it suffices to prove this only for the case when w(u) = d(u)− 1 for every
u ∈ V ; this is assumed below in Lemmas 4.3 and 4.4. We will also use a potential
function p : V → Q defined as p(u) = d(u)/2 − 1 for every u ∈ V . Let p(U) denote

2-APPROXIMATION ALGORITHM FOR THE FVS PROBLEM 295∑
u∈U p(u) for any U ⊆ V .

Lemma 4.3. For an arbitrary FVS F in G = (V,E), w(F) ≥ p(V) + 1.
Proof. Let δ(F) denote the set of edges incident to some vertex in F . Then, since∑

u∈F d(u) ≥ |δ(F)|, w(F) =
∑
u∈F (d(u) − 1) =

∑
u∈F d(u) − |F | ≥ |δ(F)| − |F |.

Besides, F is an FVS. Thus G[V − F], with its edge set being E − δ(F), is acyclic,
containing at most |V − F | − 1 edges. That is, |E − δ(F)| ≤ |V − F | − 1 and hence
w(F) ≥ |E| − |V |+ 1 = p(V) + 1 since p(V) =

∑
u∈V (d(u)/2− 1) = |E| − |V |.

Observe now that if F is a minimal FVS, each vertex of F is blocked by a tree in
the forest G[V − F]; i.e., each vertex u ∈ F is joined via two edges to some tree T
in G[V − F]. Let eT be the number of edges with one end in T and the other in F .
Suppose that T has t vertices. Then

∑
u∈V (T) d(u) = eT + 2(t− 1). Consequently,

p(V (T)) =
∑

u∈V (T)

(
d(u)

2
− 1

)
(4.1)

=

∑
u∈V (T) d(u)

2
− t =

eT + 2(t− 1)

2
− t =

eT
2
− 1.

Lemma 4.4. If F is a minimal FVS in a clean graph G = (V,E) without a
semidisjoint cycle, then w(F) ≤ 2p(V).

Proof. Each vertex u ∈ F is a priori allocated a potential of (d(u) − 2)/2. We
show that each u ∈ F also receives an additional potential of 1/2 from vertices in
V − F . Let T be a tree blocking u (so eT ≥ 2). Notice that eT = 2 would imply
either G is not clean or G contains a semidisjoint cycle; hence eT ≥ 3. Also, the total
number of vertices each tree T ′ in G[V −F] can block is at most beT ′/2c. Thus, using
(4.1), an extra potential of (eT /2− 1)/beT /2c can be shipped to every vertex u of F
from V − F , which is at least 1/2 when eT ≥ 3. Therefore, u contributes d(u)− 1 to
w(F) and at least (d(u)− 1)/2 to p(V).

Lemmas 4.3 and 4.4 jointly assert that whenGi is a clean and degree-proportionally
weighted graph without semidisjoint cycles, since F̄ ∩ V (Gi) is a minimal FVS in Gi
(Lemma 4.2), the ratio wi(F̄∩V (Gi))/wi(opt(Gi, wi)) is bounded by 2p(V (Gi))/(p(V (Gi))+
1).

Theorem 4.5. The algorithm FEEDBACK finds an FVS F̄ in (G, w̄), where G =
(V,E), with approximation factor of 2−2/(|E|−3) in time O(min(|E| log |V |, |V |2)).

Proof. Apply Theorem 2.1 using {(Gi, wi)} computed (implicitly) by FEEDBACK

as a decomposition of (G, w̄). As observed above, when Gi is a uniformly weighted
simple cycle (case 1), the local ratio wi(F̄ ∩V (Gi))/wi(opt(Gi, wi)) = 1. On the other
hand, when Gi is a clean graph without semidisjoint cycles, it is bounded by

2p(V (Gi))

p(V (Gi)) + 1
= 2− 2

p(V (Gi)) + 1
= 2− 2

|E(Gi)| − |V (Gi)|+ 1
≤ 2− 2

|E| − 3

since Gi must contain at least four vertices.
Additionally, it can be seen that the analysis above is essentially tight: there

is an infinite sequence of graphs for which the approximation factor of FEEDBACK

approaches arbitrarily close to 2. Consider, e.g., a graph G consisting of k triangles
{ai, bi, ci}, i = 1, . . . , k, which are chained together by edges {bi, ai+1}, i = 1, . . . , k−1,
and {bk, a1} (see Figure 4.1). Suppose now that G is degree-proportionally weighted,
e.g., w(ai) = w(bi) = 2, and w(ci) = 1, ∀i. The set A = {ai : 1 ≤ i ≤ k} is a minimal
FVS with w(A) = 2k. On the other hand, an optimal FVS could be formed by ci’s,
1 ≤ i ≤ k − 1, plus a1, with its weight totaling (k − 1) + 2 = k + 1.

296 VINEET BAFNA, PIOTR BERMAN, AND TOSHIHIRO FUJITO

Fig. 4.1. Example with ratio = 2.

5. Final remarks. In this paper we have presented a simple and efficient ap-
proximation algorithm for the FVS problem on undirected graphs, with a performance
ratio of at most 2. While this ratio matches the best constant approximation factor
known for the VC problem, there still exists a small gap from the overall best of
2− log logn/2 logn for VC. Also, some related directions for further research are sug-
gested when it is taken into account that VC, when restricted to some special classes
of graphs, becomes polynomially solvable or easier to approximate. For instance, one
of the well-studied cases occurs when graphs are restricted to be of small vertex de-
gree, for which currently the best-known bound is 2− 3/(∆ + 2) [10], where ∆ is the
maximal vertex degree. Although the technique introduced in the paper alone is not
powerful enough to do any better for this special case, it can be shown that, when
combined with other approximation preserving reductions, it yields the performance
ratio of 2 − 2/(3∆ − 2). (Interested readers are referred to [2].) It remains an open
question whether one can approximate the FVS problem exactly as well as the VC
problem can be, whether the degree is bounded or not.

Other interesting questions for further investigation include applicability of the
techniques developed herein to other problems. For instance, see [8], where, inspired
by our work, a similar approach was employed and shown to be effective in approxi-
mation of other node-deletion problems as well.

Acknowledgment. We gratefully acknowledge a number of valuable comments
and suggestions given by the anonymous referees.

REFERENCES

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verification and hard-
ness of approximation problems, in 33rd Annual Symposium on Foundations of Computer
Science, Pittsburgh, PA, 1992, pp. 14–23.

[2] V. Bafna, P. Berman, and T. Fujito, Constant Ratio Approximations of Feedback Vertex
Sets in Weighted Undirected Graphs, Tech. Report TR-96-29, DIMACS, Piscataway, NJ,
1996.

[3] R. Bar-Yehuda and S. Even, A local-ratio theorem for approximating the weighted vertex
cover problem, in Ann. Discrete Math. 25, North–Holland, Amsterdam, 1985, pp. 27–46.

[4] R. Bar-Yehuda, D. Geiger, J. Naor, and R. M. Roth, Approximation algorithms for the
feedback vertex set problem with applications to constraint satisfaction and Bayesian in-
ference, SIAM J. Comput., 27 (1998), pp. 942–959.

[5] A. Becker and D. Geiger, Approximation algorithms for the loop cutset problem, in Proceed-
ings of the 10th Conference on Uncertainty in Artificial Intelligence, San Francisco, CA,
Morgan Kaufman, 1994, pp. 60–68.

[6] P. Erdős and L. Pósa, On the maximal number of disjoint circuits of a graph, Publ. Math.
Debrecen, 9 (1962), pp. 3–12.

[7] G. Even, J. Naor, B. Schieber, and M. Sudan, Approximating minimum feedback sets and
multi-cuts in directed graphs, in Fourth Integer Programming and Combinatorial Opti-

2-APPROXIMATION ALGORITHM FOR THE FVS PROBLEM 297

mization, Lecture Notes in Comput. Sci. 920, Springer-Verlag, New York, 1995, pp. 14–28.
[8] T. Fujito, A unified approximation algorithm for node-deletion problems, Discrete Appl.

Math., 86 (1998), pp. 213–231.
[9] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-

Completeness, W. H. Freeman, New York, 1979.
[10] M. Halldórsson and H. Lau, Low-degree graph partitioning via local search with applications

to constraint satisfaction, max cut, and coloring, J. Graph Algorithms Appl., 1 (1997),
pp. 1–13.

[11] J. Håstad, Some optimal in-approximability results, in Proceedings of the 29th Annual ACM
Symposium on Theory of Computing, El Paso, TX, 1997, pp. 1–10.

[12] R. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computa-
tions, R. Miller and J. Thatcher, eds., Plenum Press, New York, 1972, pp. 85–103.

[13] J. Lewis and M. Yannakakis, The node-deletion problem for hereditary properties is NP-
complete, J. Comput. System Sci., 20 (1980), pp. 219–230.

[14] B. Monien and R. Schulz, Four approximation algorithms for the feedback vertex set prob-
lem, in Proceedings of the Seventh Conference on Graph Theoretic Concepts of Computer
Science, Munich, Hanser Verlag, 1981, pp. 315–326.

[15] B. Monien and E. Speckenmeyer, Ramsey numbers and an approximation algorithm for the
vertex cover problem, Acta Inform., 22 (1985), pp. 115–123.

[16] C. Papadimitriou and M. Yannakakis, Optimization, approximation and complexity classes,
J. Comput. System Sci., 43 (1991), pp. 425–440.

SWITCHING DISTANCE BETWEEN GRAPHS
WITH THE SAME DEGREES∗

TODD G. WILL†

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 3, pp. 298–306

Abstract. A switching replaces a pair of edges ab, cd of a graph G with the pair ac, bd of G.
If G and H have the same degree sequence, then G can be transformed into H by a sequence of
switchings. We show that finding the minimum number of switchings required to transform G into
H is equivalent to finding the maximum size of a symmetric circuit partition of G∆H. Computing
this latter quantity is shown to be NP-complete.

Key words. graph, switching, degree sequence, NP-complete

AMS subject classifications. 05C12, 68Q25

PII. S0895480197331156

1. Introduction. In a simple graph, replacing a pair of edges ab, cd of G with
the pair ac, bd of G is called a switching, since it switches a pair of edges for a pair of
nonedges. Notice that a switching does not change the vertex degrees of G. We say
that simple graphs G and H have the same degrees if they share the same vertex set
V and, ∀v ∈ V , dG(v) = dH(v).

Given any graph G, Γ(G) is the graph with a vertex corresponding to each graph
with the same degrees as G, with two vertices adjacent if and only if the corresponding
graphs differ by a single switching [1]. It is not difficult to show that for any simple
graph G, Γ(G) is connected [6]. Majcher extended this result to multigraphs and
provided a procedure for finding a path (i.e., a sequence of switchings) between any two
(multi-)graphs with the same degrees [3]. For simple graphs, Taylor has shown that
the subgraph of Γ(G) induced by vertices corresponding to connected or 2-connected
graphs is itself connected [4, 5].

For graphs G and H with the same degrees, we define the switching distance
between G and H, d(G,H) to be the distance between G and H in Γ(G). In other
words, d(G,H) is the minimum number of switchings required to transform G into H.
In this paper we relate d(G,H) to an edge-partition problem and show that computing
d(G,H) is NP-complete.

Given two graphs G and H on the same vertex set V , let G ∪ H and G − H
denote the graphs on V with edge sets E(G) ∪E(H) and E(G) \E(H), respectively.
The symmetric difference graph G∆H can then be defined as (G − H) ∪ (H − G).
A circuit is a positive length closed walk which traverses any edge at most once;
however, it differs from a cycle in that it may use a vertex more than once. We
define a symmetric circuit in G∆H as a circuit whose edges alternate between G−H
and H − G. A symmetric circuit partition of G∆H is a set of pairwise edge-disjoint
symmetric circuits using all the edges of G∆H. For graphs G and H with the same
degrees, let m(G∆H) be the maximum number of circuits in any symmetric circuit
partition of G∆H. The following lemma shows that m(G∆H) is well defined.

Lemma 1.1. If G and H have the same degrees, then G∆H can be partitioned
into edge-disjoint symmetric circuits.

∗Received by the editors December 5, 1997; accepted for publication (in revised form) November
23, 1998; published electronically September 7, 1999.

http://www.siam.org/journals/sidma/12-3/33115.html
†Mathematics Department, Davidson College, Davidson, NC 28036-1719 (towill@davidson.edu).

298

SWITCHING DISTANCE BETWEEN GRAPHS WITH THE SAME DEGREES 299

a

b

c

d

e

f

Fig. 2.1.

Proof. Color the edges in E(G)−E(H) blue and the edges in E(H)−E(G) red.
The key fact is that for any vertex v, the number of blue edges incident to v is the
same as the number of red edges incident to v. This is because dG(v) = dH(v) and the
only edges of G or H not appearing in G∆H are those appearing in both G and H.
Thus, we may start at an arbitrary vertex x and begin a trail which alternates color.
When we enter any vertex other than x on a edge of a given color, there must be an
edge of the opposite color to exit on. Hence, we can continue along any alternating
trail until we return to our starting point on a color opposite the one we first left on.
After removing this circuit, each vertex is still incident to the same number of red and
blue edges. Hence we can use this symmetric circuit in the partition, and partition
the remaining edges by induction.

The main results of this paper show that if G and H have the same degrees, then
d(G,H) = 1

2 |E(G∆H)| −m(G∆H), and that computing m(G∆H) is NP-complete.

2. Relating d(G,H) and m(G∆H). We view a graph G as a two-coloring
of the complete graph with edges of G colored blue and edges of G colored red. An
alternating circuit is a circuit whose edges alternate between red and blue. Reversing
an alternating circuit in G means interchanging the coloring on the circuit and leaving
fixed the colors of the edges not in the circuit. In this language, a switching is a
transformation that reverses an alternating circuit of length 4.

Note that if C is a symmetric circuit in G∆H, then C is an alternating circuit in
G (and H as well). Reversing C in G (or H) removes C from G∆H, thus bringing G
and H closer together. Because of this connection, we are interested in the number
of switchings required to reverse an alternating circuit.

First we fix some notation. We specify a circuit C by listing its vertices in cyclic
order and write xy ∈ C to indicate that x and y occur consecutively in the sequence
in either order. For any cyclic sequence (v1, . . . , vn, v1), let [i, j] be the sequence
(vi, vi+1, . . . , vj) and [i, j]+ be the cyclic sequence (vi, vi+1, . . . , vj , vi).

The results that we prove for circuits are much easier to prove for cycles. For
this reason we would like to measure how far a circuit is from being a cycle. To this
end, given a circuit C = (v1, . . . , vs, v1), for each index i let D(i) be the set of indices
j /∈ {i − 1, i, i + 1} such that vj = vi or vjvi ∈ C. For example, consider the circuit
C = (v1, . . . , v9, v1) = (b, c, a, d, c, e, d, f, e, b) in the graph shown in Figure 2.1. For
this circuit, v1 = b, v2 = v5 = c, v3 = a, v4 = v7 = d, v6 = v9 = e, v8 = f , and
D(1) = {5, 6}, D(2) = {4, 5, 6, 7, 9}.

Lemma 2.1. Let C = (v1, . . . , v2s, v1) be an alternating circuit C. If there exist
indices j > i + 1 of opposite parity such that j /∈ D(i), then reversing C can be
accomplished by reversing two shorter alternating circuits of length j − i + 1 and
2s− j + i+ 1.

Proof. The hypotheses j > i + 1 and j /∈ D(i) imply vivj /∈ C. Regardless

300 TODD G. WILL

a

b

cd

e

a

b

cd

e

a

b

cd

e

a

b

cd

e

Fig. 2.2.

of the color of vivj , exactly one of the sequences [i, j]+ and [j, i]+ is an alternating
circuit. Reversing this circuit changes the color of vivj , making the other sequence
an alternating circuit. Reversing the second circuit restores the original color to vivj
and completes the reversal of C. One of the circuits has length j− i+1 and the other
2s− (j − i) + 1.

Lemma 2.2. Reversing an alternating circuit of length 2s requires at most s− 1
switchings.

Proof. The proof is by induction on s. Let C = (v1, . . . , v2s, v1) be an alternating
circuit of length 2s. For s = 2, the reversal of C is a single switching, so suppose
s > 2. Suppose there exist indices i < j of the same parity with vi = vj . We can
partition the edges of C into two shorter alternating circuits, [i, j] and [j, i] of lengths
j − i and 2s − j + i, respectively. By the induction hypothesis each of these can be
reversed, using a total of at most (1

2 (j − i)− 1) + (s+ 1
2 (i− j)− 1) switchings. Thus

C can be reversed by a sequence of at most s− 2 switchings. Henceforth we assume
that each vertex appears at most twice in C, once with an index of each parity.

In particular this implies that if a vertex vi appears exactly once in C, then
∀j ∈ D(i), vj must be the opposite parity occurrence of either vi−1 or vi+1, and
therefore i and j have the same parity. Also, if a vertex vi appears twice, then there
are at most 3 elements of D(i) with parity opposite of i. One of them will be the
unique k such that vi = vk. For any other such index j 6= k, vj must be the opposite
parity occurrence of either vk−1 or vk+1.

Case 1. Some vertex vi appears in the circuit exactly once and s ≥ 3. By relabel-
ing, if necessary, we may assume that i+3 ≤ 2s. As noted above, any element of D(i)
has the same parity as i, so in particular i+3 /∈ D(i). Thus we may apply Lemma 2.1
with indices i and j = i+ 3. The lemma says that we can reverse C by reversing two
shorter circuits of length (i+ 3)− i+ 1 = 4 and 2s− (i+ 3) + i+ 1 = 2s− 2. By the
induction hypothesis we can accomplish this with at most (4

2 −1)+(2s−2
2 −1) = s−1

switchings.
Case 2. Each vertex appears exactly twice, once with each parity, and s ≥ 6.

Since there are at most 3 elements of D(1) with even parity, ∃j ∈ {4, 6, 8, 10}−D(1).
Applying Lemma 2.1 with i = 1 and j implies that we can reverse C by reversing two
shorter circuits of length j − 1 + 1 and 2s− (j − 1) + 1. By the induction hypothesis
we can accomplish this in at most (j2 − 1) + (2s−j+2

2 − 1) = s− 1 steps.
Remaining cases. Each vertex appears exactly twice, once with each parity, and

s ∈ {3, 4, 5}. This means that the edges of the alternating circuit comprise two edge-
disjoint 2-regular graphs on s vertices, one blue and the other red. For s = 3 or
4, this is impossible. For s = 5, the only possibility is shown in Figure 2.2, where
we give an explicit sequence of length 3 to reverse C: first {ab, cd} → {ac, bd}, then
{ae, bc} → {ab, ec}, and finally {ab, de} → {ad, be}.

Lemma 2.2 yields the following lemma, which, for k = m(G∆H), provides half of

SWITCHING DISTANCE BETWEEN GRAPHS WITH THE SAME DEGREES 301

our desired equality.
Lemma 2.3. If G and H have the same degrees and G∆H can be partitioned into

k symmetric circuits, then d(G,H) ≤ 1
2 |E(G∆H)| − k.

Proof. By assumption, G∆H can be partitioned into symmetric circuits C1, . . . , Ck
with lengths 2s1, . . . , 2sk so that

∑k
i=1 2si = |E(G∆H)|. Reversing all of the corre-

sponding alternating circuits Ci in G transforms G into H. By Lemma 2.2, reversing
all of these alternating circuits requires at most

∑k
i=1(si−1) = |E(G∆H)|−k switch-

ings.
The next result shows that a switching can decrease the quantity 1

2 |E(G∆H)| −
m(G∆H) by at most one. Since G = H if and only if 1

2 |E(G∆H)| −m(G∆H) = 0,
it follows that d(G,H) ≥ 1

2 |E(G∆H)| −m(G∆H).
Lemma 2.4. Let G and H have the same degrees and let G′ be obtained from G

by a switching. If F = G∆H and F ′ = G′∆H, then(
1

2
|E(F)| −m(F)

)
−
(

1

2
|E(F ′)| −m(F ′)

)
≤ 1.

Proof. Since both |E(F)| and |E(F ′)| are even, we can choose t so that 2t =
|E(F)| − |E(F ′)|. Most of the work for this lemma is to establish the following claim:
If F ′ can be partitioned into k symmetric circuits, then F can be partitioned into
k+ t− 1 symmetric circuits. The claim guarantees that m(F) ≥ m(F ′) + t− 1, which
makes it easy to compute(|E(F)|

2
−m(F)

)
−
(|E(F ′)|

2
−m(F ′)

)
= t−m(F) +m(F ′)

≤ t− (m(F ′) + t− 1) +m(F ′) = 1.

Proof of claim. Let {ab, cd} → {ac, bd} be the switching in G and suppose F ′ can
be partitioned into k symmetric circuits. The proof is broken into cases depending
on which of the edges in T = {ab, bd, cd, ac} are present in H. Associated with each
case is a picture in Figure 2.3 showing edges of G and H on the left and edges of G′

and H on the right with respect to these four vertex pairs. The solid lines represent
edges of G or G′; the dashed, edges of H.

Case (i). Suppose E(H) ∩ T = {ac, bd}. Here t − 1 = 1, so we must show that
F can be partitioned into k + 1 symmetric circuits. This is easy. Simply add the
symmetric circuit (a, c, b, d, a) to the partition of F ′.

Case (ii). Suppose E(H)∩T = {ac}. Here t−1 = 0, so we must show that F can
be partitioned into k symmetric circuits. Take the symmetric circuit in F ′ containing
the edge bd and replace bd with the path bacd to obtain a partition of F with the
same number of circuits. By symmetry, this also covers the case E(H) ∩ T = {bd}.

Case (iii). Suppose E(H) ∩ T = {ac, bd, ab}. Similarly to Case (ii), replace the
edge ab in the partition of F ′ with the path acdb to obtain a partition of F . By
symmetry this also covers the case E(H) ∩ T = {ac, bd, cd}.

Case (iv). Suppose E(H) ∩ T is empty. Here t − 1 = −1, so we must show that
F can be partitioned into at least k− 1 symmetric circuits. First, suppose that in the
partition of F ′ the edges ac and bd are in separate circuits, C1 = (a, c, u1, . . . , ura)
and C2 = (d, b, v1, . . . , vs, d). Then we can replace C1 and C2 with the single cir-
cuit (a, b, v1, . . . , vs, d, c, u1, . . . , ur, a). Second, suppose ac and bd are in the same
circuit C. Starting with the edge from a to c, if d occurs before b then replace
C = (a, c, u1, . . . , ur, d, b, v1, . . . , vs, a) with the two circuits (d, c, u1, . . . , ur, d) and

302 TODD G. WILL

a a

b b

c c

d d

(vii)

a a

b b

c c

d d

(viii)

a a

b b

c c

d d

(ix)

a a

b b

c c

d d

(iv)

a a

b b

c c

d d

(v)

a a

b b

c c

d d

(vi)

a a

b b

c c

d d

(i)

a a

b b

c c

d d

(ii)

a a

b b

c c

d d

(iii)

Fig. 2.3.

(a, b, v1, . . . , vs, a). Alternatively, if b occurs before d, then replace C = (a, c, u1, . . . , ur,
b, d, v1, . . . , vs, a) with the circuit (a, b, ur, . . . , u1, c, d, v1, . . . , vs, a). For each possi-
bility we have produced a partition of F containing at least k− 1 symmetric circuits.

Case (v). Suppose E(H) ∩ T = T . Again t− 1 = −1 and we can apply the same
argument as in Case (iv).

We now pause to make a general argument which we will apply in the remain-
ing cases. Let S = v1, v2, . . . , vr be a trail in F ′ whose edges alternate between
E(G′) − E(H) and E(H) − E(G′). Let C1, . . . , Cr be the symmetric circuits in the
partition of F ′ which contain any edge from S. Then, by the argument in Lemma 1.1,
we can repartition the edges in C1, . . . , Cr into possibly different symmetric circuits
C ′1, . . . , C

′
s where S occurs as a subtrail of circuit C ′1.

Case (vi). Suppose |E(H) ∩ {ac, bd}| = |E(H) ∩ {ab, cd}| = 1. By symmetry we
may assume E(H) ∩ T = {ac, cd}. Here t− 1 = −1, so we must show how F can be
partitioned into at least k − 1 symmetric circuits. Let C1, . . . , Cr be the symmetric
circuits in the partition of F ′ which contain either bd or cd. Repartition the edges in
C1, . . . , Cr into symmetric circuits C ′1, . . . , C

′
s where the path bdc occurs as a subtrail

of circuit C ′1. Form a partition of F by replacing C1, . . . , Cr with C ′1, . . . , C
′
s and

replacing the path bdc in C ′1 with the path bac. Since r ≤ 2 and s ≥ 1 the partition
contains at least k − 1 symmetric circuits.

Case (vii). Suppose E(H)∩T = {cd}. Here t−1 = −2, so we must show how F can
be partitioned into at least k−2 symmetric circuits. Let C1, . . . , Cr be the symmetric
circuits in the partition of F ′ which contain any of {ac, cd, db}. Repartition the edges
in C1, . . . , Cr into symmetric circuits C ′1, . . . , C

′
s where the path acdb occurs as a

subtrail of circuit C ′1. Form a partition of F by replacing C1, . . . , Cr with C ′1, . . . , C
′
s

and replacing the path acdb in C ′1 with the edge ab. Since r ≤ 3 and s ≥ 1, the
partition contains at least k−2 symmetric circuits. By symmetry, this argument also
covers the case E(H) ∩ T = {ab}.

Case (viii). Suppose E(H) ∩ T = {ba, ac, cd}. Here t− 1 = −2, so we must show

SWITCHING DISTANCE BETWEEN GRAPHS WITH THE SAME DEGREES 303

Fig. 3.1. Li,j corresponding to literal li,j .

how F can be partitioned into at least k− 2 symmetric circuits. The argument is the
same as in Case (vii) and by symmetry can also be applied to the case E(H) ∩ T =
{ba, bd, cd}.

Case (ix). Suppose E(H)∩ T = {ab, cd}. Here t− 1 = −3, so we must show how
F can be partitioned into at least k − 3 symmetric circuits. Let C1, . . . , Cr be the
symmetric circuits in the partition of F ′ which contain any edge of C. Repartition
the edges in C1, . . . , Cr into symmetric circuits C ′1, . . . , C

′
s where C ′1 = acdba. Form

a partition of F by replacing C1, . . . , Cr with C ′2, . . . , C
′
s. Since r ≤ 4 and s ≥ 1 we

have at least k − 3 circuits, unless s = 1. But in that case r must be equal to 1 as
well; thus we have k − 1 circuits.

Lemma 2.3 and Lemma 2.4 together establish the following theorem.
Theorem 2.5. For graphs G and H with the same degrees, d(G,H) = 1

2 |E(G∆H)|−
m(G∆H).

3. Computational complexity. In this section, we demonstrate that computing
m(G∆H), or equivalently, d(G,H), is NP-complete. To do this we introduce two de-
cision problems.

Symmetric Circuits Partition (SCP): Given two simple graphs G,H with
the same degrees and an integer k, is there an edge-partition of G∆H into k or more
symmetric circuits?

Disjoint Directed Triangles (DDT): Given an oriented graph with equal
in-degree and out-degree at each vertex, is there a partition of the arcs into directed
3-cycles?

First, by modifying a proof of Holyer [2], we reduce 3-SAT, a well-known NP-
complete problem, to DDT. Afterwards, using a much simpler argument, we reduce
DDT to SCP.

Theorem 3.1. Disjoint Directed Triangles (DDT) is NP-hard.
Proof. Let C1, . . . , Cr with variables {x1, . . . , xs} be the clauses in an instance of

3-SAT, where each clause Ci consists of three literals {li,1, li,2, li,3}. Our goal is to
construct an oriented graph G that can be partitioned into directed 3-cycles if and
only if the given instance of 3-SAT is satisfiable.

For each literal li,j we create a copy Li,j of the toroidal digraph in Figure 3.1, with
the arrows indicating the edges to be identified (each edge on the outside boundary
of the graph appears twice). In each of the figures, bold arcs will appear in exactly
three 3-cycles of G while light arcs will appear in exactly two 3-cycles. Let Ti,j be the
3-cycle of bold edges in Li,j .

304 TODD G. WILL

Fig. 3.2. Hi corresponding to clause Ci.

Fig. 3.3. Gx corresponding to variable x.

For each clause Ci = {li,1, li,2, li,3}, create a digraph Hi by identifying the graphs
Li,1, Li,2, Li,3 along the bold 6-cycles as shown in Figure 3.2. Since each Li,j is
toroidal, each edge in the bold 6-cycle appears in exactly three 3-cycles of Hi.

For each variable x, create a toroidal graph Gx like the one shown in Figure 3.3.
We refer to the bold 3-cycles which point up as T-cycles, those pointing down as
F-cycles. Extend the graph to the left and right far enough so that there are as many
T-cycles as there are occurrences of x as a literal, and as many F-cycles as there are
occurrences of x as a literal.

Finally, to construct G, make the following identifications of 3-cycles. If li,j = x,
then identify Ti,j with a unique T-cycle of Gx. If li,j = x, then identify Ti,j with a
unique F-cycle of Gx. This identification causes each edge of every bold 3-cycle to
appear in exactly three 3-cycles.

Now suppose there is a partition P of G into directed triangles. Consider an edge
e from the bold 6-cycle in some subgraph Hi. The partition must contain exactly one
of the three 3-cycles in Hi containing e. Place a 1 in this 3-cycle to indicate that it is
in the partition and then apply the following inference rules:

• Place a 0 in a 3-cycle if it shares any arc with a 3-cycle containing a 1.
• Place a 1 in a 3-cycle if it shares a light arc with a 3-cycle containing a 0.

Placing a 0 in a 3-cycle indicates that the 3-cycle is not in the partition. Thus
the first inference rule is justified since P is a partition of the edges. The second rule
is justified since each light arc appears in only two 3-cycles. After applying the two
rules as often as possible, place an * in any remaining 3-cycles.

This procedure leads to three possible partitions of Hi, depending on which of the

SWITCHING DISTANCE BETWEEN GRAPHS WITH THE SAME DEGREES 305

three 3-cycles using e appears in the partition. In each case, one of the bold 3-cycles
contains a 0 and the other two bold 3-cycles contain *’s. Moreover, in each case there
is a 1 in each of the 3-cycles in Hi that shares an arc with the bold 3-cycle containing
0.

Depending on the partition P , applying the same inference rules to each subgraph
Gx results in either all of the F -cycles containing * and all the T -cycles containing 0
or vice versa. Moreover, in each case there is a 1 in each of the 3-cycles in Gx that
shares an arc with a bold 3-cycle containing 0. Taken together with our assessment
of Hi, we learn that the bold 3-cycle in Hi containing 0 cannot be identified with a
bold 3-cycle in Gx containing 0 since this would result in the edges of the identified
3-cycle appearing in more than one 3-cycle of P .

We now make a satisfying assignment. If the T-cycles of Gx contain *’s, then let
x be true. On the other hand, if the F-cycles of Gx contain *’s, then let x be false.
We claim that this assignment satisfies each Ci. To show this, we need to show for
each i that at least one of {li,1, li,2, li,3} is true. Let Ti,j be the bold 3-cycle of Hi

containing the 0.

Case (1). If li,j = x, then Ti,j is identified with a T-cycle of Gx. We already have
argued that Ti,j cannot be identified with a 3-cycle containing a 0, so the T-cycle
must contain a *, which implies that x is true and so satisfies the clause.

Case (2). If li,j = x, then Ti,j is identified with an F-cycle of Gx. Again we
know that Ti,j cannot be identified with a 3-cycle containing a 0, so the F -cycle must
contain a * which implies that x is false and so x satisfies the clause.

In the other direction, suppose there exists a satisfying assignment. If the variable
x is assigned true, then place 0’s in the F-cycles of Gx and apply the inference rules.
If the variable x is assigned false, then place 0’s in the T-cycles of Gx and apply the
inference rules. For each clause Ci, choose one true literal li,j and partition Hi so
that Ti,j is the bold 3-cycle containing the 0. Let P consist of all 3-cycles containing
a 1. The only edges of G not in P are those in 3-cycles formed by the identification
of two *’s. These can be added to P to complete the partition.

We now show formally that computing m(G∆H) is NP-complete by showing that
SCP is NP-complete.

Theorem 3.2. SCP is NP-complete.

Proof. It is easy to determine whether k or more circuits are all symmetric and
partition G∆H. Hence SCP is in NP. To see that SCP is NP-hard, we reduce from
DDT. An instance of DDT consists of a digraph D with equal in-degree and out-
degree at each vertex. Form a two-colored simple graph from D by subdividing each
arc x → y into x → mxy → y and replacing x → mxy with a red edge and mxy → y
with a blue edge. Let G be the subgraph of red edges, and let H be the subgraph of
blue edges. Note that G and H have the same vertex degrees and that the shortest
circuit in G∆H has length 6. If D has 3t arcs, then G∆H has 6t edges and can be
edge-partitioned into at least t symmetric circuits if and only if D can be partitioned
into directed triangles.

REFERENCES

[1] R. B. Eggleton and D. A. Holton, Graphic sequences, in Combinatorial Mathematics VI,
Proceedings of the Sixth Australian Conference, University of New England, Armidale,
1978, Springer, Berlin, 1979, pp. 1–10.

[2] I. Holyer, The NP-completeness of some edge-partition problems, SIAM J. Comput., 10 (1981),
pp. 713–717.

306 TODD G. WILL

[3] Z. Majcher, Alternating cycles and realizations of a degree sequence, Comment. Math. Univ.
Carolin., 28 (1987), pp. 467–480.

[4] R. Taylor, Constrained switchings in graphs, in Combinatorial Mathematics VIII (Geelong,
1980), Springer, Berlin, 1981, pp. 314–336.

[5] R. Taylor, Switchings constrained to 2-connectivity in simple graphs, SIAM J. Alg. Discrete
Methods, 3 (1982), pp. 114–121.

[6] D. B. West, Introduction to Graph Theory, Prentice-Hall, Upper Saddle River, NJ, 1996.

EDGE-BANDWIDTH OF GRAPHS∗

TAO JIANG† , DHRUV MUBAYI‡ , ADITYA SHASTRI§ , AND DOUGLAS B. WEST†

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 3, pp. 307–316

Abstract. The edge-bandwidth of a graph is the minimum, over all labelings of the edges with
distinct integers, of the maximum difference between labels of two incident edges. We prove that edge-
bandwidth is at least as large as bandwidth for every graph, with equality for certain caterpillars. We
obtain sharp or nearly sharp bounds on the change in edge-bandwidth under addition, subdivision,
or contraction of edges. We compute edge-bandwidth for Kn, Kn,n, caterpillars, and some theta
graphs.

Key words. bandwidth, edge-bandwidth, clique, biclique, caterpillar

AMS subject classifications. 05C78, 05C35

PII. S0895480197330758

1. Introduction. A classical optimization problem is to label the vertices of a
graph with distinct integers so that the maximum difference between labels on ad-
jacent vertices is minimized. For a graph G, the optimal bound on the differences
is the bandwidth B(G). The name arises from computations with sparse symmetric
matrices, where operations run faster when the matrix is permuted so that all en-
tries lie near the diagonal. The bandwidth of a matrix M is the bandwidth of the
corresponding graph whose adjacency matrix has a 1 in those positions where M is
nonzero. Early results on bandwidth are surveyed in [2] and [3].

In this paper, we introduce an analogous parameter for edge-labelings. An edge-
numbering (or edge-labeling) of a graph G is a function f that assigns distinct integers
to the edges of G. We let B′(f) denote the maximum of the difference between labels
assigned to adjacent (incident) edges. The edge-bandwidth B′(G) is the minimum of
B′(f) over all edge-labelings. The term “edge-numbering” is used because we may
assume that f is a bijection from E(G) to the first |E(G)| natural numbers.

We use the notation B′(G) for the edge-bandwidth of G because it is immediate
that the edge-bandwidth of a graph equals the bandwidth of its line graph. Thus
well-known elementary bounds on bandwidth can be applied to line graphs to obtain
bounds on edge-bandwidth. We mention several such bounds. We compute edge-
bandwidth on a special class where all these bounds are arbitrarily bad.

The relationship between edge-bandwidth and bandwidth is particularly inter-
esting. Always B(G) ≤ B′(G), with equality for caterpillars of diameter more than
k in which every vertex has degree 1 or k + 1. Among forests, B′(G) ≤ 2B(G),
which is almost sharp for stars. More generally, if G is a union of t forests, then
B′(G) ≤ 2tB(G) + t− 1.

Chvátalová and Opatrný [5] studied the effect on bandwidth of edge addition,
contraction, and subdivision (see [22] for further results on edge addition). We study

∗Received by the editors December 1, 1997; accepted for publication (in revised form) January 8,
1999; published electronically September 7, 1999.

http://www.siam.org/journals/sidma/12-3/33075.html
†Department of Mathematics, University of Illinois, Urbana, IL 61801-2975 (west@math.

uiuc.edu, j-tao@math.uiuc.edu).
‡School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160

(mubayi@math.gatech.edu).
§Department of Computer Science, Banasthali University, P.O. Banasthali Vidyapith, Rajasthan

304 022, India (shastri@bv.ernet.in).

307

308 T. JIANG, D. MUBAYI, A. SHASTRI, AND D. B. WEST

these for edge-bandwidth. Adding or contracting an edge at most doubles the edge-
bandwidth. Subdividing an edge decreases the edge-bandwidth by at most a factor of
1/3. All these bounds are sharp within additive constants. Surprisingly, subdivision
can also increase edge-bandwidth, but at most by 1, and contraction can decrease it
by 1.

Because the edge-bandwidth problem is a restriction of the bandwidth problem,
it may be easier computationally. Computation of bandwidth is NP-complete [17],
remaining so for trees with maximum degree 4 [8] and for several classes of caterpillar-
like graphs [11, 16]. Such graphs generally are not line graphs (they contain claws).
It remains open whether computing edge-bandwidth (computing bandwidth of line
graphs) is NP-hard.

Due to the computational difficulty, bandwidth has been studied on various spe-
cial classes. Bandwidth has been determined for caterpillars and for various gener-
alizations of caterpillars [1, 11, 14, 21], for complete k-ary trees [19], for rectangular
and triangular grids [4, 10] (higher dimensions [9, 15]), for unions of pairwise in-
ternally disjoint paths with common endpoints (called “theta graphs” [6, 13, 18]),
etc. Polynomial-time algorithms exist for computing bandwidth for graphs in these
classes and for interval graphs [12, 20]. We begin analogous investigations for edge-
bandwidth by computing the edge-bandwidth for cliques, for equipartite complete
bipartite graphs, and for some theta graphs.

2. Relation to other parameters. We begin by listing elementary lower bounds
on edge-bandwidth that follow from standard arguments about bandwidth when ap-
plied to line graphs.

Proposition 2.1. Edge-bandwidth satisfies the following:
(a) B′(H) ≤ B′(G) when H is a subgraph of G.
(b) B′(G) = max{B′(Gi)}, where {Gi} are the components of G.
(c) B′(G) ≥ ∆(G)− 1.

Proof. (a) A labeling of G contains a labeling of H. (b) Concatenating labelings
of the components achieves the lower bound established by (a). (c) The edges incident
to a single vertex induce a clique in the line graph. The lowest and highest among
these labels are at least ∆(G)− 1 apart.

Proposition 2.2. B′(G) ≥ maxH⊆G
⌈

e(H)−1
diam (L(H))

⌉
.

Proof. This is the statement of Chung’s “density bound” [3] for line graphs.
Every labeling of a graph contains a labeling of every subgraph. In a subgraph H, the
lowest and highest labels are at least e(H) − 1 apart, and the edges receiving these
labels are connected by a path of length at most diam (L(H)), so by the pigeonhole
principle some consecutive pair of edges along the path have labels differing by at
least (e(H)− 1)/diam (L(H)).

Subgraphs of diameter 2 include stars, and a star in a line graph is generated
from an edge of G with its incident edges at both endpoints. The size of such a
subgraph is at most d(u) + d(v)− 1, yielding the bound B′(G) ≥ [d(u) + d(v)]/2− 1
for uv ∈ E(G). This is at most ∆(G) − 1, the lower bound from Proposition 2.1.
Nevertheless, because of the way in which stars in line graphs arise, they can yield a
better lower bound for regular or nearly regular graphs. We develop this next.

Proposition 2.3. For F ⊆ E(G), let ∂(F) denote the set of edges not in F
that are incident to at least one edge in F . The edge-bandwidth satisfies B′(G) ≥
maxk min|F |=k |∂(F)|.

Proof. This is the statement of Harper’s “boundary bound” [9] for line graphs.

EDGE-BANDWIDTH OF GRAPHS 309

Some set F of k edges must be the set given the k smallest labels. If m edges outside
this set have incidents with this set, then the largest label on the edges of ∂F is at
least k +m, and the difference between the labels on this and its incident edge in F
is at least m.

Corollary 2.4. B′(G) ≥ minuv∈E(G) d(u) + d(v)− 2.

Proof. We apply Proposition 2.3 with k = 1. Each edge uv is incident to d(u) +
d(v) − 2 other edges. Some edge must have the least label, and this establishes the
lower bound.

Although these bounds are often useful, they can be arbitrarily bad. The theta
graph Θ(l1, . . . , lm) is the graph that is the union of m pairwise internally disjoint
paths with common endpoints and lengths l1, . . . , lm. The name “theta graph” comes
from the case m = 3. The bandwidth is known for all theta graphs, but settling
this was a difficult process finished in [18]. When the path lengths are equal, the
edge-bandwidth and bandwidth both equal m, using the density lower bound and a
simple construction. The edge-bandwidth can be much higher when the lengths are
unequal. Our example showing this will later demonstrate sharpness of some bounds.

Our original proof of the lower bound was lengthy. The simple argument presented
here originated with Dennis Eichhorn and Kevin O’Bryant. It will be generalized in
[7] to compute edge-bandwidth for a large class of theta graphs.

Example A. Consider G = Θ(l1, . . . , lm) with lm = 1 and l1 = · · · = lm−1 = 3. Let
ai, bi, ci denote the edges of the ith path of length 3, and let e be the edge incident to
all ai’s at one end and to all ci’s at the other end. Since ∆(G) = m, Proposition 2.1(c)
yields B′(G) ≥ m−1. Proposition 2.2 also yields B′(G) ≥ m−1. For 1 ≤ k ≤ 2m−2,
the first k edges in the list a1, . . . , am−1, b1, . . . , bm−1 are together incident to exactly
m other edges, and larger sets are incident to at most m − 1 other edges. Thus the
best lower bound from Proposition 2.3 is at most m.

Nevertheless, B′(G) = d(3m− 3)/2e. For the upper bound, we assign the 3m− 2
labels in order to a’s, b’s, and c’s, inserting e before bdm/2e. The difference between
labels of incidence edges is always at most m except for incidences involving e, which
are at most d(3m− 3)/2e since e has the middle label.

a1, . . . , am−1, b1, . . . , bdm/2e−1, e, bdm/2e, . . . , bm−1, c1, . . . , cm−1

To prove the lower bound, consider a numbering f of E(G) by distinct integers and
let k = B′(f). Let α = max{f(e),maxi{f(ai)}} and α′ = min{f(e),mini{f(ci)}}.
Comparing the edges with labels α, f(e), α′ yields α−k ≤ f(e) ≤ α′+k. Let I be the
interval [α− k, α′+ k]. By construction, I contains the labels of all a’s, all c’s, and e.
If f(ai) < α′ and f(ci) > α, then also f(bi) ∈ I. By the choice of α, α′, avoiding this
requires α′ < f(ai) ≤ α or α′ ≤ f(ci) < α. Since each label is assigned only once and
the label f(e) cannot play this role, only α − α′ of the b’s can have labels outside I.
Counting the labels we have forced into I yields |I| ≥ (2m − 1) + (m − 1 − α + α′).
On the other hand, |I| = 2k + α′ − α+ 1. Thus k ≥ (3m− 3)/2, as desired.

3. Edge-bandwidth vs. bandwidth. In this section we prove various best-
possible inequalities involving bandwidth and edge-bandwidth. The proof thatB(G) ≤
B′(G) requires several steps. All steps are constructive. When f or g is a labeling of
the edges or vertices of G, we say that f(e) of g(v) is the f -label or g-label of the edge
e or vertex v. An f -label on an edge incident to u is an incident f-label of u.

Lemma 3.1. If a finite graph G has minimum degree at least two, then B(G) ≤
B′(G).

310 T. JIANG, D. MUBAYI, A. SHASTRI, AND D. B. WEST

Proof. From an optimal edge-numbering f (such that B′(f) = B′(G) = m), we
define a labeling g of the vertices. The labels used by g need not be consecutive, but
we show that |g(u)− g(v)| ≤ m when u and v are adjacent.

We produce g in phases. At the beginning of each phase, we choose an arbitrary
unlabeled vertex u and call it the active vertex. At each step in a phase, we select the
unused edge e of smallest f -label among those incident to the active vertex. We let
f(e) be the g-label of the active vertex, mark e used, and designate the other endpoint
of e as the active vertex. If the new active vertex already has a label, we end the
phase. Otherwise, we continue the phase.

When we examine a new active vertex, it has an edge with least incident label,
because every vertex has degree at least 2 and we have not previously reached this
vertex. Each phase eventually ends, because the vertex set is finite and we cannot
continue reaching new vertices. The procedure assigns a label g(u) for each u ∈ V (G),
since we continue to a new phase as long as an unlabeled vertex remains.

It remains to verify that |g(u) − g(v)| ≤ m when uv ∈ E(G). Suppose that
g(u) = a = f(e) and g(v) = b = f(e′). Since each vertex is assigned the f -label of an
incident edge, we have e, e′ incident to u, v, respectively. If the edge uv is one of e, e′,
then e and e′ are incident, which implies that |g(u)− g(v)| = |f(e)− f(e′)| ≤ m.

Otherwise, we have f(uv) = c for some other value c. We may assume that a < b
by symmetry. If a < c and b < c, then |g(u)−g(v)| = b−a < c−a = f(uv)−f(e) ≤ m.
Thus we may assume that b > c. In particular, g(v) is not the least f -label incident
to v.

The algorithm assigns v a label when v first becomes active, using the least f -label
among unused incident edges. When v first becomes active, only the edge of arrival
is a used incident edge. Thus g(v) is the least incident f -label except when v is first
reached via the least-labeled incident edge. In this case, g(v) is the second smallest
incident f -label. Thus c is the least f -label incident to v and v becomes active by
arrival from u. This requires g(u) = c, which contradicts g(u) = a and eliminates the
bad case.

Lemma 3.2. If G is a tree, then B(G) ≤ B′(G).

Proof. Again we use an optimal edge-numbering f to define a vertex-labeling g
whose adjacent vertices differ by at most B′(f). We may assume that the least f -label
is 1, occurring on the edge e = uv. Assign (temporarily) g(u) = g(v) = f(e). View
the edge e as the root of G. For each vertex x /∈ {u, v}, let g(x) be the f -label of the
edge incident to x along the path from x to the root.

If xy ∈ E(G) and xy 6= uv, then we may assume that y is on the path from x to
the root. We have assigned g(x) = f(xy), and g(y) is the f -label of an edge incident
to y, so |g(x)− g(y)| ≤ B′(f).

Our labeling g fails to be the desired labeling only because we used 1 on both u
and v. Observe that the largest f -label incident to uv occurs on an edge incident to u
or on an edge incident to v but not both; we may assume the latter. Now we change
g(u) to 0. Because the differences between f(uv) and f -labels on edges incident to u
were less than B′(f), this produces the desired labeling g.

Theorem 3.3. For every graph G, B(G) ≤ B′(G).

Proof. By Proposition 2.1(b), it suffices to consider connected graphs. Let f be
an optimal edge-numbering of G; we produce a vertex labeling g. Lemma 3.2 applies
when G is a tree. Otherwise, G contains a cycle, and iteratively deleting vertices of
degree 1 produces a subgraph G′ in which every vertex has degree at least 2. The
algorithm of Lemma 3.1, applied to the restriction of f to G′, produces a vertex

EDGE-BANDWIDTH OF GRAPHS 311

labeling g of G′ in which (1) adjacent vertices have labels differing by at most B′(f),
and (2) the label on each vertex is the f -label of some edge incident to it in G′.

To obtain a vertex labeling of G, reverse the deletion procedure. This iteratively
adds a vertex x adjacent to a vertex y that already has a g-label. Assign to x the
f -label of the edge xy in the full edge-numbering f of G. Now g(x) and g(y) are the
f -labels of two edges incident to y in G, and thus |g(x)− g(y)| ≤ B′(f). The claims
(1) and (2) are preserved, and we continue this process until we replace all vertices
that were deleted from G.

A caterpillar is a tree in which the subtree obtained by deleting all leaves is a
path. One of the characterizations of caterpillars is the existence of a linear ordering
of the edges such that each prefix and each suffix forms a subtree. We show that such
an ordering is optimal for edge-bandwidth and use this to show that Theorem 3.3 is
nearly sharp.

Proposition 3.4. If G is a caterpillar, then B′(G) = ∆(G) − 1. Let G be the
caterpillar of diameter d in which every vertex has degree k + 1 or 1. If d ≥ k, then
B(G) = B′(G) = k.

Proof. Let G be a caterpillar. Let v1, . . . , vd−1 be the nonleaf vertices of the
dominating path. The diameter of G is d. Number the edges by assigning labels in
the following order: first the pendant edges incident to v1, then v1v2, then the pendant
edges incident to v2, then v2v3, etc. Since edges are incident only at v1, . . . , vd−1, this
ordering places all pairs of incident edges within ∆(G) − 1 positions of each other.
Since B′(G) ≥ ∆(G)− 1 for all G, equality holds.

For a caterpillar G with order n and diameter d, Chung’s density bound yields
B(G) ≥ (n − 1)/d. Let G be the caterpillar of diameter d in which every vertex has
degree k + 1 or 1. We have d − 1 vertices of degree k + 1, so n = (d − 1)k + 2 and
B(G) > k − k/d. When d ≥ k, we have B(G) ≥ k.

On the other hand, we have observed that B′(G) ≤ ∆(G)−1 = k for caterpillars.
By Theorem 3.3, equality holds throughout for these special caterpillars.

Theorem 3.3 places a lower bound on B′(G) in terms of B(G). We next establish
an upper bound. The arboricity is the minimum number of forests needed to partition
the edges of G.

Theorem 3.5. If G has arboricity t, then B′(G) ≤ 2tB(G) + t− 1. When t = 1,
the inequality is almost sharp; there are caterpillars with B′(G) = 2B(G)− 1.

Proof. Given an optimal number g of V (G), we construct a labeling f of E(G).
Let G1, . . . , Gt be a decomposition of G into the minimum number of forests. In each
component of each Gi, select a root. Each edge of Gi is the first edge on the path
from one of its endpoints to the root of its component in Gi; for e ∈ E(Gi), let v(e)
denote this endpoint. Define f(e) = tg(v(e)) + i.

Each vertex of each forest heads toward the root of its component in that forest
along exactly one edge, so the f -labels of the edges are distinct. Each f -label arises
from the g-label of one of its endpoints. Thus the f -labels of two incident edges arise
from the g-labels of vertices separated by distance at most 2 in G. Also, the indices of
the forests containing these edges differ by at most t−1. Thus when e, e′ are incident
we have |f(e)− f(e′)| ≤ t2B(g) + t− 1.

The bandwidth of a caterpillar is the maximum density (number of edges divided
by diameter) over subtrees [14]. This equals d∆(G)/2e whenever the vertex degrees
all lie in {∆(G), 2, 1} and the vertices of degree ∆(G) are pairwise. (Without [14],
this still holds explicitly for stars.)

312 T. JIANG, D. MUBAYI, A. SHASTRI, AND D. B. WEST

4. Effect of edge operations. In this section, we obtain bounds on the effect of
local edge operations on the edge-bandwidth. The variations can be linear in the value
of the edge-bandwidth, and our bounds are optimal except for additive constants. We
study addition, subdivision, and contraction of edges.

Theorem 4.1. If H is obtained from G by adding an edge, then B′(G) ≤ B′(H) ≤
2B′(G). Furthermore, for odd k there are examples of H = G+e such that B′(G) = k
and B′(H) ≥ 2k − 1.

Proof. The first inequality holds because G is a subgraph of H. For the second,
let g be an optimal edge-numbering of G; we produce an edge-numbering f of H such
that B′(f) ≤ 2B′(g).

If e is not incident to an edge of G, form f from g by giving e a new label higher
than the others. If only one endpoint of e is incident to an edge e′ of G, form f by
leaving the g-labels less than g(e′) unchanged, augmenting the remaining labels by 1,
and letting f(e) = g(e′) + 1. We have B(f) ≤ B(g) + 1.

Thus we may assume that the new edge e joins two vertices of G. Our construction
for this case modifies an argument in [22]. Let ei be the edge such that g(ei) = i, for
1 ≤ i ≤ B(g). Let p, q be the smallest and largest indices of edges of G incident to e,
respectively, and let r = b(p+ q)/2c.

The idea in defining f from g is to “fold” the ordering at r, renumbering out from
there so that ep and eq receive consecutive labels, and inserting e just before this.
The renumbering of the old edges is as follows:

f(ej) =

2(j − r) if r < j < q,
2(j − r) + 1 if q ≤ j,
2(r − j) + 1 if p < j ≤ r,
2(r − j) + 2 if j ≤ p.

Finally, let f(e) = min{f(ep), f(eq)}− 1 = q− p. After the edges with g-labels higher
than q or lower than p are exhausted, the new numbering leaves gaps. For edges
ei, ej ∈ E(G), we have |f(ei)− f(ej)| ≤ 2|i− j|+ 1, where the possible added 1 stems
from the insertion of e. When r is between i and j, the actual stretch is smaller.

It remains to consider incidences involving e. Suppose that e′ = ej is incident to
e. Note that 1 ≤ f(e′) ≤ q − p+ 2 = f(e) + 2; we may assume that 1 ≤ f(e′) < f(e).
If ep and eq are incident to the same endpoint of e, then 1 ≤ f(e)−f(e′) ≤ q−p+1 ≤
B(g) + 1. If ep and eq are incident to opposite endpoints of e, then e′ is incident to
ep or eq. In these two cases, we have p ≤ j ≤ p+ B(g) or q − B(g) ≤ j ≤ q. Since j
differs from p or q, respectively, by at most B(g), we obtain 1 ≤ f(e)−f(e′) ≤ 2B(g).

The bound is nearly sharp when k is odd. Let G be the caterpillar of diameter k+1
with vertices of degrees k+ 1 and 1 (see Proposition 3.4). We have e(G) = k2 + 1 and
B′(G) = B(G) = k. The graph H formed by adding the edge v1vk is a cycle of length
k plus pendant edges; each vertex of the cycle has degree k+1 except for two adjacent
vertices of degree k + 2. The diameter of L(H) is bk/2c+ 1 = (k + 1)/2, and H has

k2 + 2 edges. By Proposition 2.2, we obtain B′(H) ≥
⌈

k2+1
(k+1)/2

⌉
=
⌈
2k − 2 + 4

k+1

⌉
=

2k − 1.
Subdividing an edge uv means replacing uv by a path u,w, v passing through a

new vertex w. If H is obtained from G by subdividing one edge of G, then H is
an elementary subdivision of G. Edge subdivision can reduce the edge-bandwidth
considerably, but it increases the edge-bandwidth by at most one.

Theorem 4.2. If H is an elementary subdivision of G, then d(2B′(G) + δ)/3e ≤
B′(H) ≤ B′(G) + 1, where δ is 1 if B′(H) is odd and 0 if B′(H) is even, and these

EDGE-BANDWIDTH OF GRAPHS 313

bounds are sharp.

Proof. Suppose that H is obtained from G by subdividing edge e. From an
optimal edge-numbering g of G, we obtain an edge-numbering of H by augmenting
the labels greater than g(e) and letting the labels of the two new edges be g(e) and
g(e) + 1. This stretches the difference between incident labels by at most 1.

For sharpness of the bound, compare G = Θ(1, 2, . . . , 2) and G′ = Θ(1, 3, . . . , 3),
where each has m paths with common endpoints. In Example A, we proved that
B′(G′) = d3(m− 1)/2e. In G, let the ith path have edges ai, bi for i < m, with e the
extra edge. The ordering a1, . . . , am−1, e, b1, . . . , bm−1 yields B′(G) ≤ m. The graph
G′ is obtained from G by a sequence of m − 1 elementary subdivisions, roughly half
of which must increase the edge-bandwidth. The desired graph H is the first where
the bandwidth is m+ 1.

To prove the lower bound on B′(H), we consider an optimal edge-numbering f
of H and obtain an edge-numbering of G. For the edges e′, e′′ introduced to form
H after deleting e, let p = f(e′) and q = f(e′′). We may assume that p < q.
Let r = b(p+ q)/2c. Define g by leaving the f -labels below p and in [r + 1, q − 1]
unchanged, decreasing those in [p+ 1, r] and above q by 1, and setting g(e) = r. The
differences between labels on edges belonging to both G and H change by at most
1 and increase only when the difference is less than B′(f). For incidents involving
e, the incident edge ε was incident in H to e′ or e′′. The difference |g(e) − g(ε)|
exceeds B′(f) only if g(ε) < p or g(ε) > q. In the first case, the difference increases
by r − p = b(q − p)/2c. In the second, it increases by q − r − 1 = d(q − p)/2e − 1.

We obtain B′(G) ≤ B′(H) +
⌊
q−p

2

⌋ ≤ ⌊ 3B′(H)
2

⌋
. Whether B′(H) is even or odd, this

establishes the bound claimed.

For sharpness of the bound, compare G = Θ(1, 3, . . . , 3) and H = Θ(2, 3, . . . , 3).
In H let the ith path have edges ai, bi, ci for i < m, with d, e the remaining path.
The ordering a1, . . . , am−1, d, b1, . . . , bm−1, e, c1, . . . , cm−1 yields B′(H) ≤ m. From
Example A, B′(G) = d3(m− 1)/2e. Whether m is odd or even, this example achieves
the lower bound on B′(H).

Contracting an edge uv means deleting the edge and replacing its endpoints by
a single combined vertex w inheriting all other edge incidences involving u and v.
Contraction tends to make a graph denser and thus increase edge-bandwidth. In
some applications, one restricts attention to simple graphs and thus discards loops
or multiple edges that arise under contraction. Such a convention can discard many
edges and thus lead to a decrease in edge-bandwidth. In particular, contracting an
edge of a clique would yield a smaller clique under this model and thus smaller edge-
bandwidth.

For the next result, we say that H is an elementary contraction of G if H is
obtained from G by contracting one edge and keeping all other edges, regardless
of whether loops or multiple edges arise. Edge-bandwidth is a valid parameter for
multigraphs.

Theorem 4.3. If H is an elementary contraction of G, then B′(G)−1 ≤ B′(H) ≤
2B′(G)− 1, and these bounds are sharp for each value of B′(G).

Proof. Let e be the edge contracted to produce H. For the upper bound, let g be
an optimal edge-numbering of G, and let f be the edge-numbering of H produced by
deleting e from the numbering. In particular, leave the g-labels below g(e) unchanged
and decrement those above g(e) by 1. Edges incident in H have distance at most 2 in
L(G), and their distance in L(G) is 2 only if e lies between them. Thus the difference
between their g-labels is at most 2B′(g), with equality only if the difference between

314 T. JIANG, D. MUBAYI, A. SHASTRI, AND D. B. WEST

their f -labels is 2B′(G)− 1.
Equality holds when G is the double-star (the caterpillar with two vertices of

degree k + 1 and 2k vertices of degree 1) and e is the central edge of G, so H is the
star K1,2k. We have observed that B′(G) = k and B′(H) = 2k − 1.

For the lower bound, let f be an optimal edge-numbering of H, and let g be
the edge-numbering of G produced by inserting e into the numbering just above the
edge e′ with lowest f -label among those incident to the contracted vertex w in H. In
particular, leave f -labels up to f(e′) unchanged, augment those above f(e′) by 1, and
let g(e) = f(e′)+1. The construction and the argument depend on the preservation of
loops and multiple edges. Edges other than e that are incident in G are also incident
in H, and the difference between their labels under g is at most one more than the
difference under f . Edges incident to e in G are incident to e′ in H and thus have
f -label at most f(e′) + B′(f). Thus their g-label differs from that of e′ by at most
B′(f).

The lower bound must be sharp for each value of B′(G), because successive con-
tractions eventually eliminate all edges and thus reduce the bandwidth.

5. Edge-bandwidth of cliques and bicliques. We have computed edge-
bandwidth for caterpillars and other sparse graphs. In this section we compute edge-
bandwidth for classical dense families, the cliques and equipartite complete bipartite
graphs. Given the difficulty of bandwidth computations, the existence of exact for-
mulas is of as much interest as the formulas themselves.

Theorem 5.1. B′(Kn) =
⌊
n2/4

⌋
+ dn/2e − 2.

Proof. Lower bound. Consider an optimal numbering. Among the lowest
(dn/2e−1

2

)
+

1 values there must be edges involving at least dn/2e vertices of Kn. Among the high-

est
(bn/2c

2

)
+ 1 values there must be edges involving at least bn/2c+ 1 vertices of Kn.

Since dn/2e + bn/2c + 1 > n, some vertex has incident edges with labels among the

lowest
(dn/2e−1

2

)
+ 1 and among the highest

(bn/2c
2

)
+ 1. Therefore,

B′(Kn) ≥
[(
n

2

)
−
(bn/2c

2

)]
−
[(dn/2e − 1

2

)
+ 1

]
=
(⌈n

2

⌉
− 1
)(⌊n

2

⌋)
+ n− 1− 1

=

⌊
n2

4

⌋
+
⌈n

2

⌉
− 2.

Upper bound. To achieve the bound above, let X,Y be the vertex partition with
X = {1, . . . , dn/2e} and Y = {dn/2e+ 1, . . . , n}. We assign the lowest

(dn/2e
2

)
values

to the edges within X. We use reverse lexicographic order, listing first the edges with
higher vertex 2, then higher vertex 3, etc. We assign the highest

(bn/2c
2

)
values to the

edges within Y by the symmetric procedure.

u 1 1 2 1 2 3 · · · · · · n− 3 n− 3 n− 3 n− 2 n− 2 n− 1
v 2 3 3 4 4 4 · · · · · · n− 2 n− 1 n n− 1 n n

f(uv) 1 2 3 4 5 6 · · · · · · (
n
2

)− 5
(
n
2

)
Note that the lowest label on an edge incident to vertex dn/2e is 1 +

(dn/2e−1
2

)
.

EDGE-BANDWIDTH OF GRAPHS 315

The labels between these ranges are assigned to the “cross-edges” between X and
Y . The cross-edges involving the vertex dn/2e ∈ X receive the highest of the central
labels, and the cross-edges involving dn/2e+ 1 ∈ Y (but not dn/2e) receive the lowest

of these labels. Since the highest cross-edge label is
(
n
2

)− (bn/2c2

)
and the lowest label

of an edge incident to dn/2e is 1 +
(dn/2e−1

2

)
, the maximum difference between labels

on edges incident to dn/2e is precisely the lower bound on B′(Kn) computed above.
This observation holds symmetrically for the edges incident to dn/2e+ 1.

1

2

1

3

2

3

1

4

2

4

3

4

5

1

5

2

5

3

6

1

6

2

7

1

8

1

7

2

8

2

6

3

7

3

8

3

5

4

6

4

7

4

8

4

5

6

5

7

5

8

6

7

6

8

7

8

We now procede iteratively. On the high end of the remaining gap, we assign
the values to the remaining edges incident to dn/2e − 1. Then on the low end, we
assign values to the remaining edges incident to dn/2e + 2. We continue alternating
between the top and the bottom, completing the edges incident to the more extreme
labels as we approach the center of the numbering. We have illustrated the resulting
order for K8. Each time we insert the remaining edges incident to a vertex of X, the
rightmost extreme moves toward the center at least as much from the previous extreme
as the leftmost extreme moves toward the left. Thus the bound on the difference is
maintained for the edges incident to each vertex. The observation is symmetric for
edges incident to vertices of Y .

For equipartite complete bipartite graphs, we have a similar construction involving
low vertices, high vertices, and cross-edges.

Theorem 5.2. B′(Kn,n) =
(
n+1

2

)− 1.
Proof. Lower bound. We use the boundary bound of Proposition 2.3 with k =⌊

n2/4
⌋

+ 1. Every set of k edges is together incident to at least n+ 1 vertices, since a
bipartite graph with n vertices has at most k−1 edges. Since Kn,n has 2n vertices, at
most

⌊
(n− 1)2/4

⌋
edges remain when these vertices are deleted. Thus when |F | = k,

we have

B′(Kn,n) ≥ |∂(F)| ≥ n2 −
⌊

(n− 1)2

4

⌋
−
⌊
n2

4

⌋
− 1 =

(
n+ 1

2

)
− 1.

We construct an ordering achieving this bound. Let X = {x1, . . . , xn} and Y =
{y1, . . . , yn} be the partite sets. Order the vertices as L = x1, y1, . . . , xn, yn. We
alternately finish a vertex from the beginning of L and a vertex from the end. When
finishing a vertex from the beginning, we place its incident edges to vertices earlier in L
at the end of the initial portion of the numbering f that has already been determined.
When finishing a vertex from the end of L, we place its incident edges to vertices later
in L at the beginning of the terminal portion of f that has been determined. We do
not place an edge twice. When we have finished each vertex in each direction, we
have placed all edges in the numbering. For example, this produces the following
edge ordering for K6,6:

X

Y

1

1

2

1

1

2

2

2

3

1

3

2

1

3

2

3

3

3

4

1

4

2

4

3

1

4

2

4

5

1

1

5

1

6

6

1

2

5

2

6

5

2

6

2

3

4

3

5

3

6

5

3

6

3

4

4

4

5

4

6

5

4

6

4

5

5

5

6

6

5

6

6

It suffices to show that for the jth vertex vj ∈ L, there are at least n2−(n+1
2

)
=
(
n
2

)
edges that come before the first edge incident to v or after the last edge incident to
v. For j = n+ 1, there are exactly

⌊
n2/4

⌋
edges before the first appearance of vj and

exactly
⌊
(n− 1)2/4

⌋
edges after its last appearance, which matches the argument in

316 T. JIANG, D. MUBAYI, A. SHASTRI, AND D. B. WEST

the lower bound. As j decreases, the leftmost appearance of vj moves leftward no
more quickly than the rightmost appearance; we omit the numerical details. The
symmetric argument applies for j ≥ n.

REFERENCES

[1] S. F. Assmann, G. W. Peck, M. M. SysÃlo, and J. Zak, The bandwidth of caterpillars with
hairs of length 1 and 2, SIAM J. Alg. Discrete Methods, 2 (1981), pp. 387–393.

[2] P. Z. Chinn, J. Chvátalová, A. K. Dewdney, and N. E. Gibbs, The bandwidth problem for
graphs and matrices—a survey, J. Graph Theory, 6 (1982), pp. 223–254.

[3] F. R. K. Chung, Labelings of graphs, in Selected Topics in Graph Theory, III, L. Beineke and
R. Wilson, eds., Academic Press, New York, 1988, pp. 151–168.

[4] J. Chvátalová, Optimal labelling of a product of two paths, Discrete Math., 11 (1975), pp. 249–
253.

[5] J. Chvátalová and J.Opatrný, The bandwidth problem and operations on graphs, Discrete
Math., 61 (1986), pp. 141–150.

[6] J. Chvátalová and J. Opatrný, The bandwidth of theta graphs, Utilitas Math., 33 (1988),
pp. 9–22.

[7] D. Eichhorn, D. Mubayi, K. O’Bryant, and D. B. West, The edge-bandwidth of theta
graphs, to appear.

[8] M. R. Garey, R. L. Graham, D. S. Johnson, and D. E. Knuth, Complexity results for
bandwidth minimization, SIAM J. Appl. Math., 34 (1978), pp. 477–495.

[9] L. H. Harper, Optimal assignments of numbers to vertices, J. Soc. Indust. Appl. Math., 12
(1964), pp. 131–135.

[10] R. Hochberg, C. McDiarmid, and M. Saks, On the bandwidth of triangulated triangles,
in Proceedings 14th British Combinatorics Conference, Keele, 1993, Discrete Math., 138
(1995), 261–265.

[11] L. T. Q. Hung, M. M. SysÃlo, M. L. Weaver, and D. B. West, Bandwidth and density for
block graphs, Discrete Math., 189 (1998), pp. 163–176.

[12] D. J. Kleitman and R. V. Vohra, Computing the bandwidth of interval graphs, SIAM J.
Discrete Math., 3 (1990), pp. 373–375.

[13] J. H. Mai, The bandwidth of the graph formed by n meridian lines on a sphere, J. Math. Res.
Exposition, 3 (1983), pp. 55–60 (in Chinese with English summary).

[14] Z. Miller, The bandwidth of caterpillar graphs, in Proceedings 12th Southeastern Conference,
Congr. Numer., 33 (1981), pp. 235–252.

[15] H. S. Moghadam, Compression Operators and a Solution to the Bandwidth Problem of the
Product of n Paths, Ph.D. thesis, University of California, Riverside, 1983.

[16] B. Monien, The bandwidth minimization problem for caterpillars with hair length 3 is NP-
complete, SIAM J. Alg. Discrete Methods, 7 (1986), pp. 505–512.

[17] C. H. Papadimitriou, The NP-completeness of the bandwidth minimization problem, Comput-
ing, 16 (1976), pp. 263–270.

[18] G. W. Peck and A. Shastri, Bandwidth of theta graphs with short paths, Discrete Math., 103
(1992), pp. 177–187.

[19] L. Smithline, Bandwidth of the complete k-ary tree, Discrete Math., 142 (1995), pp. 203–212.
[20] A. P. Sprague, An O(n logn) algorithm for bandwidth of interval graphs, SIAM J. Discrete

Math., 7 (1994), pp. 213–220.
[21] M. M. SysÃlo and J. Zak, The bandwidth problem: Critical subgraphs and the solution for

caterpillars, Ann. Discrete Math., 16 (1982), pp. 281–286.
[22] J. F. Wang, D. B. West, and B. Yao, Maximum bandwidth under edge addition, J. Graph

Theory, 20 (1995), pp. 87–90.

LINEAR-TIME SUCCINCT ENCODINGS OF PLANAR GRAPHS
VIA CANONICAL ORDERINGS∗

XIN HE† , MING-YANG KAO‡ , AND HSUEH-I LU§

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 3, pp. 317–325

Abstract. Let G be an embedded planar undirected graph that has n vertices, m edges,
and f faces but has no self-loop or multiple edge. If G is triangulated, we can encode it using
4
3
m − 1 bits, improving on the best previous bound of about 1.53m bits. In case exponential time

is acceptable, roughly 1.08m bits have been known to suffice. If G is triconnected, we use at most
(2.5 + 2 log 3) min{n, f} − 7 bits, which is at most 2.835m bits and smaller than the best previous
bound of 3m bits. Both of our schemes take O(n) time for encoding and decoding.

Key words. data compression, graph encoding, canonical ordering, planar graphs, triconnected
graphs, triangulations

AMS subject classifications. 05C30, 05C78, 05C85, 68R10

PII. S0895480197325031

1. Introduction. This paper investigates the problem of encoding a given graph
G into a binary string S with the requirement that S can be decoded to reconstruct
G. The problem has been studied generally with two primary objectives. One is to
minimize the length of S, while the other is to minimize the time needed to compute
and decode S. In light of these goals, a coding scheme is efficient if its encoding
and decoding procedures both take polynomial time. A coding scheme is succinct if
the length of S is not much larger than its information-theoretic tight bound, i.e., the
shortest length over all possible coding schemes.

As the two primary objectives are often in conflict, a number of coding schemes
with different trade-offs have been proposed from practical and theoretical perspec-
tives. The most well known efficient succinct scheme is the folklore scheme of encoding
a rooted-ordered n-vertex tree into a string of balanced n − 1 pairs of left and right
parentheses, which uses 2(n− 1) bits. Since the total number of such trees is at least

1
2(n−1) · (2n−2)!

(n−1)!(n−1)! , the minimum number of bits needed to differentiate these trees is

the logarithm1 of this quantity, which is 2n− o(n) by Stirling’s approximation. Thus,
two bits per edge is an information-theoretic tight bound for encoding rooted-ordered
trees. The standard adjacency-list encoding of a graph is widely useful but requires
Θ(mlogn) bits, where m and n are the numbers of edges and vertices, respectively [3].
For certain graph families, Kannan, Naor, and Rudich [10] gave schemes that en-
code each vertex with O(logn) bits and support O(logn)-time testing of adjacency
between two vertices. For connected planar graphs, Jacobson [9] gave an Θ(n)-bit
encoding which supports traversal in Θ(logn) time per vertex visited. This result
was recently improved by Munro and Raman [17]; their schemes encode binary trees,

∗Received by the editors August 8, 1997; accepted for publication (in revised form) February 18,
1999; published electronically September 7, 1999.

http://www.siam.org/journals/sidma/12-3/32503.html.
†Department of Computer Science and Engineering, State University of New York at Buffalo,

Buffalo, NY 14260 (xinhe@cse.buffalo.edu). The research of this author was supported in part by
NSF grant CCR-9205982.
‡Department of Computer Science, Yale University, New Haven, CT 06250-8285 (kao-ming-

yang@cs.yale.edu). The research of this author was supported in part by NSF grant CCR-9531028.
§Department of Computer Science and Information Engineering, National Chung-Cheng Univer-

sity, Chia-Yi 621, Taiwan, ROC (hil@cs.ccu.edu.tw).
1All logarithms are of base 2.

317

318 LINEAR-TIME SUCCINCT ENCODINGS OF PLANAR GRAPHS

rooted-ordered trees, and planar graphs succinctly and support several graph opera-
tions in constant time. For dense graphs and complement graphs, Kao, Occhiogrosso,
and Teng [14] devised two compressed representations from adjacency lists to speed up
basic graph techniques such as breadth-first search and depth-first search. Galperin
and Wigderson [6] and Papadimitriou and Yannakakis [19] investigated complexity
issues arising from encoding a graph by a small circuit that computes its adjacency
matrix. For labeled planar graphs, Itai and Rodeh [8] gave an encoding procedure
that requires 3

2n logn + O(n) bits. For unlabeled general graphs, Naor [18] gave an

encoding of n2

2 − n logn+O(n) bits, which is optimal to the second order.
Our work aims to minimize the number of bits needed to encode an embedded

planar graph G which is unlabeled and undirected. We assume that G has n vertices,
m edges, and f faces but has no self-loop nor multiple edge. (See [2, 3, 7, 16] for
the graph-theoretic terminology used in this paper.) Note that if polynomial time
for encoding and decoding is not required, then any given graph in a large family
can be encoded with the information-theoretic minimum number of bits by brute-
force enumeration. This paper focuses on schemes that use only O(n) time for both
encoding and decoding.

For a general planar graph G, Turán [21] gave an encoding using 4m bits asymp-
totically. This space complexity was improved by Keeler and Westbrook [15] to about
3.58m bits. They also gave encoding algorithms for several important classes of pla-
nar graphs. In particular, they showed that if G is triangulated, it can be encoded
in about 1.53m bits. If G is triconnected, it can be encoded using 3m bits. In this
paper, these latter two results are improved as follows. If G is triangulated, it can be
encoded using 4

3m−1 bits. It is interesting that rooted-ordered trees require two bits
per edge, while the seemingly more complex plane triangulations need fewer bits. Note
that Tutte [22] gave an enumeration theorem that yields an information-theoretic tight
bound of roughly 1.08m bits for plane triangulations that may contain multiple edges.
If G is triconnected, we can encode it using at most (2.5 + 2 log 3) min{n, f}− 7 bits,
which is at most 2.835m bits. Both of our coding schemes are intuitive and simple.
They require only O(n) time for encoding as well as decoding. The schemes make new
uses of the canonical orderings of planar graphs, which were originally introduced by
de Fraysseix, Pach, and Pollack [4] and extended by Kant [11]. These structures and
closely related ones have proven useful also for drawing planar graphs in organized
and compact manners [12, 13, 20].

This paper is organized as follows. In section 2, we present our coding scheme for
plane triangulations. In section 3, we generalize the scheme to encode triconnected
plane graphs. We conclude the paper with some open problems in section 4.

2. A coding scheme for plane triangulations. This section assumes that G
is a plane triangulation. Thus, n ≥ 3 and G has m = 3n− 6 edges.

Let v1, . . . , vn be an ordering of the vertices of G, where v1, v2, vn are the three
exterior vertices of G in the counterclockwise order. After fixing such an ordering,
let Gk be the subgraph of G induced by v1, . . . , vk. Let Hk be the exterior face of
Gk. Let G −Gk be the subgraph of G obtained by removing v1, . . . , vk. Our coding
scheme uses a special kind of ordering defined as follows.

Definition 2.1 (see [4]). An ordering v1, . . . , vn of G is canonical if the following
statements hold for every k = 3, . . . , n:

1. Gk is biconnected, and its exterior face Hk is a cycle containing the edge
(v1, v2).

2. The vertex vk is on the exterior face of Gk, and the set of its neighbors in

XIN HE, MING-YANG KAO, AND HSUEH-I LU 319

6

4

7

35

1 2

8

Fig. 2.1. A plane triangulation and a canonical ordering.

Gk−1 forms a subinterval of the path Hk−1 − {(v1, v2)} and consists of at
least two vertices. Furthermore, if k < n, vk has at least one neighbor in
G−Gk. Note that the case k = 3 is somewhat ambiguous due to degeneracy,
and H2 − {(v1, v2)} is regarded as the edge (v1, v2) itself.

Figure 2.1 illustrates a canonical ordering of a plane triangulation. Note that every
plane triangulation has a canonical ordering which can be computed in O(n) time [4].
A canonical ordering of G can be viewed as an order in which G is reconstructed
from a single edge (v1, v2) step by step. At step k with 3 ≤ k ≤ n, the vertex vk
and the edges between vk and its lower ordered neighbors are added into the graph.
For the sake of enhancing intuitions, we call Hk−1 the contour of Gk−1; denote its
vertices by c1(= v1), c2, . . . , ct−1, ct(= v2) in the consecutive order along the cycle
Hk−1; and visualize them as arranged from left to right above the edge (v1, v2) in the
plane. When the vertex vk is added to Gk−1 to construct Gk, let c`, c`+1, . . . , cr be
the neighbors of vk on the contour Hk−1. After vk is added, the vertices c`+1, . . . , cr−1

are no longer contour vertices. Thus, we say that these vertices are covered by vk.
The edge (vk, c`) is the left edge of vk, the edge (vk, cr) is the right edge of vk, and
the edges (cp, vk) with ` < p < r are the internal edges of vk.

There is no published reference for the following folklore lemma; for the sake of
completeness, we include its proof here.

Lemma 2.2. Let v1, . . . , vn be a canonical ordering of G. Let T1 (respectively,
T2) be the collection of the left (respectively, right) edges of vj for 3 ≤ j ≤ n − 1;
similarly, let Tn be that of the internal edges of vj for 3 ≤ j ≤ n.

1. T1 is a tree spanning over G− {v2, vn}.
2. T2 is a tree spanning over G− {v1, vn}.
3. Tn is a tree spanning over G− {v1, v2}.

Proof. The statements are proved separately as follows.

Statement 1. For i = 3, . . . , n− 1, let Di be the collection of the left edges of vj
for 3 ≤ j ≤ i. We prove by induction on i the claim that Di is a tree spanning over
v1, v3, . . . , vi. Then, since T1 = Dn−1, the claim implies the statement. For the base
case i = 3, the claim trivially holds. The induction hypothesis is that the claim holds
for i = k − 1 < n − 1. The induction step is to prove the claim for i = k ≤ n − 1.

320 LINEAR-TIME SUCCINCT ENCODINGS OF PLANAR GRAPHS

Dk is obtained from Dk−1 by adding the left edge (vk, c`) of vk. By the induction
hypothesis, Dk−1 is a tree spanning over v1, v3, . . . , vk−1. Since c` is the left-most
neighbor of vk on Hk−1, c` is some vj with 1 ≤ j ≤ k − 1 and j 6= 2. Thus, Dk−1

contains c`, and Dk is a tree spanning over v1, v3, . . . , vk−1, vk.
Statement 2. The proof is symmetric to that of Statement 1.
Statement 3. G has n vertices and 3n−6 edges. The edges (v1, v2), (v2, vn), (v1, vn)

are not in T1 ∪ T2 ∪ Tn. Thus, since T1 and T2 have n − 3 edges each, Tn has n − 3
edges. Then, since Tn is acyclic and does not contain v1 and v2, Tn is a spanning tree
of G− {v1, v2}.

A canonical ordering v1, . . . , vn is right-most if for all vk and vk′ with k′ > k
such that the neighbors of vk′ on Hk′−1 are all in Hk−1, the left-most neighbor of vk′

appears before that of vk when traversing Hk−1 from v1 to v2 clockwise. Intuitively
speaking, if there are more than one vertex that can be added to Gk−1, we always add
the right-most one. The ordering in Figure 2.1 is right-most. A right-most canonical
ordering is symmetric to a left-most one in [11] and can be computed from G in linear
time similarly.

Let v1, . . . , vn be a right-most canonical ordering of G. Let T1 be as in Lemma
2.2 for this ordering. Let T be the tree T1 ∪ {(v1, vn), (v1, v2)}. In Figure 2.1, T is
indicated by the thick lines. Our coding scheme uses T extensively. The right-most
depth-first search of T proceeds as follows. We start at v1 and traverse the edge
(v1, v2) first. Afterward, if two or more vertices can be visited from vk, we choose
the right-most one. More precisely, let P be the path in T from vk to v1 and then to
v2. Let D be the set of edges between vk and the available vertices. We visit a new
vertex through the edge in D that is next to P in the counterclockwise cyclic order
around vk formed by P and the edges in D. Note that the order in which the vertices
are visited by the right-most depth-first search is the right-most canonical ordering
v1, . . . , vn that defines T .

We are now ready to describe the encoding S of G as the concatenation of two
binary strings S1 and S2 as follows.

S1 is the binary string that encodes T using the folklore parenthesis coding scheme
where 0 and 1 correspond to “(” and “)”, respectively. In this encoding, T is rooted
at v1, and the branches are ordered the same as their endpoints are in the right-most
canonical ordering. Since T contains n vertices, S1 has 2(n− 1) bits.

S2 encodes the number of contour vertices covered by each vk with 3 ≤ k ≤ n.
First, we create a string of n − 2 copies of 0. The (k − 2)th 0 corresponds to vk. If
vk covers d vertices, we insert d copies of 1 before the corresponding 0. For example,
the string S2 for Figure 2.1 is

00010101110.

Since each vertex vk with 3 ≤ k ≤ n− 1 is covered exactly once, S2 has n− 3 copies
of 1. So |S2| = (n− 2) + (n− 3) = 2n− 5 bits. Hence, |S| = |S1|+ |S2| = 4n− 7 bits.

We next describe how to decode S to reconstruct G. Given S, we can uniquely
determine n from the length of S. Subsequently, we can uniquely determine S1 and
S2. From S1, we can reconstruct T . From T , we can recover the ordering v1, . . . , vn.
Then, we draw the edge (v1, v2) and perform a loop of n− 2 steps indexed by k with
3 ≤ k ≤ n, where step k processes vk. Before vk is processed, Gk−1 and its contour
Hk−1 have been constructed. At step k, we add vk and the edges between vk and
its lower ordered neighbors into Gk−1 to construct Gk as follows. From T , we can
identify the left-most neighbor c` of vk on the contour Hk−1 because c` is simply the

XIN HE, MING-YANG KAO, AND HSUEH-I LU 321

parent of vk in T . From S2, we can determine the number d of vertices covered by
vk. Thus, we add the edges (c`, vk), (c`+1, vk), . . . , (c`+d+1, vk) into Gk−1; note that
r = `+ d+ 1. This gives us the subgraph Gk and completes step k.

It is straightforward to carry out these encoding and decoding procedures in linear
time. Also, we can save one bit by deleting the last 0 in S2. Since v3 covers no vertex,
for n ≥ 4, we can save another bit by deleting the first 0 in S2. Note that for n = 3,
the last 0 in S2 is also the first 0 and cannot be deleted twice, but we can simply
encode the 3-vertex plane triangulation with zero bit without ambiguity. Thus, we
have the following theorem.

Theorem 2.3. A plane triangulation of m edges and n vertices with n ≥ 4 can
be encoded using 4n− 9 = 4

3m− 1 bits. Both encoding and decoding take O(n) time.

3. A coding scheme for triconnected plane graphs. This section assumes
that G is triconnected. To avoid triviality, let n ≥ 3.

Let v1, . . . , vn be an ordering of the vertices of G, where v1, v2, vn are on the
exterior face of G, and v2 and vn are neighbors of v1. Let Gk be the subgraph of
G induced by v1, . . . , vk. Let Hk be the exterior face of Gk. Let G − Gk be the
subgraph of G obtained by removing v1, . . . , vk. Our coding scheme for triconnected
plane graphs uses an ordering defined as follows.

Definition 3.1 (see [11]). An ordering v1, . . . , vn of a triconnected plane graph
G is canonical if the integer interval [3, n] can be partitioned into subintervals [k, k+q]
each satisfying either set of properties below:

1. The integer q is 0. The vertex vk is on the exterior face of Gk and has at
least two neighbors in Gk−1. Gk is biconnected and its exterior face contains
the edge (v1, v2). If k < n, vk has at least one neighbor in G−Gk.

2. The integer q is at least 1. The sequence vk, vk+1, . . . , vk+q is a chain on
the exterior face of Gk+q and has exactly two neighbors in Gk−1, one for
vk and the other for vk+q, which are on the exterior face of Gk−1. Gk+q

is biconnected and its exterior face contains the edge (v1, v2). Every vertex
among vk, . . . , vk+q has at least one neighbor in G−Gk+q.

As in section 2, we similarly define a right-most canonical ordering v1, . . . , vn of
G. Figure 3.1 shows a right-most canonical ordering of a triconnected plane graph.
Given a triconnected plane graph, we can find a right-most canonical ordering in
linear time [11]. With a right-most canonical ordering, G can be reconstructed from a
single edge (v1, v2) through a sequence of steps indexed by k′. There are two possible
cases at step k′, which correspond to the two sets of properties in Definition 3.1 and
are used throughout this section.

Case 1. A single vertex vk is added.
Case 2. A chain of q + 1 vertices vk, . . . , vk+q is added.
While reconstructing G, we collect a set T of edges as follows. Initially, T consists

of the edge (v1, v2). Let c1(= v1), c2, . . . , ct−1, ct(= v2) be the vertices of Hk−1, which
are ordered consecutively along the boundary cycle of Hk−1 and are arranged from
left to right above the edge (v1, v2) in the plane.

Case 1. Let c` and cr with 1 ≤ ` < r ≤ t be the left-most and right-most
neighbors of vk in Hk−1, respectively. After vk is added, c`+1, . . . , cr−1 are no longer
contour vertices; these vertices are covered at step k′. The edge (c`, vk) is included in
T .

Case 2. Let c` and cr with 1 ≤ ` < r ≤ t be the neighbors of vk and vk+q in Hk−1,
respectively. After vk, . . . , vk+q are added, c`+1, . . . , cr−1 are no longer contour ver-
tices; these vertices are covered at step k′. The edges (c`, vk), (vk, vk+1), . . . , (vk+q−1,

322 LINEAR-TIME SUCCINCT ENCODINGS OF PLANAR GRAPHS

6

4
7

3 5

1 2

8
9

10
11

12

13

14 Step: Vertices added:

1
2
3
4
5
6
7
8

3, 4, 5
6, 7
8
9
10, 11
12
13
14

Fig. 3.1. A triconnected plane graph and a canonical ordering.

vk+q) are included in T .

In Figure 3.1, the edges in T are indicated by the thick lines. By an argument
similar to the proof of Lemma 2.2, Statement 1, T is a spanning tree of G. As in
section 2, we similarly define the right-most depth-first search in T . Note that the
order in which the vertices of T are visited by the right-most depth-first search is the
right-most canonical ordering v1, . . . , vn that defines T .

We are now ready to describe the encoding S of G by means of T . We further
divide Case 1 into three subcases.

Case 1a. No vertex is covered at step k′.
Case 1b. At least one vertex is covered at step k′ and the left-most covered vertex

c`+1 is adjacent to vk.

Case 1c. At least one vertex is covered at step k′ and the left-most covered vertex
c`+1 is not adjacent to vk.

Let β be the number of steps for reconstructing G. Let β1a, β1b, β1c, and β2 be the
numbers of steps of Cases 1a, 1b, 1c, and 2, respectively. We first consider the case
β1b ≥ β1c to encode G with Scheme I; afterwards, we modify Scheme I into Scheme
II for the case β1b < β1c.

In Scheme I, the encoding S of G is the concatenation of three strings S1, S2, and
S3. S1 is the folklore parentheses encoding of T , which is rooted and ordered in the
same way as in section 2. Since T has n vertices, S1 has 2(n− 1) bits.

To construct S2, first let Q = s1 ∗ s2 ∗ · · · ∗ sβ∗, where each sk′ is a binary string
that corresponds to the step k′ of reconstructing G based on the ordering v1, . . . , vn.
sk′ is determined as follows. The following two cases both assume that d vertices are
covered at step k′.

Case 1. Note that d = r− `−1. The string sk′ has d symbols corresponding to cj
with j = `+ 1, . . . , r− 1, respectively. If the edge (cj , vk) is present in G, the symbol
in sk′ corresponding to cj is 1; otherwise, the symbol is 0. Note that in Case 1a, since
no vertex is covered, sk′ is empty.

Case 2. The string sk′ consists of q copies of 0 followed by d copies of 1. For
example, the string Q for Figure 3.1 is

XIN HE, MING-YANG KAO, AND HSUEH-I LU 323

00︸︷︷︸ ∗ 0 ∗ ∗ 0 ∗ 0 ∗ 1000︸︷︷︸ ∗ ∗ 10001︸ ︷︷ ︸ ∗
↑ ↑ ↑ ↑ ↑ ↑
s1 s2 s4 s5 s6 s8

S2 is a binary representation of Q defined as follows. A step of Case 1 adds
one vertex to G and correspondingly includes one ∗ in Q; similarly, a step of Case
2 adds q + 1 vertices to G and includes one ∗ and q copies of 0 in Q. Since exactly
n − 2 vertices are added, the total number of these symbols is n − 2. Each symbol
in Q not yet counted corresponds to a vertex covered at the β steps. Since each vk
with 3 ≤ k ≤ n − 1 is covered at most once and v1, v2, vn are never covered, the
total number of these latter symbols is at most n − 3. Thus Q has at most 2n − 5
symbols. For the sake of unambiguous decoding, we pad Q with copies of 1 at its
end to have exactly 2n − 5 symbols. Since Q uses three distinct symbols, we treat
it as an integer of base 3 and convert it to a binary integer. Again, for the sake of
unambiguous decoding, we use exactly d(2n− 5) log 3e bits for this binary integer by
padding copies of 0 at its beginning. The resulting binary string is the desired S2.

For the sake of decoding, we also need to know whether any given sk′ is of Cases 1
or 2. Thus, let S3 = t1 · · · tβ , where tk′ = 1 if step k′ is of Case 1 and tk′ = 0 otherwise.
To save space, note that some bits tk′ can be deleted as follows without incurring
ambiguity. If step k′ is of Case 1a, tk′ is deleted because sk′ is empty and only a string
of Case 1a can be empty. If step k′ is of Case 1b, tk′ is deleted because sk′ starts with
1, while the strings of Case 2 start with 0. If step k′ is of Case 1c or 2, tk′ remains in
S3. For example, the string S3 for Figure 3.1 consists of t1 = 0, t2 = 0, t4 = 1, t5 = 0.
Thus, S3 has β1c + β2 bits, which can be bounded as follows. A step of Case 1 adds
one vertex into G and a step of Case 2 adds at least two vertices. Since n− 2 vertices
are added over the β steps, β1a + β1b + β1c + 2β2 ≤ n − 2. Since Scheme I assumes
β1b ≥ β1c, |S3| = β1c+β2 ≤ 1

2 ·(β1b+β1c) +β2 ≤ 1
2 ·(β1a+β1b+β1c+ 2β2) ≤ 0.5n−1.

Since S = S1//S2//S3, |S| ≤ 2(n−1)+d(2n−5) log 3e+0.5n−1 ≤ (2.5+2 log 3)n−
9 bits. This completes the description of the encoding procedure of Scheme I.

Next we describe how to decode S to reconstruct G. This decoding assumes that
both S and n are given. Thus, we can uniquely determine S1, S2, and S3. Then we
convert S2 to Q. From Q we can recover all sk′ with 1 ≤ k′ ≤ β. From S3 and all
sk′ , we can recover all tk′ with 1 ≤ k′ ≤ β. From S1, we reconstruct T . From T ,
we find the ordering v1, . . . , vn. Afterwards, we draw the edge (v1, v2) and perform
a loop of steps as follows. Each step is indexed by k′ and corresponds to step k′ of
reconstructing G using the right-most canonical ordering.

If tk′ = 1, step k′ is of Case 1. Thus, a vertex vk is added at this step, where
vk is the smallest ordered vertex not added into the current graph yet. From T , we
can determine the left-most neighbor c` of vk in the contour Hk−1 because c` is the
parent of vk in T . From sk′ , we know the number of vertices covered by vk and hence
the right-most neighbor cr of vk in the contour Hk−1. From sk′ , we also know which
of the covered vertices are connected to vk. These corresponding edges are added to
G.

If tk′ = 0, step k′ is of Case 2. Thus, a chain vk, . . . , vk+q is added at this step,
where vk is the smallest ordered vertex not added into the current graph yet. The
integer q can be determined from the string sk′ by counting its leading copies of 0.
From sk′ , we also know the number of vertices covered at step k′, which is the count
of 1 in sk′ . Thus, we know the neighbor cr of vk+q in the contour Hk−1. The chain
is added accordingly.

This completes the decoding procedure of Scheme I. It is straightforward to im-

324 LINEAR-TIME SUCCINCT ENCODINGS OF PLANAR GRAPHS

plement the whole Scheme I in O(n) time. If β1b < β1c, we use Scheme II to encode G,
which is identical to Scheme I with the following differences. If step k′ is of Case 2, sk′
consists of q copies of 1 followed by d copies of 0. Also, all bits tk′ for steps of Cases
1a and 1c are omitted from S3 without incurring ambiguity since their corresponding
strings sk′ are either empty or start with 0, while the strings of Cases 1b and 2 start
with 1. We use one extra bit to encode whether we use Scheme I or II. Thus we have
the following lemma.

Lemma 3.2. Any triconnected plane graph with n vertices can be encoded using
at most (2.5 + 2 log 3)n − 8 bits. Both encoding and decoding take O(n) time. The
decoding procedure assumes that both S and n are given.

We can improve Lemma 3.2 as follows. Let G∗ be the dual of G. G∗ has f vertices,
m edges and n faces. Since G is triconnected, G∗ is also triconnected. Furthermore,
if n > 3, then f > 3 and G∗ has no self-loop nor multiple edge. Thus, we can use the
coding scheme of Lemma 3.2 to encode G∗ with at most (2.5+2 log 3)f−8 bits. Since
G can be uniquely determined from G∗, to encode G, it suffices to encode G∗. To make
S shorter, for the case n > 3, if n ≤ f , we encode G using at most (2.5 + 2 log 3)n− 8
bits; otherwise, we encode G∗ using at most (2.5+2 log 3)f−8 bits. This new encoding
has at most (2.5 + 2 log 3) min{n, f} − 8 bits. Since min{n, f} ≤ n+f

2 , the bit count
is at most (1.25 + log 3)m − 2 by Euler’s formula n + f = m + 2. For the sake of
decoding, we use one extra bit to denote whether we encode G or its dual. Note that
if n = 3, we can simply encode G using zero bit without ambiguity. Thus we have
proved the following theorem.

Theorem 3.3. Any triconnected plane graph with n vertices, m edges and f faces
can be encoded using at most (2.5 + 2 log 3) min{n, f} − 7 ≤ (1.25 + log 3)m− 1 bits.
Both encoding and decoding take O(n) time. The decoding procedure assumes that S
is given together with n or f as appropriate.

Remark. There are several ways to improve this coding scheme so that the de-
coding does not require n as input. One is to use well-known data compression
techniques to encode n and append it to the beginning of S using logn+O(log logn)
bits [1, 5]. Another is to pad S with copies of 1 at its end so that it has exactly
d(2.5+2 log 3) min{n, f}e−7 bits. Then, since 2.5+2 log 3 > 1, given S alone, we can
uniquely determine n or f and proceed with the original decoding procedure. With
the strings sk′ , we can unambiguously identify the padded bits.

4. Open problems. This paper leaves several problems open. Since plane tri-
angulations are useful in many application areas, it would be particularly helpful to
encode them in O(n) time using close to 1.08m bits. Similarly, it would be significant
to obtain a linear-time coding scheme for triconnected plane graphs using close to 2m
bits. Note that Tutte [23] proved an information-theoretic tight bound of 2m+ o(m)
bits for triconnected plane graphs that may contain multiple edges and self-loops.
More generally, it would be of interest to encode graphs in a given family in polyno-
mial time using their information-theoretic minimum number of bits. Solving these
problems will most likely lead to the discovery of new structural properties of graphs.

Acknowledgment. The authors are grateful to anonymous referees for helpful
comments.

REFERENCES

[1] T. C. Bell, J. G. Cleary, and I. H. Witten, Text Compression, Prentice-Hall, Englewood
Cliffs, NJ, 1990.

XIN HE, MING-YANG KAO, AND HSUEH-I LU 325

[2] C. Berge, Graphs, 2nd ed., North-Holland, New York, NY, 1985.
[3] T. H. Cormen, C. L. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press,

Cambridge, MA, 1990.
[4] H. de Fraysseix, J. Pach, and R. Pollack, How to draw a planar graph on a grid, Combi-

natorica, 10 (1990), pp. 41–51.
[5] P. Elias, Universal codeword sets and representations of the integers, IEEE Trans. Inform.

Theory, IT-21 (1975), pp. 194–203.
[6] H. Galperin and A. Wigderson, Succinct representations of graphs, Inform. and Control, 56

(1983), pp. 183–198.
[7] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1972.
[8] A. Itai and M. Rodeh, Representation of graphs, Acta Inform., 17 (1982), pp. 215–219.
[9] G. Jacobson, Space-efficient static trees and graphs, in Proceedings of the 13th Annual IEEE

Symposium on Foundations of Computer Science (FOCS), IEEE Press, Washington, DC,
1989, pp. 549–554.

[10] S. Kannan, M. Naor, and S. Rudich, Implicit representation of graphs, SIAM J. Discrete
Math., 5 (1992), pp. 596–603.

[11] G. Kant, Drawing planar graphs using the lmc-ordering, in Proceedings of the 33rd Annual
IEEE Symposium on Foundations of Computer Science (FOCS), IEEE Press, Washington,
DC, 1992, pp. 101–110.

[12] G. Kant and X. He, Regular edge labeling of 4-connected plane graphs and its applications in
graph drawing problems, Theoret. Comput. Sci., 172 (1997), pp. 175–193.

[13] M. Y. Kao, M. Fürer, X. He, and B. Raghavachari, Optimal parallel algorithms for straight-
line grid embeddings of planar graphs, SIAM J. Discrete Math., 7 (1994), pp. 632–646.

[14] M. Y. Kao, N. Occhiogrosso, and S. H. Teng, Simple and efficient compression schemes
for dense and complement graphs, J. Combin. Optim., (1999), to appear.

[15] K. Keeler and J. Westbrook, Short encodings of planar graphs and maps, Discrete Appl.
Math., 58 (1995), pp. 239–252.

[16] L. Lovász, An Algorithmic Theory of Numbers, Graphs and Convexity, CBMS-NSF Regional
Conference Series in Appl. Math. 50, SIAM, Philadelphia, PA, 1986.

[17] J. I. Munro and V. Raman, Succinct representation of balanced parentheses, static trees and
planar graphs, in Proceedings of the 38th Annual IEEE Symposium on the Foundations of
Computer Science (FOCS), IEEE Press, Washington, DC, 1997, pp. 118–126.

[18] M. Naor, Succinct representations of general unlabeled graphs, Discrete Appl. Math., 28 (1990),
pp. 303–307.

[19] C. H. Papadimitriou and M. Yannakakis, A note on succinct representations of graphs,
Inform. and Control, 71 (1986), pp. 181–185.

[20] W. Schnyder, Embedding planar graphs on the grid, in Proceedings of the 1st Annual ACM-
SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA, 1990, pp. 138–148.

[21] G. Turán, On the succinct representation of graphs, Discrete Appl. Math., 8 (1984), pp. 289–
294.

[22] W. T. Tutte, A census of planar triangulations, Canad. J. Math., 14 (1962), pp. 21–38.
[23] W. T. Tutte, A census of planar maps, Canad. J. Math., 15 (1963), pp. 249–271.

NEW FACETS OF THE LINEAR ORDERING POLYTOPE∗

G. BOLOTASHVILI† , M. KOVALEV† , AND E. GIRLICH‡

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 3, pp. 326–336

Abstract. The linear ordering problem has many applications and was studied by many authors
(for a survey, see [P. Fishburn, SIAM J. Discrete Math., 4 (1990), pp. 478–488; M. Grötschel, M.
Jünger, and G. Reinelt, Math. Programming, 33 (1985), pp. 43–60; G. Reinelt, The Linear Ordering
Problem: Algorithm and Applications, Heldermann Verlag, 1985]). One approach to solving this
problem, the so-called cutting plane method [M. Grötschel, M. Jünger, and G. Reinelt, Oper. Res.,
32 (1984), pp. 1195–1220; V. A. Yemelichev, M. M. Kovalev, and M. K. Kravtsov, Polytopes,
Graphs, Optimization, Cambridge University Press, 1984], derives facet-defining inequalities which
are violated by current nonfeasible solution and adds them to the system of inequalities of current
linear programming problems.

We present a method (rotation method) for generating new facets of polyhedra by using previ-
ously known ones. The rotation method for the linear ordering polytope generalizes facets induced
by subgraphs called m-fences, Möbius ladders, and Zm-facets introduced by Reinelt, (m, k)-fences
introduced by Bolotashvili [G. C. Bolotashvili, A Class of Facets of the Permutation Polytope and a
Method for Constructing Facets of the Permutation Polytope, preprint VINITI N3403-B87, Moscow,
1987 (in Russian)]; and t-reinforced m-fences introduced by Leung and Lee [J. Leung and J. Lee, Dis-
crete Appl. Math., 50 (1984), pp. 185–200]. We introduce 10 collections of inequalities representing
facets of the linear ordering polytope. Among them are three that coincide with earlier known ones:
m-wheel-facets introduced by Reinelt, augmented m-fences introduced by McLennan [A. McLennan,
in Preferences, Uncertainty and Optimality, West View Press, 1990, pp. 187–202]; and augmented
t-reinforced m-fences introduced by Leung and Lee.

Key words. linear ordering polytope, facets, linear ordering, ranking

AMS subject classifications. Primary, 52B12; Secondary, 90B10

PII. S0895480196300145

1. Introduction. A linear ordering of an n-element set N is a bijection π :
{1, 2, . . . , n} → N . The linear ordering polytope Pn is a convex hull of n! points in

Rn
2−n. Each of these points corresponds one to one to some π = (π(1), . . . , π(n)) by

the following rule: xπij = 1 if π−1(i) < π−1(j) and xπij = 0 if π−1(i) > π−1(j), i 6= j.

Let G = (N,A) be a complete directed graph (digraph) with node set N and
arc set A = N × N (without loops). A directed subgraph (N,T) is a spanning
tournament if for every pair of distinct nodes u, v ∈ N exactly one of the arcs (u, v)
and (v, u) is in T . Given a linear ordering π of the nodes N of a digraph, the arc set
{(u, v) : π−1(u) < π−1(v)} forms an acyclic spanning tournament on N ; conversely,
an acyclic spanning tournament (N,T) induces a unique ordering of N . Thus the
linear ordering polytope Pn is the convex hull of the incidence vectors of the acyclic
spanning tournaments on N .

The system of inequalities and equations

xij ≤ 1, i 6= j, i, j ∈ N,(1.1)

∗Received by the editors March 1, 1996; accepted for publication (in revised form) March 19,
1999; published electronically September 7, 1999. This research was partially supported by the
Fundamental Research Foundation of Republic Belarus and DAAD.

http://www.siam.org/journals/sidma/12-3/30014.html
†Faculty of Applied Mathematics and Informatics, State University of Belarus, 220080, Minsk,

Belarus (kovalev@fpm.bsu.unibel.by).
‡Faculty of Mathematics, Otto-von-Guericke-University, PSF 4120, 39106 Magdeburg, Germany

(eberhard.girlich@mathematik.uni-magdeburg.de).

326

NEW FACETS OF THE LINEAR ORDERING POLYTOPE 327

xij + xjk + xki ≤ 2, i 6= j, i 6= k, j 6= k, i, j, k ∈ N,(1.2)

xij + xji = 1, i 6= j, i, j ∈ N,(1.3)

defines the relaxation polytope Bn of the polytope Pn. Every point xπ is a vertex of
Bn. In addition to these integer vertices, the polytope Bn for n ≥ 6 has noninteger
vertices (note that in earlier publications it was believed that Pn = Bn (cf. [4])). The
simplest classes of noninteger vertices are [1]

(1) x0
isiq = x0

jsjq =
1

2
,

x0
isjq = 0, x0

jqis = 1, s 6= q, 1 ≤ s, q ≤ m,
x0
isjs = x0

jsis =
1

2
, 1 ≤ s ≤ m,

and

(2) x00
isiq = x00

jsjq =
1

2
, s 6= q, 1 ≤ s, q ≤ m,

x00
isjq = 0, x00

jqis = 1, (jq, is) ∈ B,
x00
isjq = x00

jqis =
1

2
, (jq, is) 6∈ B,

where I = (i1, . . . , im), J = (j1, . . . , jm) are arbitrary disjoint subsets of N , 3 ≤ m ≤
n
2 , k is such that m+ 1 ≡ 0 (mod k), and

B =
m⋃
s=1

k−1⋃
q=1

{(js+q, is), (js−q, is)}, jm+p = jp, j1−p = jm−p+1, p = 1, . . . ,m.

It is proved in [1, 2, 12] that the inequality

m∑
s=1

xisjs −
m∑
s=1

m∑
q=1
q 6=s

xisjq ≤ 1(1.4)

cuts off the noninteger vertex x0 and defines a facet of Pn, whereas the inequality

m∑
s=1

xisjs −
m∑
s=1

k−1∑
q=1

(xisjs+q + xisjs−q) ≤
m+ 1

k
− 1(1.5)

cuts off the noninteger vertex x00 and defines a facet of Pn [2].
Every facet-defining inequality for Pn can be represented in normal form [12, 13],

i.e., in a form with nonnegative coefficients. Indeed (since xij+xji = 1), facet-defining
inequality (1.4) can be rewritten as

x(F) =

m∑
s=1

xisjs +
m∑
s=1

m∑
q=1
q 6=s

xjqis ≤ m2 −m+ 1,(1.6)

where F =
⋃m
s=1({(is, js)}

⋃{⋃mq=1{(jq, is) : q 6= s}}).

328 G. BOLOTASHVILI, M. KOVALEV, AND E. GIRLICH

In this form it has been constructed in [12]. Inequality (1.5) with nonnegative
coefficients has the following form:

x(F ′) =
m∑
s=1

xisjs +
m∑
s=1

k−1∑
q=1

(xjs+qis + xjs−qis) ≤
m+ 1

k
− 1 + 2m(k − 1),(1.7)

where F ′ = B
⋃{⋃ms=1(is, js)}.

If an inequality ax ≤ a0 is in normal form, then it induces a weighted digraph
corresponding to the nonzero coefficients of the inequality and with w(i, j) = aij ,
where w(i, j) is the weight of arc (i, j) in the digraph. Conversely, a weighted digraph
can be understood to induce an inequality by associating a coefficient of w(i, j) with
every arc in the digraph, 0 for all other arcs, and an appropriately defined right-
hand side. Digraphs induced by facet-defining inequalities (1.6) and (1.7) are called
m-fences and (m, k)-fences, respectively.

ij1

ii1

ij2

ii2

ij3

ii3

ij4

ii4

? ? ? ?@
@

@
@

@@I

@
@
@
@
@@I

@
@
@
@
@@I

HH
HH

HH
HH

HH
HY

HH
HH

HH
HH

HH
HY

PP
PP

PP
PP

PP
PP

PP
PPPi

¡
¡
¡
¡
¡¡�

¡
¡
¡
¡
¡¡�

¡
¡
¡
¡
¡¡�

��
��
��
��
��
�*

��
��

��
��

��
�*

��
��
��
��
��

��
��

��
�1

a) 4-fence

ij1

ii1

ij2

ii2

ij3

ii3

ij4

ii4

? ? ? ?@
@

@
@

@@I

@
@
@
@
@@I

@
@
@
@
@@I

¡
¡
¡
¡
¡¡�

¡
¡
¡
¡
¡¡�

¡
¡
¡
¡
¡¡�

ij5

ii5

?¡
¡
¡
¡
¡¡�

@
@

@
@

@@I

XXX
XXX

XXX
XXX

XXX
XXX

XXX
XXy

���
���

���
���

���
���

���
��:

b) (5,2)-fence

Fig. 1.

Figure 1(a) illustrates an m-fence for m = 4; Figure 1(b) illustrates an (m, k)-
fence for m = 5, k = 2. Evidently, if m is odd, then an m-fence is a special case of
an (m, k)-fence when m + 1 = 2k. Throughout the figures in the paper, arcs shown
without numerical labels should be interpreted as having weight equal to 1.

Using substitution xij = 1 − xji, which follows from (1.3), we can replace every
facet-defining inequality ax ≤ b with the equivalent inequality b̄ ≤ āx. For example,
inequality (1.4) can be rewritten as

m− 1 ≤
m∑
s=1

xjsis +
m∑
s=1
s6=q

m∑
q=1

xiqjs ,(1.8)

and inequality (1.5) can be rewritten as

m− m+ 1

k
+ 1 ≤

m∑
s=1

xjsis +

m∑
s=1

k−1∑
q=1

(xisjs+q + xisjs−q).(1.9)

Lemma 1.1 (trivial lifting lemma [12, 13]). Facet-defining inequalities of Pn also
define facets for Pn1 , n1 > n.

NEW FACETS OF THE LINEAR ORDERING POLYTOPE 329

2. The rotation method. We present now a new rotation method for generating
new facets of the linear ordering polytope. The idea for this method was introduced
in [3].

Let P be a polyhedron in Rn with the set of vertices vert P and ψ be an affine
mapping of Rn into itself. If vert P = vert ψ(P), then ψ is called a rotation mapping
of P . Evidently, the rotation mappings realize one-to-one mappings of the facet set
and corresponding facet-defining inequalities onto themselves. Hence, having a facet-
defining inequality ax ≤ a0 for the polyhedron P , we have a facet-defining inequality
aψ(x) ≤ a0 for the same polyhedron P .

Remark 2.1. If a facet F is defined as conv{x1, . . . , xs}, then ψ(F) = conv{ψ(x1),
. . . , ψ(xs)}.

A trivial rotation mapping for linear ordering polytope Pn is an arc reversal
mapping which is defined as x̄ij = xji. This mapping transforms every facet ax ≤ a0

into the facet bx ≤ a0, where bij = aji for all 1 ≤ i, j ≤ n [12, 13]. The trivial
rotation mapping does not generate new facets for the most known facets of the
polytope Pn, because in many cases the mapping generates another member of the
same facet family, i.e., the corresponding digraphs are isomorphic (for example, an
m-fence maps to an m-fence, and so on).

For a given vertex r ∈ N , we introduce a mapping ψr : Rn
2−n → Rn

2−n, defined
as

x̄rj = xjr, x̄jr = xrj , j 6= r, j ∈ N,(2.1)

x̄ij = xij + xjr − xir, i 6= j, i 6= r, j 6= r, i, j ∈ N.(2.2)

An equivalent version of (2.2) using (1.3) is

x̄ij = xij + xjr + xri − 1, i 6= j, i 6= r, j 6= r, i, j ∈ N.

Observe that this mapping is not a rotation in the strict sense of the word; thus
the term rotation mapping is not restricted to mappings that are rotational in the
conventional sense but can include reflections as well.

Remark 2.2. The rotation ψr of the linear ordering 1, 2, . . . , r − 1, r, r + 1, . . . , n
maps to the ordering r + 1, . . . , n, r, 1, . . . , r − 1.

Theorem 2.1. The mapping ψr is a rotation mapping of the linear ordering
polytope for every r ∈ N .

Proof. To prove that ψr is a rotation mapping for Pn it is sufficient to show that
ψr transforms the relaxation polytope Bn into itself and all its integer vertices into
integer vertices. Indeed, since ψr is a nonsingular affine mapping, there exists the
inverse mapping ψ−1

r . The mapping ψ−1
r is defined by the following equalities:

xrj = x̄jr, xjr = x̄rj , xij = x̄ij + x̄jr − x̄ir, i 6= j, i 6= r, j 6= r, i, j, r ∈ N.(2.3)

Therefore, the polytope ψr(Bn) is defined by conditions

1 ≥ xij = x̄ij + x̄jr − x̄ir, i 6= j, i 6= r, j 6= r; i, j, r ∈ N,
2 ≥ xij + xjr + xri = x̄ij + x̄jr − x̄ir + x̄rj + x̄ir = x̄ij + 1,

1 = xij + xji = x̄ij + x̄ji,

which combined with the equalities xij + xji = 1 in coordinates x̄ij are identical
to (1.1)–(1.3), that is, ψr(Bn) = Bn. Equalities (2.1)–(2.2) and (2.3) imply that

330 G. BOLOTASHVILI, M. KOVALEV, AND E. GIRLICH

x is an integer point of Bn if and only if x̄ is an integer point of ψr(Bn), that is,
vert(ψr(Bn)) ∩ Zn(n−1) = vert(Bn) ∩ Zn(n−1), or vert(ψr(Pn)) = vert(Pn).

Theorem 2.1 and the definition of rotation mapping ψr directly imply the following
technique for obtaining new facets of the linear ordering polytope from known ones.

Theorem 2.2. If the inequality
∑∑

aijxij ≤ a0 defines a facet for Pn, then the
inequality

n∑
i=1
i6=r

 n∑
j=1
j 6=r

aij(xij + xjr − xir) + airxri + arixir

 ≤ a0

defines a facet for Pn.
We distinguish two cases of rotation mapping ψr: the first, when the variables xir

and xrj are involved in the facet-defining inequality
∑∑

aijxij ≤ a0 and the second
when they are not. In the first case we’ll speak about facet routing, and in the second
case, about facet lifting.

Let a facet-defining inequality ax ≤ b be in normal form and G = (N(U), U) be a
subdigraph of a complete digraph Gn = (N,A) and arc set U = {(i, j) ∈ A : aij > 0}.
It is clear that the case r 6∈ N(U) corresponds to facet lifting, and r ∈ N(U) to
facet routing. The lifting transforms the digraph G = (N(U), U) into digraph Gr =
(N(U) ∪ r, Ur) by adding the two arcs (r, i) and (j, r) for every arc (i, j) ∈ U . Notice
that an arc (r, k) or (k, r) might be added multiple times; the aggregate multiplicity
corresponds to the coefficient of the new arc in the lifted inequality. The routing
transforms a digraph G = (N(U), U) into digraph G′ = (N(U), U ′) by adding the two
arcs (r, i) and (j, r) for every arc (i, j) ∈ U : i, j 6= r and by changing the orientation
of the arcs (r, j) and (i, r) ∈ U .

Remark 2.3. If indeg(s) = outdeg(s) for all s ∈ N(U), then lifting does not give
new facets.

The routing transforms the digraph G = (N(U), U) into digraph Gr = (N(U), U ′)
by adding two arcs (r, i) and (j, r) for every arc (i, j) ∈ U : i, j 6= r and by changing
the orientation of arcs (r, j) ∈ U and (i, r) ∈ U .

Let ax ≤ a0 be a facet-defining inequality; then for any i and j, aψj(ψi(x)) ≤ a0

is equivalent either to ax ≤ a0 or to aψk(x) ≤ a0, for some k ∈ N . It does not allow
us to apply the rotation method repeatedly.

We call a valid inequality ax ≤ a0 for Pn regular, if∑
i∈N

ais =
∑
i∈N

asi for all s ∈ N.(2.4)

If aij ∈ {0, 1}, then condition (2.4) is equivalent to indeg(s) = outdeg(s) for all
s ∈ N(U).

For r ∈ N(U) let

arij =

{
0 if i = r or j = r,

aij otherwise,

ar0 = a0 − 1

2

(∑
i∈N

air +
∑
i∈N

ari

)
.

The next lemma is a generalization of the McLennan transitivity proposition [11].

NEW FACETS OF THE LINEAR ORDERING POLYTOPE 331

Lemma 2.3 (routing lemma). If ax ≤ a0 is a regular inequality for Pn and
r ∈ N(U), then ax ≤ a0 represents a facet of Pn iff arx ≤ ar0 represents a facet of
Pn.

To prove the lemma it suffices to note that

routing ψr : ax ≤ a0 ⇒ arx ≤ ar0 and
lifting ψr : arx ≤ ar0 ⇒ ax ≤ a0.

Remark 2.4. If a digraphG = (N(U), U) induces a facet F and if for all s ∈ N(U),
indeg(s) = outdeg(s), then deletion of any vertex s gives a digraph, which itself
induces a facet.

3. Reducing forms of new facet-defining inequalities. The rotation ψr of
a facet

∑
aijxij ≤ a0 yields the facet-defining inequality

∑
āijxij ≤ ā0 with the

following coefficients:

āij = aij , i 6= r, j 6= r,

āsr =
∑

(j,s)∈U
ajs,

ārs =
∑

(s,j)∈U
asj ,

ā0 = a0 +
∑

(i,j)∈U
aij (lifting),

ā0 = a0 +
∑

(i,j)∈U
i,j 6=r

aij (routing).

The equality xij + xji = 1 allows one to reduce oppositely directed arcs in the
digraph G, and it corresponds to the following coefficient corrections:

a′ij = āij = aij , i 6= r, j 6= r,(3.1)

a′sr = max{āsr − ārs, 0},(3.2)

a′rs = max{ārs − āsr, 0},(3.3)

a′0 = ā0 −
∑

s∈N(U)

min(āsr, ārs) (lifting),(3.4)

a′0 = ā0 −
∑

s∈N(U)\{r}
min(āsr, ārs) (routing).(3.5)

If a facet-defining inequality has the form

x(U) =
∑

(i,j)∈U
xij ≤ a0(3.6)

(all facets described above have this form), then the rotation ψr of (3.6) is∑
(i,j)∈U ′

xij +
∑

s∈N(U ′)

(max{0, indeg(s)− outdeg(s)}xsr

+ max{0,−indeg(s) + outdeg(s)}xrs) ≤ a′0,
where a′0 = a0+|U ′|−∑s∈N(U ′) min{indeg(s), outdeg(s)}, U ′ = {(i, j) ∈ U : i, j 6= r}
and indeg(s)(outdeg(s)) is the number of incoming (outcoming) arcs for a node s.
Remember, that ars = 1, asr = 0, if (r, s) ∈ U, ars = 1, ars = 0, if (s, r) ∈ U .

332 G. BOLOTASHVILI, M. KOVALEV, AND E. GIRLICH

4. Rotations of m-fences. The proof of the next theorem (and of all other
similar theorems in this paper) directly follows from Theorem 2.2 and (3.1)–(3.5).

Theorem 4.1. The following inequalities define facets of the linear ordering
polytope:
(a) the routing of m-fences for all r ∈ {i1, . . . , im, j1, . . . , jm}:

m∑
s=1

is 6=r or js 6=r

xisjs + (m− 2)(xisr + xrjs) +
m∑
q=1

q 6=s,jq 6=r

xjqis

 ≤ 2(m− 1)2;

(b) the lifting of m-fences for all r 6∈ {i1, . . . , im, j1, . . . , jm}:

m∑
s=1

xisjs + (m− 2)(xisr + xrjs) +
m∑
q=1
q 6=s

xjqis

 ≤ 2m2 − 3m+ 1.

ij1

ii1

ij2

ii2

ijm

iim

? ? ?@
@
@
@
@@I

@
@
@
@
@@I

¡
¡
¡
¡
¡¡�

¡
¡
¡
¡
¡¡�

��
��
��
��
��
��*

HH
HH

HH
HH

HH
HHY

ijt~~j
Y Y �

m− 2

m− 2
m− 2

m− 2

m− 2

m− 2
p p p

p p p
iit -m− 2

((((
((((

((((
(((((:

���
���

���
��:

a) (r = jt)

ij1

ii1

ij2

ii2

ijm

iim

? ? ?@
@
@
@
@@I

@
@
@
@
@@I

¡
¡
¡
¡
¡¡�

¡
¡
¡
¡
¡¡�

��
��
��
��
��
��*

HH
HH

HH
HH

HH
HHY

ir~~j
Y Y �

m− 2

m− 2
m− 2

m− 2

m− 2

m− 2
p p p

p p p
b)

Fig. 2. Routing (a) and lifting (b) of m-fence.

The facets which are depicted in Figure 2(a) and 2(b) cut off noninteger vertices
x = ψr(x

0), ψr(x
00), respectively.

Note that the facet in Figure 2(a) for m = 3 is isomorphic to the Möbius ladder
in Figure 4.

5. Rotations of t-reinforced m-fences. A generalization of m-fences was pre-
sented in [6, 10, 11]. If (I ∪ J, F) is an m-fence, then for any nonnegative integer

NEW FACETS OF THE LINEAR ORDERING POLYTOPE 333

i

i

i

i

i

i

i

i

i

i

j1

i1

j2

i2

j3

i3

j4

i4

j5

i5

(= r)

? ? ? ? ?@
@

@
@

@@I

@
@

@
@

@@I

@
@
@
@
@@I

¡
¡
¡
¡
¡¡�

¡
¡
¡
¡
¡¡�

¡
¡
¡
¡
¡¡�

���
���

���
���

���
���

���
��:

XXX
XXX

XXX
XXX

XXX
XXX

XXX
XXy

*Y
� -j �R ª

Fig. 3. Routing of (5, 2)-fence for r = j3.

t ≤ m− 2 the inequality

t

m∑
s=1

xisjs +
m∑
s=1

m∑
q=1
q 6=s

xjsiq ≤ m(m− 1) +
t(t+ 1)

2

represents a facet of Pn and is called a t-reinforced m-fence [10]. Application of the
rotation method to t-reinforced m-fences yields new classes of facets.

Theorem 5.1. The following inequalities define facets of the linear ordering
polytope:
(a) the routing of t-reinforced m-fences for any t = 1, 2, . . . ,m− 2:

m∑
s=1

is 6=r or js 6=r

txisjs + (m− t− 1)(xisr + xrjs) +
m∑
q=1

q 6=s,jq 6=r

xjqis

 ≤ 2(m−1)2 + tm+
t(t+ 1)

2
;

(b) the lifting of t-reinforced m-fences for any t = 1, 2, . . . ,m− 2:

m∑
s=1

txisjs + (m− 1− t)(xisr + xrjs) +
m∑
q=1
q 6=s

xjqis

 ≤ (2m− 2− t)m+
t(t+ 1)

2
.

The last class of facets coincides with augmented t-reinforced m-fences introduced
by McLennan [11] and Leung and Lee [10].

6. Rotations of (m, k)-fences. An example of the routing of an (m, k)-fence
is presented in Figure 3.

Theorem 6.1. The following inequalities define facets of the linear ordering
polytope:
(a) the routing of (m, k)-fences for any r ∈ {i1, . . . , im, j1, . . . , jm}:

m∑
s=1
is 6=r
js 6=r

xisjs + (2k − 3) (xisr + xrjs) +
k−1∑
q=1

js+q 6=r
js−q 6=r

(xjs+qis + xjs−qis)

≤ m+ 1

k
− 1 + 2(m− 1)(k − 1) +m(2k − 3);

334 G. BOLOTASHVILI, M. KOVALEV, AND E. GIRLICH

j

j
j j

j j

4

3

2 6

1 5

6 6

6

HHHHHHj

�������

HHHHHHj

�������
HHHHHHj

�������ª R

Fig. 4. Möbius ladder, m = 5.

(b) the lifting of (m, k)-fences for any r 6∈ {i1, . . . , im, j1, . . . , jm}:
m∑
s=1

(
xisjs + (2k − 3)(xisr + xrjs) +

k−1∑
q=1

(xjs+qis + xjs−qis)

)

≤ m+ 1

k
− 1 + 2m(k − 1) +m(2k − 3).

7. Rotations of Möbius ladders. The following class of facet-defining inequal-
ities was constructed in [9] and [12]:

x(M) =
∑

(i,j)∈M
xij ≤ |M | − m+ 1

2
,(7.1)

where M is a set of arcs of the Möbius ladder, which, in turn, is an ordered sequence of
odd number of different dicycles C1, . . . , Cm of length 3 or 4 (see Figure 4), satisfying
the following condition: Every two adjacent dicycles have a common arc, and if any
two of these dicycles Ci and Cj , Ci < Cj have a common node, then this node
belongs to either all dicycles Ci, . . . , Cj or all dicycles Cj , . . . , Cm, C1, . . . , Ci (see an
exact definition in [12]). Note that, for an (m, 2)-fence, inequality (1.7) has the form

m∑
s=1

(xisjs + xjs+1is + xjs−1is) ≤
m+ 1

2
+ 2m− 1(7.2)

and coincides with the Möbius ladder for all dicycles of length 4 (4-dicycles). If
m = 3, then inequality (7.2) coincides with inequalities (1.6) and (1.7), i.e., 3-fences,
(3,2)-fences, and Möbius ladders with three 4-dicycles are isomorphic.

Theorem 7.1. The following inequalities define facets of the linear ordering
polytope:

(a) the routing of Möbius ladders:∑
(i,j)∈M ′

(xij + xjr + xri) +
∑

(i,r)∈M
xri +

∑
(r,i)∈M

xir ≤ |M |+ |M ′| − m+ 1

2
,

where M ′ = {(i, j) ∈M : i, j 6= r};
(b) the lifting of Möbius ladders:∑

(i,j)∈M
(xij + xjr + xri) ≤ 2|M | − m+ 1

2
.

NEW FACETS OF THE LINEAR ORDERING POLYTOPE 335

i

i

i
i
i

i

i

i

i

i
i

6

r

1

4

8

10

2

7

5

3

9

*Y
ªR

O�

W�

�-

U

*Y

y :

?�
I�

j

�

j

?

�

I

Fig. 5. Lifting of a Möbius ladder.

i

i

i
i
i

i

i

i

i

i
i

6

11

1

9

8

10

7

2

5

3

4

�

�

J
J
J
JĴ

J
J
J
JĴ

��
��
��1

��
��
��1

PP
PP

PPi
PP

PP
PPi

6

6

�-

�M

�W

I�
q)

PPPPPPPPPPq

����������)

�
�
�
�
�
�
��7

S
S
S
S
S
S
SSo

i

i

i
i
i

i

i

i

i

i
i

6

11

1

9

8

10

7

2

5

3

4

�

�

J
J
J
JĴ

J
J
J
JĴ

��
��

��1
��

��
��1

PP
PP

PPi
PP

PP
PPi

6

*Y

�M

�W

I�
q)

PPPPPPPPPPq

����������)

�
�
�
�
�
�
��7

S
S
S
S
S
S
SSo

U

a) Z5 b) Routing of Z5, r = 6

Fig. 6.

Let M consist of 4-dicycles only. Note that there exists a unique Möbius ladder
(up to isomorphism) generated by m 4-dicycles. Observe that such a Möbius ladder
is isomorphic to an (m, 2)-fence. The lifting of the Möbius ladder with every dicycle
of length 4 (or, in other words, lifting of the (m, 2)-fence) is the facet

m∑
s=1

(
xisjs + xjs+1is + xjs−1is + xris + xjsr

) ≤ 7m− 1

2

named in [12] as an m-wheel with center in r. The corresponding digraph is depicted
in Figure 5, where is = 2s− 1, js = 2s, s = 1, 2, 3, 4, 5 (cf. Figure 1(b)).

8. Rotations of Zm-facets. In [12] the facet-defining digraph Zm = (N,A) is
introduced as a generalization of Möbius ladders.

Let M be the set of arcs of a Möbius ladder in which there exists only one 4-
dicycle (j1, im, jm, i2) and all 3-dicycles (is, js−1, h), (is, js, h), s = 2, . . . ,m, have a
common node h. Then A = M ∪{(jm−1, i1), (j2, i1), (i1, jm), (i1, j1)}. See Figure 6(a)
for the corresponding digraph Zm = (I ∪ J ∪ h), where m = 5, h = 11, is = 2s − 1,
js = 2s, s = 1, 2, . . . , 5.

Theorem 8.1. The following inequalities define facets of the linear ordering
polytope:

336 G. BOLOTASHVILI, M. KOVALEV, AND E. GIRLICH

(a) the routing of Zm-facets:∑
(i,j)∈A′

(xij + xjr + xri) +
∑

(i,r)∈A
xri +

∑
(r,i)∈A

xir ≤ |A|+ |A′| −m− 2,

where A′ = {(i, j) ∈ A : i, j 6= r};
(b) the lifting of Zm-facets:∑

(i,j)∈A
(xij + xjr + xri) ≤ 2|A| −m− 2.

It should be noted that Zm is a facet of Pn only for m ≥ 5, n ≥ (2m + 1). An
example of routing ψ6 of Z5 is depicted in Figure 6(b).

Acknowledgments. The authors would like to thank the referees for helpful
suggestions which have improved the presentation of this paper.

REFERENCES

[1] G. G. Bolotashvili, On the facets of the permutation polytope, Commun. Georgian Acad.
Sci., 121 (1986), pp. 281–284 (in Russian).

[2] G. G. Bolotashvili, A Class of Facets of the Permutation Polytope and a Method for Con-
structing Facets of the Permutation Polytope, Preprint VINITI N3403-B87, Moscow, 1987
(in Russian).

[3] G. G. Bolotashvili and M. M. Kovalev, The partial order polytope, in Proceedings of the
VIII conference “Problems in theoretical cybernetics,” Gorky, 1988 (in Russian).

[4] V. J. Bowman, Permutation polyhedra, SIAM J. Appl. Math., 22 (1972), pp. 586–589.
[5] P. Fishburn, Binary probabilities induced by rankings, SIAM J. Discrete Math., 3 (1990),

pp. 478–488.
[6] P. Fishburn, Induced binary probabilities and the linear ordering polytope: A status report,

Math. Social Sci., 23 (1992), pp. 67–80.
[7] E. Girlich, G. G. Bolotashvili, and M. M. Kovalev, The poset polytope, in European

Chapter on Combinatorial Optimization VIII, Poznan, 1995.
[8] M. Grötschel, M. Jünger, and G. Reinelt, A cutting plane algorithm for the linear ordering

problem, Oper. Res., 32 (1984), pp. 1195–1220.
[9] M. Grötschel, M. Jünger, and G. Reinelt, Facets of the linear ordering polytope, Math.

Programming, 33 (1985), pp. 43–60.
[10] J. Leung and J. Lee, More facets from fences for linear ordering and acyclic subgraph poly-

topes, Discrete Appl. Math., 50 (1994), pp. 185–200.
[11] A. McLennan, Binary stochastic choice, in Preferences, Uncertainty and Optimality, J. S.

Chipman, D. McFadden, and M. K. Richter, eds., Westview Press, Boulder, CO, 1990,
pp. 187–202.

[12] G. Reinelt, The Linear Ordering Problem: Algorithms and Applications, Res. Exp. Math. 8,
Heldermann Verlag, Berlin, 1985.

[13] G. Reinelt, A note on small linear ordering polytope, Discrete Comput. Geom., 10 (1993),
pp. 67–78.

[14] V. A. Yemelichev, M. M. Kovalev, and M. K. Kravtsov, Polytopes, Graphs, Optimization,
Cambridge University Press, Cambridge, UK, 1984.

EMBEDDING GRAPHS INTO A THREE PAGE BOOK WITH
O(M logN) CROSSINGS OF EDGES OVER THE SPINE∗

HIKOE ENOMOTO† AND MIKI SHIMABARA MIYAUCHI‡

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 3, pp. 337-341

Abstract. This paper studies the problem of embedding a graph G into a book with vertices
on a line along the spine of the book and edges on the pages in such a way that no edge crosses
another. When each edge is allowed to appear in one or more pages by crossing the spine, one of the
authors showed that there exists a three page book embedding of G in which each edge crosses the
spine at most O(n) times, where n is the number of vertices. This paper improves the result and
shows that there exists a three page book embedding of G in which each edge crosses the spine at
most O(logn) times. An Ω(n2) lower bound on the number of crossings of edges over the spine in
any book embedding of the complete graph Kn is also shown.

Key words. graphs, book embedding, crossings of edges over the spine

AMS subject classifications. 05C10, 05C85, 68R10

PII. S0895480195280319

1. Introduction. A d page book consists of a line L (called the spine) in R3

together with d distinct half-planes (called pages) with L as their common boundary.
A d page book embedding of a graph G is an embedding of G into a d page book that
places each vertex on the spine and draws each edge on pages so that edges on the same
page do not intersect and each edge crosses only the spine; neither overlap the spine
nor touch the spine; see Figure 1.1. That is, the vertices are distinct points on the
spine and the edges are simple Jordan curves between them in such a way that any two
curves are either disjoint or meet only at their common endpoint. Additionally, each
curve can cross the spine L of the book but doesn’t permit overlapping or touching
L.

Bernhart and Kainen [2] and subsequently Chung, Leighton, and Rosenberg [3]
defined book embeddings of a graph so as to prevent edges from crossing the spine
(which we call a combinatorial book embedding), as shown in the left figure in Figure
2.1, and many combinatorial book embedding problems have been studied (see [5, 8]).

Another type of book embedding is possible, where each edge is allowed to appear
in one or more pages by crossing the spine. We call this type of book embedding
a topological book embedding. The points (excluding vertices) at which edges of G
cross the spine are called division points, and division points and vertices are called
division vertices. A connected part of an edge assigned to a page is called a subedge.
In this formulation, a graph G can be embedded in a one page book if and only if
G is outerplanar, and G can be embedded in a two page book if and only if G is
planar. Atneosen ([1, see Corollary 2.4]) and independently Bernhart and Kainen
([2, see Theorem 5.4]) have shown the existence of a three page topological book
embedding for an arbitrary graph. Miyauchi [6] examined the number of division
points on the spine and found that Atneosen’s proof is not constructive and that

∗Received by the editors January 20, 1995; accepted for publication (in revised form) March 5,
1999; published electronically September 7, 1999.

http://www.siam.org/journals/sidma/12-3/28031.html
†Department of Mathematics, Keio University, Yokohama-Shi, Kanagawa 223-8522 Japan

(enomoto@math.keio.ac.jp).
‡NTT Communication Science Laboratories, Atsugi-Shi, Kanagawa 243-0198 Japan

(miyauchi@theory.brl.ntt.co.jp).

337

338 HIKOE ENOMOTO AND MIKI SHIMABARA MIYAUCHI

Fig. 1.1. The way of crossing with an edge and the spine.

Bernhart and Kainen’s embedding idea needs at least 3ν(G) division points, where
ν(G) is the crossing number, i.e., the minimum number of pairwise intersections of
its edges when G is drawn in a plane. In particular, for a complete graph Kn with n
vertices, Bernhart and Kainen’s embedding idea needs 3n4 division points. Miyauchi
[6] also shows that there exists a three page book embedding of a graph G in which
each edge crosses the spine at most n times, where n is the number of vertices. Thus
it is an interesting problem to determine the minimum number of division points on
the spine of a three page topological book embedding for a given graph.

This paper improves Miyauchi’s result. We show that there exists a three page
topological book embedding of a graph G in which each edge crosses the spine at most
2 log n+1 times. To prove this theorem, first we lay out vertices of G along the spine
of the book and then embed edges in pages so that conflicting subedges are embedded
in different pages, where subedges (s, t) and (p, q) conflict if their endpoints (division
vertices) are laid out in such an order as s, p, t, q or p, s, q, t on the spine from left to
right.

A complete graph K6 can be embedded in a three page book without any division
points on the spine, as shown in the left figure in Figure 2.1. But a complete graph
greater than K6 cannot be embedded in a three page book without any division points.
In fact, for n ≥ 7, we show that any three page topological book embedding of Kn

has at least (n − 3)(n − 6)/2 division points. Note that this result says that every
topological book embedding of a complete graph K7 with seven vertices has at least
two division points on the spine of the book.

2. Three page book embeddings with O(m logn) division points. In this
section, we construct a topological book embedding of an arbitrary graph G = (V,E)
into a three page book with O(m logn) division points on the spine, where n is the
number of vertices and m is the number of edges. We may assume that G is simple;
that is, G has neither loops nor multiple edges. Let S = {0, 1} be the binary alphabet
and S∗ the set of all strings over S. If s ∈ S∗ has length k (k > 0), then write
s = s1s2 · · · sk, where si is the character of s in position i. Order the elements of S
by 0 < 1. Define the lexicographic order < on S∗ as follows. Suppose s, t ∈ S∗. If
i is the first position where s and t differ and si < ti, then s < t. If s and t agree
in all positions that they have in common and s is shorter than t, then s < t. As an
example, the strings of length at most 2 are ordered as follows:

ε < 0 < 00 < 01 < 1 < 10 < 11,

where ε denotes the empty string. Define k = dlog2 ne. A vertex s in V (G) =
{0, . . . , n−1} has a unique representation as a string in Sk using binary representation.

CROSSINGS OF EDGES OVER THE SPINE IN A THREE PAGE BOOK 339

Fig. 2.1. Three page book embeddings of K6.

For a vertex s ∈ V (G), use the representation s1 · · · sk for its binary representation,
where s1 is the highest-order binary digit. For a string s = s1 · · · sk in Sk let s(i) be
the string consisting of the first i letters of s, that is, s(i) = s1 · · · si and s(0) be the
empty string ε. For two distinct strings s and t in Sk, define ` = lcp(s, t) to be the
length of the longest common prefix of s and t, that is, s(`) = t(`) while s`+1 6= t`+1.

Consider a subdivision G∗ of G which is made by subdividing each edge (s, t) ∈
E(G) by adding vertices labeled

(s, t; k − 1), (s, t; k − 2), . . . , (s, t; `) = (t, s; `), . . . , (t, s; k − 2), (t, s; k − 1)

in this order from s to t, where ` = lcp(s, t), and identify (s, t; `) with (t, s; `). Since a
combinatorial book embedding of G∗ into a three page book corresponds to a topolog-
ical book embedding of G by regarding vertices in V (G∗)− V (G) as division points,
we will construct a combinatorial three page book embedding of G∗. First, we lay out
the vertices of G∗ along the spine of the book and then add three numbers 0, 1, and
2 (the “pages”) to edges of G∗ so that conflicting edges receive different numbers.

Theorem 2.1. There exists a three page combinatorial book embedding of the
subdivision G∗ of a graph G.

Proof. First, we lay out the vertices of G∗ on the spine. The vertices in V (G∗)
are represented as follows:

V (G∗) = {(s, t; i)|st ∈ E(G), lcp(s, t) ≤ i ≤ k},
where (s, t; k) is identified with s. For two edges (s, t), (p, q) ∈ E(G), we denote
(s, t) <∗ (p, q) when either of the following two conditions is satisfied:

i. min(s, t) < min(p, q).
ii. min(s, t) = min(p, q), max(s, t) < max(p, q).

Two division vertices (s, t; i), (p, q; j) ∈ V (G∗) are laid out on the spine from left
to right if one of the following three conditions holds:

1. s(i) < p(j).
2. s(i) = p(j), i = even, and (s, t) <∗ (p, q).
3. s(i) = p(j), i = odd, and (p, q) <∗ (s, t).

For two division vertices (s, t; i), (p, q; j) when (p, q; j) is laid out at the right of
(s, t; i) on the spine of the book, we denote (s, t; i) < (p, q; j). Note that for any two
division vertices (s, t; i), (p, q; j) ∈ V (G∗), either (s, t; i) < (p, q; j) or (p, q; j) < (s, t; i)
holds. For example, the division vertices on the spine for a complete graph K4 (i.e.,
k = 2) is ordered on the spine as shown in Figure 2.2.

As for the adjacency relations of vertices in V (G∗), connect (s, t; i−1) and (s, t; i)
(lcp(s, t) < i ≤ k). The edge ((s, t; i− 1), (s, t; i)) is embedded in page c(s(i)), which
is defined by the following recursive definition:

340 HIKOE ENOMOTO AND MIKI SHIMABARA MIYAUCHI

(00, 10; 0)
(00, 11; 0)
(01, 10; 0)

(01, 11; 0)

(01, 11; 1)

(01, 10; 1) (00, 10; 1)

(00, 11; 1)

(00, 01; 1)

(10, 11; 1)

(10, 00; 1)

(10, 01; 1)

(11, 00; 1)

(11, 01; 1)

01

10 11

00

Fig. 2.2. Division vertices on the spine of a three page book for K4.

1. c(ε) = 0.
2. c(s(i− 1)si) = c(s(i− 1)) + si + 1 mod 3.

From this recursive formula, we have c(s(i)) =
∑i
j=1 sj + i mod 3. Note that

c(s(i− 1)), c(s(i− 1)0), and c(s(i− 1)1) are three different numbers.

Finally, we show that no two edges in E(G∗) embedded in the same page conflict,
i.e., the layout is legal. Let ((s, t; i − 1), (s, t; i)) and ((p, q; j − 1), (p, q; j)) be two
edges in E(G∗) (lcp(s, t) < i ≤ k, lcp(p, q) < j ≤ k) that conflict. Note that by the
definition of the layout on the spine, (s, t; i− 1) < (s, t; i) and (p, q; j − 1) < (p, q; j).
Without loss of generality, we may assume that the endpoints of the two edges appear
on the spine in the order

(s, t; i− 1) < (p, q; j − 1) < (s, t; i) < (p, q; j).

We need to show that the two edges are embedded in different pages, that is, that
c(s(i)) 6= c(p(j)). By the assumption and the definition of layout of vertices, s(i−1) ≤
p(j − 1) ≤ s(i) ≤ p(j). Let ` = lcp(s, p).

Case 1. ` < i. In this case, since s(i) ≤ p(j), ` < j and s`+1 < p`+1. Because
p(j − 1) ≤ s(i), ` = j − 1. Then i = `+ 1 = j, because s(i− 1) ≤ p(j − 1) and ` < i.
Thus, c(s(i)) = c(s(`)) + si + 1 6= c(s(`)) + pj + 1 = c(P (j)) mod 3.

Case 2. ` ≥ i. In this case, since p(j − 1) ≤ s(i), j − 1 ≤ i. Because s(i − 1) ≤
p(j − 1), i ≤ j ≤ i + 1. Thus, j = i or j = i + 1. If j = i, then s(i) = p(j)
and s(i − 1) = p(j − 1). Thus by the regulation of layout for division points, if
(s, t; i − 1) < (p, q; j − 1), then (p, q; j) < (s, t; i). This contradicts the assumption
(s, t; i) < (p, q; j). Therefore i 6= j. If j = i+1, then c(p(j)) = c(s(i))+pj+1 6= c(s(i))
mod 3.

In the subdivision G∗, each edge (s, t) of G is divided by adding 2(k − `) − 1
division points, where ` = lcp(s, t) and k = dlog2 ne. Thus we have the following
theorem.

Theorem 2.2. There exists a three page book embedding of a graph G in which
each edge crosses the spine at most 2 logn+1 times, where n is the number of vertices.

Finally, we develop a lower bound on the number of division points p on the
spine in a three page topological book embedding of Kn. We first proved that p ≥
n(n− 1)/56 by using the induction on the number of the division points. Later, the
following proof was suggested by Dr. K. Ota.

CROSSINGS OF EDGES OVER THE SPINE IN A THREE PAGE BOOK 341

Theorem 2.3. Let Kn be a complete graph with n vertices, and let p be the
number of division points on the spine of a topological three page book embedding of
Kn. Then,

p ≥ (n− 3)(n− 6)/2.

To prove Theorem 2.3 we use the following lemma.
Lemma 2.4 (Bernhart and Kainen [2]). Let G be a graph with m edges and n

vertices, and let bt(G) be the pagenumber of any combinatorial book embedding of G.
Then,

bt(G) ≥ (m− n)/(n− 3).

Proof of Theorem 2.3. For a topological book embedding of Kn, let K∗n be the
subdivision of Kn whose vertices consist of vertices in V (Kn) and division points. Let
P be the set of division points (i.e., P = V (K∗n) − V (Kn)) and let p be the number
of division points (i.e., p = |P |). Then the number of edges in K∗n − P is at least
n(n− 1)/2− p. Because the subgraph K∗n − P of K∗n is embedded into a three page
book without any division points, we have (n(n− 1)/2− p− n)/(n− 3) ≤ 3 by using
Lemma 2.4.

From Theorem 2.3, we found that every topological book embedding of a complete
graph K7 with seven vertices has at least two division points on the spine of the book.
Furthermore, in [4] we show that the lower bound of the number of division points on
the spine for a complete graph Kn with n vertices is Ω(n2 logn). That is, the upper
bound shown in Theorem 2.2 is optimal as to the order of the number of division
points.

Acknowledgments. The authors would like to thank the referees for their help-
ful comments and suggestions.

REFERENCES

[1] G. A. Atneosen, On the Embeddability of Compacta in n-books, Ph.D. thesis, Michigan State
Univ., East Lansing, MI, 1968.

[2] F. Bernhart and P. C. Kainen, The book thickness of a graph, J. Combin. Theory Ser. B,
27 (1979), pp. 320–331.

[3] F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg, Embedding graphs in books: A
layout problem with applications to VLSI design, SIAM J. Algebraic Discrete Methods,
8 (1987), pp. 33–58.

[4] H. Enomoto, M. S. Miyauchi, and K. Ota, Lower bounds for the number of edge-crossings
over the spine in a topological book embedding of a graph, Discrete Appl. Math., 92 (1999),
pp. 149–155.

[5] S. M. Malitz, Genus g graphs have pagenumber O(
√
g), J. Algorithms, 17 (1994), pp. 85–109.

[6] M. S. Miyauchi, An O(mn) algorithm for embedding graphs into a 3-page book, Trans. IEICE,
E77-A, 3 (1994), pp. 521–526.

[7] A. T. White, Graphs, Groups and Surfaces, North-Holland, Amsterdam, New York, 1984,
p. 59.

[8] M. Yannakakis, Embedding planar graphs in four pages, J. Comput. System Sci., 38 (1973),
pp. 36–67.

FINDING SUBSETS MAXIMIZING MINIMUM STRUCTURES∗

MAGNÚS M. HALLDÓRSSON† , KAZUO IWANO‡ , NAOKI KATOH§ , AND

TAKESHI TOKUYAMA‡

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 3, pp. 342–359

Abstract. We consider the problem of finding a set of k vertices in a graph that are in some
sense remote. Stated more formally, given a graph G and an integer k, find a set P of k vertices for
which the total weight of a minimum structure on P is maximized. In particular, we are interested in
three problems of this type, where the structure to be minimized is a spanning tree (Remote-MST),
Steiner tree, or traveling salesperson tour.

We study a natural greedy algorithm that simultaneously approximates all three problems on
metric graphs. For instance, its performance ratio for Remote-MST is exactly 4, while this problem
is NP -hard to approximate within a factor of less than 2. We also give a better approximation
for graphs induced by Euclidean points in the plane, present an exact algorithm for graphs whose
distances correspond to shortest-path distances in a tree, and prove hardness and approximability
results for general graphs.

Key words. minimum spanning tree, traveling salesperson tour, Steiner tree, dispersion

AMS subject classifications. 58Q25, 05C85, 05C05

PII. S0895480196309791

1. Introduction. Let G[P] denote the subgraph of a graph G induced by a
vertex subset P . We are interested in the following spanning tree (Remote-MST)
problem:

Remote-MST. Given a complete undirected edge-weighted graph
G = (V,E) and integer k, find a subset P of V of cardinality k
such that the cost of the minimum weight spanning tree on G[P] is
maximized.

We also study the traveling salesperson (Remote-TSP) and Steiner tree (Remote-
ST) problems, where the objective is to maximize the minimum traveling salesman
tour and the minimum Steiner tree of the induced subgraph, respectively. These
problems are illustrated in Figure 1.1.

Minimum weight spanning trees (MST), minimum weight Steiner trees, and min-
imum weight tours (TSP, or traveling salesperson tours) are fundamental combina-
torial structures, and the problems of finding such optimal structures are not only
useful in applications but also a rich source of research on exact and approximate
algorithms. All of these problems consist of finding a subset maximizing the total
weight of edges of minimum combinatorial structures constructed from the subsets.
Except for Remote-ST, these structures are contained in the subgraph induced by
the subset.

∗Received by the editors September 27, 1996; accepted for publication (in revised form) March
1, 1999; published electronically September 7, 1999. A preliminary version of this paper appeared
in Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco,
CA, 1995.

http://www.siam.org/journals/sidma/12-3/30979.html
†Science Institute, University of Iceland, IS-107 Reykjavik, Iceland (mmh@hi.is).
‡IBM Tokyo Research Laboratory, Yamato, Kanagawa 242, Japan (iwano@trl.ibm.co.jp,

ttoku@trl.ibm.co.jp).
§Department of Architecture, Kyoto University, Yoshida-Honmachi, Sakyou-Ku, Kyoto 60601,

Japan (naoki@is-mj.archi.kyoto-u.ac.jp). The research of this author was performed at Kobe Uni-
versity of Commerce.

342

SUBSETS MAXIMIZING MINIMUM STRUCTURES 343

 MST-Remote 4-set
 and its MST

Steiner-remote 4-set
and its Steiner tree

 TSP-remote 4-set
 and its TSP tour

Fig. 1.1. Remote planar point sets.

From a practical point of view, the Remote-MST (or Remote-ST) k-set of a
network can be viewed as the set of k nodes among which communicating information
is most expensive. Thus, the remote subsets can be applied to the evaluation of the
communication performance of networks.

They can also be applied to clustering problems. Indeed, we originally faced
these problems when trying to find a good “starting tour” of a large TSP instance
(a circuit board drilling problem [19] that occurred at a manufacturing plant) with
more than 10,000 nonuniformly distributed cities. To obtain a short approximate TSP
tour by construction heuristics, it is effective to start with a subtour (starting tour)
consisting of a relatively small number of sample cities capturing the global structure
of the point distribution [20]. For this purpose, random sampling is not suitable,
since it may miss some critical cities, and approximate TSP tours constructed from
the associated starting tour often respond poorly to improvements by local search
heuristics. The exact or approximate Remote-MST and Remote-TSP solutions
seem to give better starting tours.

General framework. The problems under study can be generalized to the
following framework. Let Π be a minimization problem whose solution is a subset
of the edge set satisfying a particular property with respect to a given subset P of
vertices. Let the cost of a solution be the sum of the weight of the edges in the solution.
Let π(P) denote the minimum cost value for a node set P . We are interested in the
following problem:

Remote-Π. Given a graph G = (V,E) and integer k, find a subset
P of V of cardinality k such that π(P) is maximized.

Our results. In section 2 we present approximation algorithms for metric graphs,
general graphs, Euclidean graphs, and trees.

Metric graphs are graphs with nonnegative weights that satisfy the triangular
inequality: for any three nodes u, v, w, d(u, v) + d(v, w) ≥ d(u,w). The distance of
the edge (u, v), denoted d(u, v), is the weight of the edge. One example of a metric
graph is the shortest-path distance graph D(G) of a graph G, where the weight of the
edge (u, v) in D(G) is defined to be the weight of the minimum weight path between
u and v of G.

We apply in section 2.1 a known greedy algorithm to obtain simultaneous approx-
imations of all three problems in metric graphs. We obtain performance ratios of 4 for
Remote-MST and 3 for Remote-TSP, both of which are tight for this algorithm,
while the ratio for Remote-ST is at most 3 and at least 2.46.

For Remote-MST in general graphs, we give in section 2.2 an algorithm that
finds a solution within a factor of k − 1 from optimal.

344 HALLDÓRSSON, IWANO, KATOH, AND TOKUYAMA

Table 1.1
Approximability of remote problems.

Π General Metric R2

l.b. u.b. l.b. u.b. u.b.
MST n1−ε k − 1 2 4 2.25
TSP ∞ 2 3
ST 4/3 3 4/3 3 2.16

Euclidean graphs are a special class of metric graphs, where the vertices corre-
spond to points in the plane and the weight of an edge is the Euclidean distance
between the points. The results obtained for the metric case, in combination with
results on the Steiner ratio in the plane, yield asymptotic ratios of 2.31 (resp., 2.16)
for the Remote-MST (resp., Remote-ST) problem.

In section 2.4, we give linear time algorithms for computing Remote-ST and
Remote-MST when the set of edges in G with noninfinity weights forms a tree.

In section 3, we prove approximation hardness results for the three problems. Let
n denote the number of vertices in the input graph. Remote-MST of general graphs
cannot be approximated within a factor of Ω(n1−ε), for any ε > 0, unless NP ⊆ ZPP
(i.e., unless polynomially bounded zero-error randomized algorithms exist for all prob-
lems inNP). This proof is generalized to the remoteness versions of degree-constrained
subgraph problems, with or without connectivity requirement. These problems include
MST, TSP, minimum weight matching, cycle cover, degree-constrained spanning tree,
and a number of other well-studied problems. For Remote-TSP we can prove a still
harder inapproximability bound, since like the ordinary TSP problem, it cannot be
approximated on general graphs within any ratio, unless P = NP .

On metric graphs, these problems are also NP -hard to approximate within a
factor less than 2. Without loss of generality we may assume that the input to the
Remote-ST problem is a metric graph. We show it to be hard to approximate within
a ratio less than 4/3.

We summarize the main approximability results of the paper in Table 1.1. It
lists the results obtained for each of the MST, TSP, and ST remote problems with
lower and upper bounds for approximability in general graphs, metric graphs, and
Euclidean graphs.

Related work. Problems of maximizing minimum structures have applications
to the location of undesirable facilities. For instance, hazardous facilities like nuclear
plants or ammunition dumps should be located as far from each other as possible to
minimize vulnerability. A not insubstantial body of literature has been developed on
the subject; see [11] for a survey, primarily from a management science viewpoint. The
focus has been on two structures not dealt with in this paper: the minimum weight
of any edge in the k-set and the average, or equivalently the sum, of the weights of
edges between pairs in the k-set. For the former problem, known as the k-Dispersion
problem, Ravi, Rosenkrantz, and Tayi [25] showed that the greedy furthest-point
algorithm obtains a performance ratio of 2 on metric graphs, improving on a weaker
bound of [29]. They also showed that approximating within a factor of less than 2
is NP -hard. Independently, Tamir [27] proved the same upper bound for the same
algorithm (see also [28]).

A dispersion problem with the criteria of maximizing the average distance be-
tween vertices in the k-set was considered by Ravi, Rosenkrantz, and Tayi in [25],
and they gave a different greedy algorithm with a ratio of 4. Hassin, Rubinstein, and

SUBSETS MAXIMIZING MINIMUM STRUCTURES 345

Tamir [15] gave an algorithm with a performance ratio of 2. Kortsarz and Peleg [17]
considered this latter problem on general weighted graphs, under the name heavy sub-
graph problem, and gave a sequence of algorithms that converges with a performance
ratio of O(n0.3885). While different minimum structures have been proposed in the
location theory literature, we are not aware of work analyzing algorithms for such
problems.

Problems on Euclidean graphs can be regarded as belonging to computational
geometry. The problems of finding a subset with cardinality k of a planar point set
maximizing the perimeter or area of convex hull (minimum perimeter enclosing poly-
gon) of the subset has been studied in the literature and nearly linear time algorithms
are known [2, 3, 7]. However, the authors know no previous results on computing
subsets maximizing other minimum structures.

Problems of finding subsets minimizing the minimum weight of a combinatorial
structure are more common [1, 10, 24, 14]. In particular, the problem of finding the
k-set minimizing the weight of the minimum MST was studied by Ravi et al. [24], who
proved NP -hardness and gave the first approximations. The performance ratios have
recently been improved to 3 for general graphs [14] and 1 + ε for Euclidean graphs
[21, 5].

Chandra and Halldórsson [8] continued the work started in this paper and an-
alyzed a number of other remote problems. In particular, they gave an O(log k)-
approximate algorithm for two problems suggested in a previous version of the cur-
rent paper: computing a k-set maximizing the minimum weight matching, and the
k-defense problem, where the objective π(P) is

∑
v∈P minu∈P−{v} d(u, v).

Notation. A spanning tree of a node set P is a subtree of G whose node set is
P . A Steiner tree of P is a spanning tree of a superset of P . A tour of P is a cycle
that contains all the vertices of P . The weight of a tree or a tour is the sum of the
weight of the edges in it.

We denote the minimum spanning tree, minimum Steiner tree, and TSP tour of
P by MST (P), ST (P), and TSP (P), respectively. The weights of these minimum
solutions are denoted by mst(P), st(P), and tsp(P). For a graph H, the maximum
cost of MST (P) over all k-node sets P is denoted by r-mst(H). In general, for
a problem Π and node set P , the minimum structure and the minimum value are
denoted by Π(P) and π(P), respectively, and the optimal value of Remote-Π (i.e.,
the maximum weight of the minimum Π-structure) is denoted by r-π(H).

The approximation ratio of an algorithm for Remote-MST on a given input
graph G is the ratio of the largest MST weight of a set of k points to the MST
weight of the k-set output by the algorithm. The same holds for other problems. The
performance ratio ρ of the algorithm is the maximum approximation ratio over all
instances. A problem is approximable within a factor of t if there exists a polynomial
time algorithm for the problem with a performance ratio at most t. A problem Π1 is
as hard to approximate as problem Π2 if an approximation of Π2 within a factor of
f(n) implies an approximation of Π1 within a factor of O(f(n)).

Given a graph G and value γ, the bivalued network HG,γ is a complete graph
on the same vertex set as G, where the weight of an edge is 1 if the edge is in G
and γ otherwise. Let G[P] denote the subgraph of G induced by a vertex subset P .
Namely, P ⊂ V (G) and E(G[P]) = {(v, u) | (v, u) ∈ E(G) and v, u ∈ P ⊆ V (G)}.
The distance graph D(G) of a graph G has the weight of an edge (u, v) equal to the
length of the shortest path from u to v in G.

346 HALLDÓRSSON, IWANO, KATOH, AND TOKUYAMA

2. Algorithms.

2.1. Metric graphs. In this section, we assume that G = (V,E) is metric
unless otherwise stated. Let the distance between a node u and a set of nodes be the
minimum distance between u and any node in the set, d(v, P) = minp∈P d(v, p).

Central to our approach is the concept of an anticover.

Definition 2.1. A set P of vertices p1, p2, . . . is an anticover of a graph if

1. d(pi, pj) ≥ r for i 6= j and
2. mini{d(v, pi)} ≤ r for any node v ∈ V .

The radius of P is the largest value r for which P is an anticover. The size of an
anticover is its number of vertices.

r

Fig. 2.1. Anticover (black points) of size 7 of a Euclidean graph.

An anticover is illustrated in Figure 2.1. An anticover can be constructed effi-
ciently by the greedy furthest-point algorithm [12, 29, 25] given in Figure 2.2.

Greedy(G)
pick an arbitrary node v
P ← {v}
for i ← 2 to k
v ← node in V − P furthest from P
P ← P ∪ {v}

end

Fig. 2.2. The greedy furthest-point algorithm.

It is easy to see that the node set found by Greedy is an anticover of size k and
that its radius is the distance between the node v chosen last and P − {v}.

We apply Greedy to obtain simultaneous constant-factor approximations of the
remote MST, TSP, and Steiner problems. The same algorithm was applied to ap-
proximate the k-Dispersion problem [29, 25] as well as the Euclidean k-clustering
problem [12], indicating a level of universality of this approach and an applicability
to multiobjective computing.

Theorem 2.2. An anticover of size k is a 4-approximation of Remote-MST
and a 3-approximation of Remote-ST and Remote-TSP.

Proof. Let P be an anticover of G and let r denote its radius. Let Q be any set
of k points.

SUBSETS MAXIMIZING MINIMUM STRUCTURES 347

Any pair of points in P is of distance at least r, so

mst(P) ≥ (k − 1)r.(2.1)

Each point q in Q is of distance at most r from P ; thus the tree obtained by connecting
Q to MST (P) via the shortest edge is of weight at most mst(P) + kr. That is,

st(Q) ≤ st(P ∪Q) ≤ mst(P) + kr.

The ratio (Steiner ratio) of the weight of an MST of a set of k points to that of its
Steiner tree is at most 2(k − 1)/k. It follows that

mst(Q)

mst(P)
≤ 2

k − 1

k

(
1 +

kr

(k − 1)r

)
≤ 4− 2

k
.

Similarly,

st(P) ≥ k

2
r

because of the Steiner ratio, and

st(Q) ≤ st(P ∪Q) ≤ st(P) + kr.

Hence, a performance ratio of 3 follows.
Furthermore,

tsp(P) ≥ kr.

Connecting each point of Q to its nearest point in P by a pair of directed edges (with
different directions), we can form a tour of P ∪ Q of length at most tsp(P) + 2kr.
Thus,

tsp(Q) ≤ tsp(P ∪Q) ≤ tsp(P) + 2kr ≤ 3 · tsp(P).

The Steiner ratio 2(k− 1)/k holds even if the tree is restricted to be a path; thus
the results hold equally for degree-constrained versions of the problems.

While the analysis of the approximation ratio in Theorem 2.2 obtained by Greedy
appears loose, it is actually asymptotically optimal for both Remote-MST and
Remote-TSP. We give lower bounds on the performance of Greedy that holds for
any choice of the initial starting vertex.

Theorem 2.3. The performance ratio of Greedy for Remote-MST on metric
graphs is asymptotically 4.

Proof. We construct a family of instances for which Greedy is destined to perform
poorly independent of its choice of a starting vertex.

Let Gt be an unweighted graph with vertex set {c, p1, p2, . . . , pt, q1, q2, . . . , qt}.
Let p1, . . . , pt, c be connected into a path, and let each qi be connected to both p1 and
p2. Gt contains no further edges.

Let G′t,z be the graph formed by taking z copies of Gt with a single c vertex
common to all copies (Figure 2.3). Thus we have a connected graph on 2tz + 1
nodes. For convenience, we use notations such as p1-vertex, p-vertex, q-vertex, and
c-vertex. To force the algorithm to prefer the p-vertices, we perturb the distances
between vertices as follows: the lengths d(c, pt) are stretched to 1+2ε and the lengths
d(pi, pi+1) to 1 + ε for i ≥ 1.

348 HALLDÓRSSON, IWANO, KATOH, AND TOKUYAMA

pp

ppc 6 3

2 1

p-vertex q-vertex

p
4

p
5

Fig. 2.3. Lower bound example for Greedy.

The hard instance is the distance graph D(G′t,z) with z sufficiently large. Observe
that the distance between q-vertices in different copies is 2t(1+ ε), while the distances
between p1 vertices is 2t(1 + ε) + 2ε. Thus a p1 vertex is the furthest vertex from any
set of at most z − 1 vertices.

Let k = tz. The set of the first z vertices selected by Greedy contains at least
(z − 1) p1-vertices. Thus, Greedy cannot select a q-vertex adjacent to a selected p1-
vertex. Consequently, the number of q-vertices which Greedy can select is at most
t. Also, Greedy must select the vertex c, whose neighbors are all of distance at least
1 + 2ε. Thus, ignoring the ε terms, mst(P) ≤ zt+ 2(t− 1) for any set P of k points
selected by Greedy.

Let Q consist of the tz different q-vertices. Let qi and q′i be vertices in different
copies of Gt. Then

mst(Q) = z(t− 1)d(qi, qi+1) + (z − 1)d(qt, q
′
1)

= 2z(t− 1) + (z − 1)(2t)

= 4zt− 2z − 2t.

If z = t, we have that

ρ ≥ mst(Q)

mst(P)
= 4−O

(
1√
k

)
.

Although the above lower bound is applicable only to the solution generated by
Greedy, we conjecture that 4, rather than the lower bound of 2 that we will give in
Theorem 3.4, is the best possible performance ratio for the problem.

One plausible approach for improving on the approximation produced by Greedy is
to postprocess the greedy solution with local improvement changes. Having obtained
an anticover P of radius at most r, it may be possible to move individual points

SUBSETS MAXIMIZING MINIMUM STRUCTURES 349

further away from the other points. That is, for a point v ∈ P with d = d(v, P −{v}),
there may exist a point u ∈ V − P such that d(u, P − {v}) > d. This would improve
the bounds, using a strengthening of (2.1) to mst(P) ≥∑v∈P d(v, P −{v})(k− 1)/k.

The hard instances constructed above demolish that hope, since no single point
can be moved further away. These instances can be easily modified to ensure that no
b points can be moved further away, for any fixed b.

Theorem 2.4. The performance ratio of Greedy for Remote-TSP is asymptot-
ically 3.

Proof. Our construction is based on the graphs G′t,z of the preceding theorem.
Assume z is even and consider an arbitrary matching of z copies of Gt into z/2 pairs.
Assign the weight α =

√
t to each edge between each pair Gt and Gt′ . Among these,

we add an additional ε weight to the edges incident on p1-vertices to ensure they will
always be favored.

Our graph G′′t,z is the graph obtained by adding the above edges to the original
G′t,z. Then Greedy selects the same set P as in Theorem 2.3, and there is a tour of P
using edges from MST (P) as well as z/2 matching edges between p1 vertices. Thus
tsp(P) = zt+ o(zt). On the other hand, tsp(Q) ≥ 3zt for the set Q consisting of the
q-vertices.

Theorem 2.5. The performance ratio of Greedy for the Remote-ST problem is
at least 32/13 ≥ 2.46.

Proof. Let z = k/2. Let ε be a number less than z−1/2.

Let T be an edge-weighted tree with V (T) = {c, p, q, u1, u2, r}. Let d(p, u1) =
d(p, u2) = 12, d(p, r) = 7, d(c, r) = 1, and d(r, q) = 5 + ε for a positive real number
ε. We extend this tree by adding edges to obtain a complete graph T ′ in which the
distance between any pair of vertices is the minimum of 16 and the shortest distance
within this tree.

We construct a graph H containing z copies T ′(1), . . . , T ′(z) of T ′. Let the copy
of a vertex v in T ′(i) be denoted by v(i). The vertices c(1), c(2), . . . , c(z) are located
on a path with the distance between c(i) and c(j) is |i − j|z−1/2. Define distH(x, y)
to be the minimum of 16 and the shortest path distance on H.

We extend H by adding edges to obtain a graph G whose distance function is
denoted by distG. distG equals distH within each T ′(i) (i = 1, 2, .., z), while for
vertices v(i) and w(j) in distinct copies of T ′,

distG(v(i), w(j)) =

 distH(p(i), p(j)), v = p, w = p,
min{distG(p(i), p(j))− ε, distH(v(i), p(j))}, v 6= p, w = p,
min{distG(p(i), p(j))− 2ε, distH(v(i), w(j))}, v 6= p, w 6= p.

We can easily check that distG satisfies the triangle inequality. By construction, p(j)
is the node in T ′(j) that is the farthest from p(i) for any i 6= j. Also, if |j−i| > 16z1/2,
then p(j) is the node in T ′(j) that is the farthest from any other node in T ′(i).

Greedy applied to G first selects a node, say c(i0), and then picks all p(j) for which
|j− i0| > 16z1/2. So far, the distance from the farthest node to the current vertex set
is at least 16 + z1/2. Next, it picks at most two nodes (typically, u1(j) and u2(j)) in
each T ′(j) satisfying |j − i0| < 16z1/2.

Now, the distance from the farthest node to the current vertex set is reduced to
12+ε, and the algorithm selects all q(j) for which |j−i0| > 16z1/2. The algorithm has
by now selected k − O(z1/2) nodes; the choice of the remaining O(z1/2) is irrelevant
to our analysis.

350 HALLDÓRSSON, IWANO, KATOH, AND TOKUYAMA

The length of the spanning tree of the output of the algorithm is (13 + ε)z +
O(z1/2). On the other hand, if we pick u1(i) and u2(i) for i = 1, 2, .., z, the length
of the spanning tree is 32z − O(z1/2). Hence, as z goes to infinity, the ratio be-
tween the cost of the optimal solution to that of the greedy solution approaches
32/13 ≈ 2.4615.

The precise determination of the performance ratio of Greedy for Remote-ST
remains an open problem.

2.2. General graphs. We give an approximation algorithm for Remote-MST
on general graphs, with a performance ratio of k − 1.

For a graph G and a positive weight α, define Gα to be the subgraph of G on
V (G) with edges whose weight is less than α.

HeavyEdge(G)
Determine the largest α such that
Gα is not (n− k + 1)-vertex-connected.

Let C be a cutset of Gα of size n− k.
Output P = V − C.

end

The desired α can be found by binary search on the at most
(
n
2

)
different edge-

weights. Since P , the subgraph induced by C, is not connected in Gα, an MST of P
must contain an edge of weight at least α. On the other hand, if edges of weight α
are added to Gα, any k-set must be connected. Thus,

r-mst (G) ≤ (k − 1)α ≤ (k − 1)mst(P).

Corollary 2.6. HeavyEdge has performance ratio of k− 1 for Remote-MST.
For the Steiner tree problem, it suffices to consider the distance graph of the

input graph, which satisfies the triangular inequality. Thus we obtain the following
corollary of Theorem 2.2.

Corollary 2.7. Remote-ST of a general graph can be approximated within a
factor of 3.

2.3. Euclidean graphs. Let P be a set of n points {p1, . . . , pn} in the plane.
The Euclidean graph of P is the complete graph on the node set P , where the weight
of an edge (pi, pj) is the Euclidean distance d(pi, pj). We consider algorithms for
approximating Remote-MST and Remote-ST of this graph.

The anticover defined in the previous section gives a geometric covering of P
by k circles of radius r, each of which is centered by a point in P . Since st(P) ≥√

3mst(P)/2 [9] in the Euclidean case, we immediately obtain the following.
Corollary 2.8. An anticover is a 4k−2√

3(k−1)
-approximation of Remote-MST

and a 2k+
√

3(k−1)√
3(k−1)

-approximation of Remote-ST in Euclidean graphs.

Thus, the approximation ratios are asymptotically at most 4/
√

3 ≈ 2.309 for
Remote-MST and (2 +

√
3)/
√

3 ≈ 2.155 for Remote-ST.
Unlike in the metric case, it seems that the approximation ratio depends on

the choice of the anticover. For the example in Figure 2.4, the worst anticover has a
(2
√

3+4)/3) ≈ 2.448 approximation ratio, which is near to the upper bound 14/3
√

3 ≈
2.694 for the Remote-MST 4-set.

2.4. Tree networks. In this section, we consider graphs in which the set of
edges with finite weights forms a tree. Let T be a weighted tree on n nodes. Define

SUBSETS MAXIMIZING MINIMUM STRUCTURES 351

The worst anticover leads
us to a 2.448 approximation

Greedy gives a
better solution

Fig. 2.4. Approximation by circle covers.

G(T) to be a complete graph of order n, where the weight of an edge is the same as
in T if it exists in T and ∞ otherwise.

We first give efficient algorithms for the Remote-ST k-set of G(T). Clearly, we
should select k leaves. If k = 2, the problem is the diameter path problem on a tree—
finding the pair of vertices of maximum distance—and can be solved in linear time. If
k exceeds the number of leaves of T , every set of k nodes containing all leaves forms
the (unique) optimal Remote-ST k-set. The following lemma (essentially given in
Peng, Stephens, and Yesha [23] for a slightly different problem) is the key observation.

Lemma 2.9. Any optimal Remote-ST (k − 1)-set is contained in an optimal
Remote-ST k-set.

Proof. Let S1 be an optimal Remote-ST (k − 1)-set and let S2 be any optimal
Remote-ST k-set. Let T1 (T2) be the Steiner tree spanned by S1 (S2) and let W (T1)
(W (T2)) be its weight. Then T1 ∩ T2 is a (possibly empty) tree.

The edge sets F1 = T1−T1∩T2 and F2 = T2−T1∩T2 are forests. Each connected
component (a tree) in the forest has a root, which is a vertex in T1 ∩ T2. If T1 ∩ T2 is
empty, we pick arbitrary vertices x in T1 and y in T2, consider the path from x to y
in T , and define the root of T1 (resp., T2) as its nearest node to y (resp., x) on the
path.

A leaf of these forests must be in either S2 − S1 or S1 − S2. For each leaf v of
these forests, let h(v) be the weight of the path from v to the root in the component
T0 containing v, and l(v) be the weight of the path to the nearest branch from v in
T0 (to the root if there is no branch). Then h(v) ≥ l(v), and equality holds if and
only if T0 is a path.

Consider a leaf v in S1 − S2 and a leaf w in S2 − S1. Unless h(v) = l(v) =
h(w) = l(w), either h(w) > l(v) or h(v) > l(w) holds. If h(w) > l(v), we consider
the set S1 − {v}+ {w} and observe that the spanning tree of this set has the weight
W (T1)+h(w)− l(v) > W (T1). This contradicts the assumption that S1 is an optimal
Remote-ST (k − 1)-set. Similarly, if h(v) > l(w), we derive a contradiction to the
fact that S2 is an optimal Remote-ST k-set. Therefore, h(v) = l(v) = h(w) = l(w)
holds for all pairs of leaves v in F1 and w in F2. We write l for l(v).

Hence the total weight of T1 is W (T1 ∩ T2) + |S1 − S2|l and that of T2 is W (T1 ∩
T2) + |S2 − S1|l. By definition, |S2 − S1| = |S1 − S2| + 1. Therefore, if we choose
any w ∈ S2 − S1, the Steiner tree of S1 ∪ {w} has the same length as that of S2;
hence S1 ∪ {w} is a Remote-ST k-set and it contains S1. Thus we obtain the
lemma.

This enables us to compute a Remote-ST k-set (more precisely, its spanning
tree) by a greedy algorithm: Starting from any diameter path, find the leaf farthest

352 HALLDÓRSSON, IWANO, KATOH, AND TOKUYAMA

from the current tree and update the tree by adding the leaf and the path from the
leaf. This takes O(kn) time. We can give a better algorithm, which is an analogue of
an algorithm of Shioura and Uno [26] for the problem in [23].

Consider a subtree H of T . Then T −H forms a forest F of rooted, directed trees
with roots drawn from the vertices of H. We partition the edges of F into a set of
directed paths such that for any internal node w on a path leading to a leaf l, the
weight of the subpath from w to l is maximum over all directed paths from w to a
leaf. This is easy to compute bottom-up in linear time for each tree in T by selecting
for each internal node the path of maximum weight through a child. Define for each
leaf l in F the benefit of l to be the weight of the path incident on l.

In particular, we consider a diameter path P as H. The above process computes
all the benefits of leaves of T − P in linear time. Then we can observe the following
lemma.

Lemma 2.10. The greedy algorithm adds the k− 2 leaves with the largest benefits
of T − P to P to obtain a Remote-ST k-set.

Proof. For any RST j-set and its Steiner tree H, the leaf v in T −H of largest
benefit is the one that is farthest from H. Moreover, for the tree H ′ obtained by
joining the path from v to H, the benefits of T −H ′ are by construction the same as
the benefits of T −H (except, of course, for v). Thus we have the lemma.

We can select the k largest benefits using a linear time selection algorithm, and
hence we have the following theorem.

Theorem 2.11. The Remote-ST k-set of G(T) can be computed in O(n) time.

We next consider the Remote-MST problem on trees. Remote-MST of G(T)
is not a well-defined problem since we can almost always find a subset P whose MST
has infinity weight. Instead, we add a connectivity condition to the definition of a
remote k-set P , such that mst(P) is maximized on the condition that mst(P) 6= ∞.
Namely, MST (P) must be an induced subtree of P in T . Thus, the problem becomes a
special case (where all edge weights are nonpositive) of the minimum weighted (k−1)-
cardinality tree problem defined by Fischetti et al. [13] if we reverse the sign of all
weights of T . We can thus apply their O(k2n) time dynamic programming algorithm.
Moreover, we can improve it to O(kn) time.

Theorem 2.12. The minimum weighted (k − 1)-cardinality tree of a weighted
tree can be computed in O(kn) time. Hence, the Remote-MST k-set of G(T) under
the connectivity condition can be computed in O(kn) time.

Proof. We give a proof only for the computation of an optimal Remote-MST
k-set. For a node v, a v-optimal Remote-MST j-set refers to a j-set that induces
an optimal Remote-MST among those j-sets constrained to contain v.

Fix any internal node r as the root of T . The profile of a subtree T0 with root
r0 is the set consisting of the weights of r0-optimal Remote-MST j-sets for j =
1, 2, . . . ,min(k, |T0|), and the weight of the optimal Remote-MST k-set of T0 if
k > |T0|. We give a dynamic programming algorithm that sweeps the tree bottom-up
to compute the profile of T .

If r has only one child r1, then the r-optimal j-set of T is the union of r with the
r1-optimal j − 1-set of T1. Otherwise, let r1 be any child of r rooting the subtree T1

and let T2 be the tree obtained by cutting T1 and the adjoining edge from T .

The minimum spanning tree of the optimal Remote-MST j-set containing r in
T can be obtained by joining the r1-optimal Remote-MST j1-set of T1 and the r2-
optimal Remote-MST j2-set of T2 for a suitable pair j1 and j2 satisfying j1 +j2 = k.
The weight of the tree is simply the sum of these two parts. Thus the weight of the

SUBSETS MAXIMIZING MINIMUM STRUCTURES 353

r-optimal Remote-MST j-set for j = 1, 2, . . . k can be computed in O(k2) time by
examining all combinations.

We can improve the analysis of the time complexity. We say that a node u of T
is heavy if both of its descendant trees have at least k/2 nodes and light otherwise.
The number of heavy nodes is at most n/k. We separately charge for operations at
the heavy nodes, which is of cost O(kn) in total. Let f(n) be the cost for operations
at all light nodes.

At a light node r rooting T with subtrees T1 and T2, Ti has ni nodes and mi =
ni − 1 edges. Since r is a branching node, mi ≥ 1 (i = 1, 2). T has m = n− 1 edges;
thus m ≥ m1 +m2 holds.

The profile for Ti has min(ni, k) weights of ri-optimal Remote-MST sets. Hence
to compute the profile of T , we need only to examine min(n1, k) min(n2, k) com-
binations, which takes O(min(n1, k) min(n2, k)) = O(min(m1, k) min(m2, k)) time.
Thus, the cost function f(m) (up to a constant factor) follows the formula f(m) ≤
f(m1) + f(m2) + min(m1, k) min(m2, k).

Consider g(m) = min{2km,m2}. We shall verify that g(m) satisfies g(m) ≥
g(m1)+g(m2)+min(m1, k) min(m2, k). Assume without loss of generality that m2 ≤
m1. Thus, m2 is smaller than k/2 at a light node.

Case 1. If 2k ≥ m, then g(m) = m2 ≥ (m1 +m2)2 ≥ m2
1 +m2

2 +m1m2.
Case 2. If m ≥ 2k, then g(m) = 2km ≥ 2km1 + km2 + km2 > min(2k,m1)m1 +

m2
2 + km2.

Hence f(m) < cg(m) for some constant c and thus is O(km). Since m = n − 1,
the complexity is O(kn).

The same algorithm can compute Remote-MST k-sets (with connectivity con-
dition) of decomposable graphs, such as series-parallel graphs, in O(kn) time.

3. Hardness. The decision version of Remote-MST (to decide whether there
exists a set of k vertices whose MST weight is more than a given threshold) is obviously
in NP . Instead of showing NP -hardness, we show approximation-hardness for both
general and metric graphs.

We shall be primarily interested in approximating the remote problems within a
function independent of k. Thus we ask about the worst-case performance ratio as k
ranges from 1 through n. Let α(G) denote the independence number of G, or the size
of a maximum independent set.

Theorem 3.1. Approximating Remote-MST is as hard as approximating
Independent Set.

Proof. Let g be the gap in the approximability of Independent Set. Thus, for
some value R, determining if α(G) = R or α(G) ≤ R/g is hard.

Let k be R and let γ be a value greater than k. We construct a bivalued graph
H = HG,γ on the same vertex set as G with the weight of an edge being 1 if contained
in G and γ otherwise. Refer to Figure 3.1.

If there is an independent set of size k in G, then that set has a value r-mst =
(k − 1)γ. On the other hand, suppose r-mst (H) ≥ (k − 1)γ/g. Notice that this is at
least (k/g−1)γ+(k−k/g), since γ ≥ k. Then there is a subset P of k vertices such that
MST (P) contains at least k/g− 1 edges of weight γ. Let G[P] be the subgraph in G
induced by P . It follows that G[P] must contain at least k/g connected components.
Hence, α(G) ≥ α(G[P]) ≥ k/g.

It follows that

α(G) = k ⇒ r-mst (H) = (k − 1)γ,

354 HALLDÓRSSON, IWANO, KATOH, AND TOKUYAMA

Associated independent set of G

Max independent set of G

H
G

Approximate RMST of (k=5)

Optimal RMST of H (k=5)G

Fig. 3.1. Graphs in Theorem 3.1.

α(G) ≤ k/g ⇒ r-mst (H) ≤ (k − 1)γ/g.

Thus, a gap in the approximation of Independent Set carries over to Remote-
MST.

H̊astad has recently strengthened the approximation hardness of Independent
Set to n1−ε for any ε > 0 [16]. This assumes that NP 6⊆ ZPP or that randomized
polynomial-time algorithms do not exist for NP.

We now generalize the hardness proof for Remote-MST to other problems.
Given a graph and integers ` and u, the degree-constrained subgraph problem (DCS) is
to find a subgraph of minimum weight such that the degree of each vertex is between
` and u, inclusive. Note that u may be only the trivial bound of n − 1. The DCS
minimization problem can be solved via a reduction to nonbipartite matching [18],
and it subsumes the assignment problem and problems of covering the vertices with
cycles or paths. If the subgraph must additionally be connected, we have connected-
DCS (CDCS) problems, which include TSP, MST, and the degree-constrained MST
problems.

Assume hereafter that Π is any such DCS problem with degree lower bound `.
For a given γ > 1, let H = HG,γ be the bivalued network on G that has the weight of
an edge being 1 if the edge is in G and γ otherwise. Fix some optimal Π-solution to
H and let Π(H) denote its set of edges. We sometimes abuse notation by denoting Π
for Π(H).

Lemma 3.2. Let G be a graph and γ ≥ 1. Let Heavy denote the set of γ-weight
edges in Π(H). Then,

α(G) ≥ |Heavy|
`2 + 1

.

Proof. The statement is trivial if |Heavy| ≤ `2 + 1; thus we assume the contrary.
Also, we assume that the number k of vertices in Π(H) is greater than any constant
power of `.

SUBSETS MAXIMIZING MINIMUM STRUCTURES 355

Let Conn denote some minimal set of edges from Heavy such that Conn∪(Π(H)−
Heavy) is connected and spans H, if Π is a problem requiring connectivity. Otherwise,
let Conn be the empty set. Let Slack = Heavy − Conn. Let S denote the set of
vertices incident on fewer than ` edges in Π(H)− Slack.

We first observe that

α(G) ≥ |Conn|+ 1,(3.1)

since G must contain that many connected components. To satisfy the lemma, it
now suffices to bound the independence number in terms of the other heavy edges,
by α(G) ≥ |Slack|/`2.

Observe that each edge in Slack has an endpoint in S, and, furthermore, it has
an endpoint in S that is of degree exactly ` in Π(H). Otherwise, this edge would be
superfluous to Π(H), as connectivity and degree requirements are satisfied without
it. This implies that

|Slack| ≤ `|S|.
To complete the lemma, we need to show that all the edges in G[S] must be

in Π(H). That implies that each vertex in S is incident on at most ` − 1 edges in
G[S], and any maximal independent set of G[S] is of size at least 1

` |S|. Hence the
independence number of the whole graph is no less, and

α(G) ≥ α(G[S]) ≥ 1

`
|S| ≥ |Slack|

`2
(3.2)

as desired.
Claim 1. E(G[S]) ⊆ Π(H).
Suppose on the contrary that there were vertices x, y in S such that (x, y) ∈ G

but (x, y) 6∈ Π(H). Let (x, x′), (y, y′) be edges from Slack (where x′ and y′ are not
necessarily distinct).

We consider three cases depending on the degrees of x′ and y′ (in Π(H)). If x′ and
y′ are distinct and both of degree greater than `, then let Π′ = (Π−{(x, x′), (y, y′)})∪
{(x, y)}. If one of x′ and y′, say, x′, is of degree greater than `, then let Π′ =
(Π−{(x, x′), (y, y′)})∪{(x, y), (y′, z)}, where z is some vertex of degree ` nonadjacent
to y′. (Such a vertex must exist since there must be at least ` + 1 vertices of degree
`.)

Otherwise, the number of heavy edges in Π such that either x′ or y′ is either
incident on the edge or adjacent (via an edge in Π(H)) to one of its endpoints is at
most `2. Thus there must exist a third edge (x′′, y′′) from Slack such that x′ and
x′′ are nonadjacent, as well as y′ and y′′. Let Π′ = (Π − {(x, x′), (y, y′), (x′′, y′′)}) ∪
{(x, y), (x′, x′′), (y′, y′′)}.

In all cases, the edges removed from Π are from Slack, and thus Π′ is connected
and degree constraints are preserved. Hence Π′ is a valid solution of lesser cost,
contradicting the minimality of Π. The claim and the lemma then follow.

Theorem 3.3. Approximating Remote-DCS and Remote-Connected-DCS
problems is as hard as approximating Independent Set, for any fixed value of `.

Proof. Let γ be a number greater than uk and let H = HG,γ .
If there is an independent set of size k in G, then r-π(H) ≥ `

2kγ.

On the other hand, suppose r-π(H) ≥ `
2kγ/g. Then there is a subset P of k

vertices such that Π(P) contains at least z ≥ `
2k/g edges of weight γ. By Lemma 3.2,

α(G[P]) ≥ z/(`(`+ 1)) ≥ k/(2(`+ 1)g) = `
2kγ/g

′, where g′ = g/(`(`+ 1)).

356 HALLDÓRSSON, IWANO, KATOH, AND TOKUYAMA

It follows that

α(G) = k ⇒ r-π(H) = `
2kγ,

α(G) ≤ k/g ⇒ r-π(H) ≤ `
2kγ/g

′.

Similarly, these problems are also hard to approximate in metric graphs within
a factor of 2 − δ for any δ > 0. We prove this here only for properties for which all
feasible solutions have the same number of edges; the general case is quite tedious,
especially for other connected properties.

Theorem 3.4. Let Π be a DCS problem with ` = u (e.g., TSP) or a connected
property with ` = 1 (i.e., (Degree-Constrained) MST). Then Remote-Π is hard
to approximate within a factor of 2− o(1) in the metric space with distances 1 and 2.

Proof. Let γ = 2, H = HG,γ . Observe that any feasible solution to Π has the
same number e of edges: `k/2 in the former case and k − 1 in the latter case.

If there is an independent set of size k in G, then r-π(H) = 2e. On the other
hand, suppose r-π(H) ≥ e(1 + δ). Then there is a subset P of k vertices such that
π(P) ≥ e(1 + δ). Thus Π(P) contains at least eδ edges of weight 2. By Lemma 3.2,

α(G) ≥ eδ

`(`+ 1)
.

Let δ′ = δk/[(k − 1)`(`+ 1)]. Then

α(G) = k ⇒ r-π(H) = 2e,

α(G) < δ′k ⇒ r-π(H) < e(1 + δ).

Hence the problem is hard to approximate within 2−1/f(n), where f(n) is a function
growing with n.

Theorem 3.3 can also be extended to problems involving t-connectivity (for t =
ko(1)). It can also be extended to other remote-Π problems that satisfy the following
property: If F is a feasible solution to Π and (v, u) and (x, y) are edges in that
solution, then F − {(v, u), (x, y)} ∪ {(v, x), (u, y)} is also a feasible solution to Π.

One example is when π(P) =
∑
v∈P minu∈P d(u, v). The corresponding remote

problem, that of finding a k-vertex set P maximizing this quantity, was considered by
Moon and Chaudhry [22] under the name k-Defense problem. The above reduction
shows that approximating it within n1−ε in general graphs is hard.

The Remote-TSP problem is harder yet; like the underlying TSP problem, it
cannot be approximated within any representable function.

Theorem 3.5. Let W be a polynomial representable value. Then approximating
Remote-TSP in general graphs within a factor W is NP -complete.

Proof. We give a reduction from Hamilton circuit for k = n.
Given a graph G on n vertices, construct the complete weighted graph H with

vertex set V (G) ∪ {u1, . . . , un}. Define the edge weights by

w(u, v) =

 (Wn)2 if u, v ∈ V (G), (u, v) 6∈ E(G),
W if u, v ∈ V (H)− V (G), and
1 otherwise.

Observe that H can be represented in size polynomial in n.

SUBSETS MAXIMIZING MINIMUM STRUCTURES 357

Suppose G does not contain a Hamilton circuit. Then V (G) is a remote k-set
whose minimum salestour is of cost at least (Wn)2. On the other hand, if G does
contain a Hamilton circuit, then V (H)−V (G) is a k-set whose minimum salestour is
of cost Wn, while any other k-set has lesser cost. It follows that an algorithm that can
approximate Remote-TSP within a factor less than Wn will decide the Hamilton
circuit problem.

For Remote-ST, one can always assume that the graph G is metric, since the
minimum Steiner tree of a node set P inG can be realized in the shortest-path distance
graph D(G).

Theorem 3.6. Approximating Remote-ST within a factor of 4/3−δ is NP -hard
for any δ > 0.

Proof. Given a graph G = (V,E), we construct a graph H as follows. Replace
each edge of G by a path with two edges, and connect the middle vertices of the paths
into a clique. More formally, H contains a vertex for each vertex vi in V as well
as each edge ej in E. A vertex vi is adjacent only to those vertices ej for which vi
intersects ej in G. Vertices ej are completely connected into a clique.

The input to Remote-ST is the distance graph D(H) of H. If we consider two
vertices in G, they will be of distance 2 in H if they are adjacent in G and of distance
3 in H if they are nonadjacent in G.

An independent set in G corresponds to a set of vertices in H that have no
neighbors in common. Hence, the cost of the minimum Steiner tree of that set in
D(H) is 2(k − 1).

A loner in a Steiner tree is a leaf whose neighbor is not adjacent to another leaf.
Suppose there are two loners in a Steiner tree of D(G) that were adjacent in G. Then
the four edges connecting them to the remaining tree could be replaced by three edges
all incident on the corresponding edge-vertex in D(G). Hence, given a k-set P , we
can easily find a Steiner tree of P where loners form an independent set in G. If p
is the number of loners, then the cost of the Steiner tree constructed will be at most
3
2 (k − p− 1) + 2p = 3

2 (k − 1) + 1
2p.

If, now, we could guarantee finding a k-set where the minimum Steiner tree is of
size at least 3

2k + 1
2p, it follows that the independence number of G is at least p. By

the hardness of the independent set problem, it is hard to decide whether r-st (G) is
2(k − 1) or (3

2 + o(1))(k − 1).

4. Concluding remarks. If we remove the cardinality condition from the
Remote-MST problem, we have the following problem:

Remote-MST subset. Find a subset Q of V such that mst(Q) is
maximized.

The Remote-MST subset problem can be considered to be an inverse problem to the
Steiner problem. Whereas the Steiner problem asks for a superset Q′ of P minimizing
MST (Q′), the Remote-MST subset problem calls for a subset Q of V maximizing
MST (Q).

In the metric case, returning V as the solution trivially gives an approximation
equal to the Steiner ratio, or 2 for general metric graphs and 2/

√
3 for Euclidean

graphs. We pose the question of improved ratios as an open problem.
Another open problem concerns the complexity classification of Remote-ST and

Remote-TSP. They are in Σ2
p, at the second level of the polynomial time hierarchy,

and are NP -hard, from our results. We conjecture that they are also hard for Σ2
p.

Other open problems include proving NP -hardness of Remote-MST (and per-
haps MAX-SNP-hardness) in the Euclidean plane and giving better bounds for the

358 HALLDÓRSSON, IWANO, KATOH, AND TOKUYAMA

approximation ratios for each problem. In particular, a good approximation algo-
rithm for Remote-ST will be very useful in applications. Also, a fast algorithm
would be needed; when we apply approximate Remote-TSP k-sets to large-scale
TSP heuristics, subquadratic time algorithm is essential.

REFERENCES

[1] A. Aggarwal, H. Imai, N. Katoh, and S. Suri, Finding k points with minimum diameter
and related problems, J. Algorithms, 12 (1991), pp. 38–56.

[2] A. Aggarwal, M. Klawe, S. Moran, P. Shor, and R. Wilber, Geometric applications of a
matrix-searching algorithm, Algorithmica, 2 (1987), pp. 195–208.

[3] A. Aggarwal, B. Schieber, and T. Tokuyama, Finding a minimum weight K-link path in
graphs with monge property and applications, Discrete Comput. Geom., 12 (1994), pp. 263–
280.

[4] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verification and the
hardness of approximation problems, J. ACM, 45 (1998), pp. 501–555.

[5] S. Arora, Polynomial time approximation schemes for Euclidean traveling salesman and other
geometric problems, J. ACM, 45 (1998), pp. 753–783.

[6] Y. Asahiro, K. Iwama, H. Tamaki, and T. Tokuyama, Greedily finding a dense subgraph, in
Proceedings, Fifth Scandinavian Workshop on Algorithm Theory, 1996, Lecture Notes in
Comput. Sci. 1097, Springer-Verlag, New York, pp. 136-145.

[7] J. E. Boyce, D. P. Dobkin, R. L. Drysdale, III, and L. J. Guibas, Finding extremal
polygons, SIAM J. Comput., 14 (1985), pp. 134–147.

[8] B. Chandra and M. Halldórsson, Facility dispersion and remote subgraphs, in Proceedings,
Fifth Scandinavian Workshop on Algorithm Theory, 1996, Lecture Notes in Comput. Sci.
1097, Springer-Verlag, New York, pp. 53–65.

[9] D.-Z. Du and F. K. Hwang, Proof of the Gilbert-Pollak conjecture on the Steiner ratio,
Algorithmica, 7 (1992), pp. 121–135.

[10] D. Eppstein, New algorithms for minimum area k-gons, in Proceedings of the Third Annual
ACM-SIAM Symposium on Discrete Algorithms, Orlando, FL, 1992, pp. 83–88.

[11] E. Erkut and S. Neuman, Analytical models for locating undesirable facilities, European J.
Oper. Res, 40 (1989), pp. 275–291.

[12] T. Feder and D. H. Greene, Optimal algorithms for approximate clustering, in Proceedings
of the 20th ACM Symposium on the Theory of Computing, Chicago, 1988, pp. 434–444.

[13] M. Fischetti, H. W. Hamacher, K. Jørnsten, and F. Maffioli, Weighted K-cardinality
trees: Complexity and polyhedral structure, Networks, 24 (1994), pp. 11–21.

[14] N. Garg, A 3-approximation of the minimum tree spanning k vertices, in Proceedings of the
37th IEEE Foundations of Computer Science, Burlington, VT, 1996, pp. 302–308.

[15] R. Hassin, S. Rubinstein, and A. Tamir, Approximation algorithms for maximum facility
dispersion, Oper. Res. Lett., 21 (1997), pp. 133-137.

[16] J. Håstad, Clique is hard to approximate within n1−ε, in Proceedings of the 37th IEEE
Foundations of Computer Science, Burlington, VT, 1996, pp. 627–636.

[17] G. Kortsarz and D. Peleg, On choosing a dense subgraph, in Proceedings of the 34th IEEE
Foundations of Computer Science, Palo Alto, CA, 1993, pp. 692–701.

[18] E. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Win-
ston, New York, 1976.

[19] S. Misono and K. Iwano, Circuit Board Drilling Problem, Technical Report 93-AL-33, Inform.
Process. Soc. Japan, 1993, pp. 95–102.

[20] S. Misono and K. Iwano, Experiments on TSP Real Instances, Research Report RT0153, IBM
Tokyo Research Laboratory, 1996.

[21] J. S. B. Mitchell, Guillotine subdivisions approximate polygonal subdivisions: A simple
polynomial-time approximation scheme for geometric TSP, k-MST, and related problems,
SIAM J. Comput., 28 (1999), pp. 1298–1309.

[22] I. D. Moon and S. S. Chaudhry, An analysis of network location problems with distance
constraints, Manage. Sci., 30 (1984), pp. 290–307.

[23] S. Peng, A. B. Stephens, and Y. Yesha, Algorithms for a core and k-tree core of a tree, J.
Algorithms, 15 (1993), pp. 143–159.

[24] R. Ravi, R. Sundaram, M. V. Marathe, D. J. Rosenkrantz, and S. S. Ravi, Spanning
trees—short or small, SIAM J. Discrete Math, 9 (1996), pp. 178–200.

[25] S. S. Ravi, D. J. Rosenkrantz, and G. K. Tayi, Facility dispersion problems: Heuristics

SUBSETS MAXIMIZING MINIMUM STRUCTURES 359

and special cases, Oper. Res., 42 (1994), pp. 299–310.
[26] A. Shioura and T. Uno, A linear time algorithm for finding a k-tree core, J. Algorithms, 23

(1997), pp. 281–290.
[27] A. Tamir, Obnoxious facility location on graphs, SIAM J. Discrete Math., 4 (1991), pp. 550–

567.
[28] A. Tamir, Comments on the paper “Facility dispersion problems: Heuristics and special cases,

by S.S. Ravi, D.J. Rosenkrantz, and G.K. Tayi,” Oper. Res., 46 (1998).
[29] D. J. White, The maximal dispersion problem and the “first point outside the neighborhood”

heuristic, Comput. Oper. Res., 18 (1991), pp. 43–50.

THE LINEAR EXTENSION DIAMETER OF A POSET∗

STEFAN FELSNER† AND KLAUS REUTER‡

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 3, pp. 360–373

Abstract. The distance between two permutations of the same set X is the number of pairs of
elements that are in different order in the two permutations. Given a poset P = (X,≤), a pair L1, L2

of linear extensions is called a diametral pair if it maximizes the distance among all pairs of linear
extensions of P . The maximal distance is called the linear extension diameter of P and is denoted
led(P). Alternatively led(P) is the maximum number of incomparable pairs of a two-dimensional
extension of P . In the first part of the paper we discuss upper and lower bounds for led(P). These
bounds relate led(P) to well-studied parameters like dimension and height. We prove that led(P)
is a comparability invariant and determine the linear extension diameter for the class of generalized
crowns. For the Boolean lattices we have partial results.

A diametral pair generates a minimal two-dimensional extension of P or, equivalently, a maximal
interval in the graph of linear extensions of P . Studies of such intervals lead to the definition of new
classes of linear extensions. We give three characterizations of the class of extremal linear extensions
which contains the greedy linear extensions. With complementary linear extensions we introduce
a class contained in the set of super-greedy linear extensions. The complementary linear extension
of L is the linear extension L∗ obtained by taking the reverse of L as a priority list in the generic
algorithm for linear extensions. A complementary pair is a pair L,M of linear extensions with
M = L∗ and L = M∗. Iterations of the complementary mapping starting from an arbitrary linear
extension eventually lead to a complementary pair.

Key words. poset, linear extension, diameter, greedy

AMS subject classifications. 06A07, 05C12

PII. S0895480197326139

1. Introduction and alternate formulations. The distance between permu-
tations π, σ of the same set X, denoted dist(π, σ), is the number of pairs of elements
that are in different order in the two permutations. Given a poset P = (X,≤), a
pair L1, L2 of linear extensions is called a diametral pair if it maximizes the distance
among all pairs of linear extensions of P . The maximal distance will be called the
linear extension diameter of P and is denoted led(P). In [Reu96b] the linear extension
graph G(P) was defined as the graph with vertices that are the linear extensions of P
and two vertices connected by an edge if the linear extensions differ by an adjacent
transposition only. Figure 1 shows the six-element poset called chevron and its linear
extension graph. An easy fact about G(P) is that any pair L1, L2 of linear extensions
is connected in G(P) by a path whose length equals the distance between L1 and L2.
Hence, led(P) is exactly the graph diameter of the linear extension graph G(P).

The intersection of a collection A = {L1, . . . , Lk} of linear extensions of P is a
poset PA which is an extension of P . The graph G(PA) is an induced subgraph of
G(P). Interestingly, subgraphs of G(P) corresponding to extensions of P are exactly
the convex subgraphs of G(P) (see [BW91] or [Reu96b]).

Let inc(P) denote the number of incomparable pairs of P . If L1, L2 is a diametral
pair for P , then P{L1,L2} is a two-dimensional extension of P and L1, L2 is a diametral

∗Received by the editors August 18, 1997; accepted for publication March 30, 1999; published
electronically September 7, 1999.

http://www.siam.org/journals/sidma/12-3/32613.html
†Freie Universität Berlin, Fachbereich Mathematik und Informatik, Takustr. 9, 14195 Berlin,

Germany (felsner@inf.fu-berlin.de).
‡Universität Hamburg, Mathematisches Seminar, Bundesstrasse 55, 20146 Hamburg, Germany

(reuter@math.uni-hamburg.de).

360

LINEAR EXTENSION DIAMETER OF A POSET 361

Fig. 1. The chevron and its linear extension graph. This poset has linear extension diameter 6.

pair for P{L1,L2}; i.e., led(P{L1,L2}) = led(P). The incomparable pairs of P{L1,L2} are
exactly the pairs being in different order in L1 and L2; therefore, led(P{L1,L2}) =
inc(P{L1,L2}) = dist(L1, L2), where inc(P) denotes the number of incomparable pairs
of P .

We call a two-dimensional extension Q of P a minimum two-dimensional exten-
sion of P if Q has a minimal number of comparable pairs that are incomparable in
P . Dually, a minimum two-dimensional extension maximizes inc(P{L1,L2}). Together
with the previous paragraph this proves the following theorem.

Theorem 1.1. The linear extension diameter of P equals the number of incom-
parable pairs of a minimum two-dimensional extension of P .

By definition inc(Q) ≤ inc(P) for every extension Q of P . As a consequence of
the theorem we have the general bound

led(P) ≤ inc(P).(1)

Equality in inequality (1) is a characterization of two-dimensional posets.
Theorem 1.2. For a poset P the following two statements are equivalent:

dim(P) ≤ 2 and led(P) = inc(P).

Proof. We have already seen that led(P) = inc(P) for two-dimensional posets. If
P is one-dimensional, then led(P) = 0 = inc(P).

For the converse suppose led(P) = inc(P) and let L1, L2 be a diametral pair. The
number of pairs being in different order in L1 and L2 is inc(P). Therefore, P is the
intersection of L1 and L2 which proves dim(P) ≤ 2.

Inequality (1) is sharp only for two-dimensional posets but, as shown with the
standard examples, the following inequality may be sharp in any dimension:

led(P) ≤ inc(P)− (dim(P)− 2).(2)

Proof. Take a diametral pair L1, L2 and add one-by-one linear extensions such
that

⋂j+1
i=1 Li $

⋂j
i=1 Li until {L1, . . . , Lk} is a realizer of P . Since k ≥ dim(P) and

each Lj contributes a new incomparability to the intersection, the poset P{L1,L2} has
at most inc(P)− (dim(P)− 2) incomparable pairs.

362 STEFAN FELSNER AND KLAUS REUTER

In the next section we give several lower bounds on the linear extension diameter.
These bounds relate the new parameter to width, dimension, and fractional dimension
of the poset. In section 3 we investigate the effect of small changes at the poset on
its linear extension diameter. We also show that led is a comparability invariant.
In section 4 we deal with special classes of posets. In particular, we determine the
linear extension diameter of generalized crowns. Section 5 introduces the concept of
complementary linear extensions as a heuristic for finding pairs of linear extensions
of large distance. We prove some properties of complementary linear extensions that
seem to be interesting in their own right.

2. Lower bounds on the linear extension diameter. Given a poset P =
(X,≤) and disjoint subsets A,B ⊂ X, we say A is over B and write A/B in a linear
extension L if a > b in L for all incomparable pairs a||b with a ∈ A and b ∈ B. It is well
known (see, e.g., [Tro92, p. 19]) that for every chain C there exist linear extensions
with C/(X \ C) and (X \ C)/C. Such a pair of linear extensions has distance at
least

∑
x∈C inc(x), where inc(x) denotes the number of elements incomparable to x.

Generalizing notation by defining inc(C) =
∑
x∈C inc(x) for every chain C we have

proven our first lower bound

max
C chain

inc(C) ≤ led(P).(3)

Equality holds for the chevron and for all width-two posets. The value of this lower
bound is easily computable by a maximum weighted chain algorithm. Consider a chain
partition C1, . . . , Cw of P , where w = width(P). Obviously width(P)(maxC inc(C)) ≥∑w
i=1 inc(Ci) = 2inc(P). Hence our upper and lower bounds on led in (1) and (3) are

apart only by a factor depending on the width of P ,⌈ 2inc(P)

width(P)

⌉ ≤ led(P) ≤ inc(P).(4)

Another lower bound relates the linear extension diameter to the dimension
dim(P). Take a realizer R = {L1, . . . , Ld} with d = dim(P) for P . Choose at
random a pair S1, S2 of different linear extensions from R; the probability that an
incomparable pair x||y is incomparable in S1 ∩ S2 is at least (d − 1)/

(
d
2

)
. Therefore,

the expected number of incomparable pairs in S1 ∩ S2 is at least 2inc(P)/d. This
proves the bound ⌈2inc(P)

dim(P)

⌉ ≤ led(P).(5)

Since dim(P) ≤ width(P) this bound, (5) implies (4). Brightwell and Schein-
erman [BS92] introduced the fractional dimension of a poset (fdim(P)) as the least
rational number df such that there is an m and a multiset realizer M = {L1, . . . , Lm}
of P such that for every incomparable pair x, y we have x < y in Li for at least m/df
of the linear extensions. If we choose at random a pair S1, S2 of linear extensions
from M the probability that an incomparable pair x||y is incomparable in S1 ∩ S2 is
at least m/df (m− (m/df))/

(
m
2

)
= 2m(df − 1)/((m− 1)d2

f) ≥ 2(df − 1)/(d2
f). Since

fractional dimension can be substantially smaller than the dimension, the next bound
seems worthy to be stated⌈2(fdim(P)− 1)inc(P)

fdim(P)2

⌉ ≤ led(P).(6)

LINEAR EXTENSION DIAMETER OF A POSET 363

A class of orders where dimension and fractional dimension get far apart are the
interval orders. The dimension of interval orders grows unbounded (see, e.g., [Tro92])
but the fractional dimension is bounded by 4 (see [BS92]). In fact, as shown recently
by Trotter and Winkler [TW96], the fractional dimension of interval orders can be
arbitrarily close to 4. From the above bound we thus obtain that led(I) ≥ (3/8)inc(I)
for every interval order I. However, we can easily do better. It was shown by Rabi-
novich ([Tro92, p. 196]) that an interval order I = (X,≤) has a linear extension with
A/(X \ A) for every subset A of X. Choose a random subset A of X and consider
two linear extensions with A/(X \ A) and (X \ A)/A. The expected number of in-
comparabilities in the intersection of the two linear extensions is at least (1/2)inc(I).
Hence for every interval order I

(1/2)inc(I) ≤ led(I).(7)

The next bound relates inc(P) and the height h = height(P). Let A1, . . . , Ah be
the canonical antichain partition of P , i.e., A1 = Min(P) and for i = 2, .., h Ai =
Min(P \ (A1∪ ..∪Ai−1). The weak order W with Ai as ith level is a two-dimensional
extension of P . If ai = |Ai| the number of incomparabilities of W is

∑
i

(
ai
2

)
which is

at least h
(
n/h

2

)
, hence, led(P) ≥ n(n− h)/2h. For inc(P) we have the obvious bound

inc(P) ≤ (n2)−(h2). Therefore inc(P) ≤ n2/2−h2/2 = n2− (1/2)(n2 +h2) ≤ n2−nh.
Comparing the two inequalities we obtain⌈ inc(P)

2height(P)

⌉ ≤ led(P).(8)

The bounds of this section compare led(P) to certain fractions of inc(P). Graham
Brightwell suggested a family Pn of random posets showing that the gap between
inc(P) an led(P) can indeed be large. Formally, led(Pn) = o(1)inc(Pn).

3. Removals and substitutions. Consider the removal of a point x from P .
Let L1, L2 be a diametral pair for P − x; there exist linear extensions L′i of P such
that removing x gives Li for i = 1, 2. The distance of L′1, L

′
2 is at least as large

as the distance of L1 and L2; hence led(P − x) ≤ led(P). For a lower bound on
led(P − x) consider a two-dimensional extension Q of P such that inc(Q) = led(P).
Q−x is a two-dimensional extension of P −x and the incomparabilities of Q are those
of Q − x plus those containing element x. The incomparabilities of Q containing x
are at most as many as the incomparabilities of P containing x, i.e., inc(x). Hence,
led(P − x) + inc(x) ≥ led(P).

Theorem 3.1. led(P) ≥ led(P − x) ≥ led(P) − inc(x) and both inequalities can
be sharp.

Proof. It remains to show that equality may occur. Equality on both sides
happens if inc(x) = 0. However, there are less trivial examples. On the left side
take as x one of the minimal elements of C or D (these are posets from the list of
3-irreducible posets (see, e.g., [Tro92, p. 62]); D is the chevron). On the right side
equality is attained for every two-dimensional P .

Abusing the notation we write P − r for the poset resulting from P after the
removal of a single covering relation r. P −r has more linear extensions than P ; more
precisely, G(P) is a subgraph of G(P − r). Hence, led(P) ≤ led(P − r). Equality is
again possible: let P be the chevron augmented by the comparability r = (1 < 3) (see
Figure 1). A lower bound for led(P−r) can be obtained from the lower bound for point
removal: let r be a relation involving x, then led(P) ≥ led(P −x) = led((P −r)−x) ≥

364 STEFAN FELSNER AND KLAUS REUTER

led(P − r) − (inc(x) + 1). The example of the crown An shows (see section 4) that
removing r can increase led by as much as (1/2)(inc(x) + 1).

Theorem 3.2. Let r = (x < y) be a covering relation of P ; then led(P) ≤
led(P − r) ≤ led(P) + min(inc(x), inc(y)) + 1.

Let P = (X,≤P) and Q = (Y,≤Q) be posets on disjoint sets. Standard con-
structions are the parallel composition P + Q = (X ∪ Y,≤P ∪ ≤Q) and the series
composition P ∗ Q = (X ∪ Y,≤P ∪ ≤Q ∪(X × Y)). In both cases the led of the
composition is easily determined by the components.

• led(P +Q) = led(P) + led(Q) + |X||Y |.
• led(P ∗Q) = led(P) + led(Q).

Let x be an element of P and let PQx be the poset obtained by substituting Q for x
in P . To be more specific, PQx = ((X − x) ∪ Y,≤) with a ≤ b iff a, b ∈ X − x and
a ≤P b or a, b ∈ Y and a ≤Q b or a ∈ X − x, b ∈ Y and a ≤P x or a ∈ Y, b ∈ X − x
and x ≤P b.

Theorem 3.3. led(P) + led(Q) + (led(P) − led(P − x))(|Q| − 1) ≤ led(PQx) ≤
led(P) + led(Q) + inc(x)(|Q| − 1).

Proof. Let L1, L2 be a diametral pair for P and N1, N2 be a diametral pair for
Q. Consider the linear extensions (L1)N1

x and (L2)N2
x . Compute the distance between

(L1)N1
x and (L2)N2

x as the number of adjacent transpositions necessary to change
(L1)N1

x into (L2)N2
x and note that changing L1 into L2 requires at least led(P) −

led(P −x) adjacent transpositions involving element x. This leads to the lower bound
on led(PQx).

For the upper bound select an element y ∈ Y and count the incomparabilities
of a two-dimensional extension of led(PQx) in three parts. There are at most led(P)
incomparabilities between two elements in X−x+y, there are at most led(Q) incom-
parabilities between two elements in Y , and finally, there are at most inc(x)(|Q| − 1)
incomparabilities between elements of X − x and elements of Y − y.

Another interesting aspect of led is the question of comparability invariance.
Reuter [Reu96a] observed that the linear extension graph G(P) is not a compara-
bility invariant. Nevertheless, as will be shown next, the linear extension diameter is
a comparability invariant. The proof is based on the following lemma.

Lemma 3.4. The linear extension diameter of PQx is attained by a pair L1, L2 of
linear extensions in both of which the elements of Q appear consecutively.

Proof. Let L1, L2 be a diametral pair of PQx . Let Q = (Y,≤Q) and choose y ∈ Y
such that in P{L1,L2} element y is incomparable to the maximal number of elements
z 6∈ Y . Let L′1 be obtained from L1 by first removing the elements of Y from L1 and
then reinserting them at the original position of y so that their internal order remains
unchanged. Let L′2 be obtained from L2 by the same procedure. From the choice of y
it follows that the distance of L′1 and L′2 is at least as large as the distance of L1 and
L2. Therefore, L′1, L

′
2 is a diametral pair and the elements of Q appear consecutively

in L′1 and in L′2.

Theorem 3.5. Linear extension diameter is a comparability invariant.

Proof. A consequence of Gallai’s work [Gal67], made explicit in [DPW85], is a
simple scheme for proving the comparability invariance of a property. It has to be
shown only that for all posets P and Q and elements x of P , the property is unable

to distinguish between PQx and PQ
d

x , where Qd denotes the dual of Q; i.e., y ≤ y′ in
Qd iff y′ ≤ y in Q.

LINEAR EXTENSION DIAMETER OF A POSET 365

Fig. 2. Drawings of the generalized crowns C2
8,C

3
8,C

4
8, and C5

8. Dotted lines indicate compa-
rabilities of minimum two-dimensional extensions.

Given a linear extension of PQx in which the elements of Q appear consecutively

we obtain a linear extension of PQ
d

x by reversing the order of the elements of Q.
Hence, if L1, L2 is a diametral pair of linear extensions of PQx , as in Lemma 3.4, we

obtain a pair attaining the same distance for PQ
d

x . Since the converse also works, the

linear extension diameters of PQx and PQ
d

x are equal.

4. Generalized crowns and Boolean lattices. In this section we first deal
with a class of posets where we can determine the linear extension diameter exactly.
Trotter defines generalized crowns as a class of posets that interpolates between the
3-irreducible crowns An and the standard examples Sn. For n ≥ k ≥ 2 define Ck

n as
the height-two poset with minimal elements {0, 1, . . . , (n− 1)} and maximal elements
{0′, 1′, . . . , (n− 1)′}. Element i′ is larger than the elements {i−b(k− 1)/2c, i−b(k−
1)/2c+ 1, . . . , i+ bk/2c} where indices are taken modulo n.

Lemma 4.1 can be found in [Tro92, p. 35], for the translation note that Ck
n equals

Trotter’s Sn−k−1
k+1 . In particular, C2

n = An, Cn−1
n = Sn, and Ck

n is k regular.

Lemma 4.1. A linear extension L of a generalized crown Ck
n can have i′ < j in

L for at most
(
n−k+1

2

)
pairs (i′, j).

Consider a pair L1, L2 of linear extensions of Ck
n. Since each linear extension is

reversing at most
(
n−k+1

2

)
of the (i′, j) pairs, the poset P{L1,L2} has at most (n− k+

1)(n − k) incomparable pairs i′||j. Adding the min/min and the max/max pairs we
obtain (n−k+1)(n−k)+n(n−1) as an upper bound on led(Ck

n). This upper bound
can be attained. To simplify the exposition we assume that the minimal elements of
Ck
n are the first n elements of the sequence 0, 1,−1, 2,−2, . . . ; the maximal elements

are the corresponding primed numbers. For L1 take the minimal elements of Ck
n in the

order 0, 1,−1, 2,−2, . . . and sort in the maximal elements as early as possible. When
all minimal elements have been used there are k maximal elements left; depending
on the parity of k, we have taken the maximal elements in the order 0′, 1′,−1′, 2′, . . .
(k odd) or in the order 0′,−1′, 1′,−2′, . . . (k even). Continue this pattern for the
remaining maximal elements. For L2 begin with the reverse ordering on the minimal
elements and again sort in the maximal elements as early as possible. The final k
maximal elements are taken in the reverse of their order in L1. Figure 2 illustrates
the drawings of generalized crowns resulting from this process.

Remark. A nice way of visualizing the construction is to use the diametral linear

366 STEFAN FELSNER AND KLAUS REUTER

extensions as the row and column indices for the bipartite adjacency matrix of the
Ck
n. The results for C3

n and C4
n are displayed next. An entry ∗ at position (i, j′)

indicates that i||j′ in the crown but i < j′ in the two-dimensional extension:

0′ 1′ −1′ 2′ −2′ 3′ −3′ . . .

0 1 1 1 . . .
1 1 1 ∗ 1 . . .
−1 1 ∗ 1 ∗ 1 . . .

2 1 ∗ 1 ∗ 1 . . .
−2 1 ∗ 1 ∗ 1 . . .

3 1 ∗ 1 ∗ . . .
...

...
...

...
...

...
...

...
. . .

0′ −1′ 1′ −2′ 2′ −3′ 3′ . . .

0 1 1 1 1 . . .
1 1 1 1 ∗ 1 . . .
−1 1 1 ∗ 1 ∗ 1 . . .

2 1 ∗ 1 ∗ 1 ∗ 1 . . .
−2 1 ∗ 1 ∗ 1 ∗ . . .

3 1 ∗ 1 ∗ 1 . . .
...

...
...

...
...

...
...

...
. . .

.

Theorem 4.2. For each n ≥ k ≥ 2 the linear extension diameter of the general-
ized crown Ck

n is given by

led(Ck
n) = 2n(n− k) + k(k − 1).

Proof. We have shown that (n−k+ 1)(n−k) +n(n−1) = 2n(n−k) +k(k−1) is
an upper bound on led(Ck

n). As for the lower bound, we have described a pair L1, L2

of linear extensions. From the above matrices it is easy to see that these two linear
extensions have distance (n− k + 1)(n− k) + n(n− 1).

Corollary 4.3. For the crown An and the standard example Sn this gives

• led(An) = 2(n− 1)2 = inc(An)− (n− 2) and
• led(Sn) = n2 − (n− 2) = inc(Sn)− (n− 2).

We now turn to Boolean lattices. The goal was a proof of the following conjecture.
Conjecture 1. The linear extension diameter of the Boolean lattice Bn is

led(Bn) = 22n−2 − (n+ 1)2n−2.

The conjecture is verified for n ≤ 4 in Lemma 4.5. With the next proposition
we give a construction showing that the expression given in the conjecture is a lower
bound for led(Bn).

Proposition 4.4. led(Bn) ≥ 22n−2 − (n+ 1)2n−2.
Proof. Let L be the reverse lexicographic order on the subsets of [n]; i.e., A <L B

if the smallest element of the symmetric difference of A and B is in B. Clearly, L is a
linear extension of Bn. Now revert the order on 1, .., n and let L′ be the corresponding
lexicographic order. L′ is sometimes called the reverse antilexicographic order and can
be described byA <L′ B if the largest element of the symmetric difference is in B.
Reverse lexicographic and antilexicographic order are hereditary; i.e., if X ⊂ [n], then
L restricted to the subsets of X is the reverse lexicographic order of these sets. Figure
3 displays the drawings of B4, B5, and B6 obtained from this construction.

Let X be the first half of elements of L′, i.e., the set of subsets of [n] not containing
n, and let Y be the complement of X. We count the incomparable pairs of PL,L′ in
three parts. The number of incomparable pairs (A,B) with A ∈ X and B ∈ X is
led(Bn−1) = 22n−4 − n2n−3 by induction. The same is true for the pairs (A,B) with
A ∈ Y and B ∈ Y . It remains to count the incomparable pairs (A,B) with A ∈ X
and B ∈ Y ; since A precedes B in L′ we count pairs A,B with n 6∈ A, n ∈ B, and

B <L A. This number is
(

2n−1

2

)
since B <L A iff A <L (B − n).

Lemma 4.5. Reverse lexicographic and reverse antilexicographic linear extensions
are a diametral pair of Bn for n ≤ 4.

LINEAR EXTENSION DIAMETER OF A POSET 367

Fig. 3. The drawing of B4, B5, and B6 obtained from reverse lexicographic and reverse
antilexicographic linear extensions.

Proof. For n ≤ 2 this is trivial. For n = 3 we have 8 ≤ led(B3) from Propo-
sition 4.4 and led(B3) < inc(B3) = 9 from dim(B3) = 3; hence the result. Now let
n = 4. We know that at least two of the incomparabilities of the standard example
S4 contained in B4 are comparable in the two-dimensional poset corresponding to a
diametral pair. In the standard labeling of B4 with binary vectors we may assume
that these two relations are (0100) < (1011) and (0010) < (1101). Let B̃4 denote the
poset after addition of these two relations.

Consider the following nine induced subposets of B̃4: the first is the subposet
induced by (0001), (1000), (0110), (1001), (1110), (0111). The other eight are denoted
Qi,j and are obtained by inserting i at position j for i ∈ {0, 1} and j = 1, 2, 3, 4 in
each of the vectors (001), (010), (100), (110), (101), (011). Each of these nine posets
is a 3-crown, and it is easily checked that no two of these crowns have an incompa-
rable min-max pair in common. It follows that in any two-dimensional extension of
B4 at least one of the three incomparable min-max pairs of each 3-crown is compa-
rable. This gives a total of 2 + 9 additional comparabilities in any two-dimensional
extension of B4, i.e., led(B4) ≤ inc(B4)− 11 = 44. The construction of Proposi-
tion 4.4 gives a two-dimensional extension of B4 with 44 incomparabilities which is
thus optimal.

We have not been able to generalize the proof of the previous lemma to the general
case. Below we conjecture a property of diametral pairs that would imply Conjec-
ture 1. We first state the property as Conjecture 2. Then we prove the implication
in Lemma 4.6. A more detailed discussion of properties of diametral pairs will be the
subject of the next section.

A critical pair of a poset P is an incomparable pair (x, y) such that z < y implies
z < x and z > x implies z > y. A critical pair (x, y) is reverted by linear extension L
if y precedes x in L.

Conjecture 2. Let L,L′ be a diametral pair of a poset P . Then at least one of
the two linear extensions L,L′ reverts a critical pair of P .

Lemma 4.6. Conjecture 2 implies Conjecture 1.
Proof. Let L,L′ be a diametral pair for Bn. We may assume (Conjecture 2) that

L′ reverts the critical pair ({1, .., n − 1}, {n}). As in the construction we let X and
Y be the sets of the first and second half of L′. Again X is the set of subsets of [n]
not containing n. The number of incomparable pairs (A,B) in PL,L′ with A ∈ X and

368 STEFAN FELSNER AND KLAUS REUTER

Fig. 4. The N and its linear extension graph. The pair (1243, 2134) is locally extremal, and
the unique extremal pair is (1234, 2413).

B ∈ X is at most led(Bn−1). The same holds for pairs with A ∈ Y and B ∈ Y .

It remains to estimate the number of incomparable pairs (A,B) with A ∈ X and
B ∈ Y that are reversed by L, i.e., pairs (A,B) with n 6∈ A, n ∈ B, and B <L A.
Let (A,B) be such a pair and let mate(A,B) = (B − n,A+ n); note that B − n ∈ X
and A + n ∈ Y . Since mate is an involution mate defines a pairing of the pairs
(A,B) ∈ X × Y . At most one of (A,B) and mate(A,B) can be reversed by L;
otherwise, B <L A <L A + n <L B − n <L B, which is a contradiction. A pair
((A,B),mate(A,B)) that may contribute a reversal is characterized by A,B − n and
these are different subsets of [n − 1]. Therefore, the number of reversals contributed

by pairs (A,B) ∈ X × Y is at most
(|X|

2

)
=
(

2n−1

2

)
. Putting things together,

led(Bn) ≤ 2led(Bn−1) +

(
2n−1

2

)
.

Induction completes the proof.

5. Intervals in G(P) and diametral pairs. For two linear extensions M,N
of P let the interval [M,N] in G(P) consist of all linear extensions on the shortest
path between M and N ; put differently it is the set of linear extensions of P{M,N}.
We call M,N an extremal pair if there is no interval [M ′, N ′] properly containing
[M,N]. Note that [M ′, N ′] ⊇ [M,N] implies dist(M ′, N ′) ≥ dist(M,N). Hence,
diametral pairs are extremal. A locally extremal pair is a pair M,N such that [M,N]
is not properly contained in [M ′, N ′] with M ′ a neighbor of M or M ′ = M and N ′ a
neighbor of N or N ′ = N . Figure 4 illustrates the definitions. It is immediate that
for pairs M,N of linear extensions the following implications hold:

diametral =⇒ extremal =⇒ locally extremal.

Those diametral pairs we understand best are the minimal realizers of two-
dimensional posets. Kierstead and Trotter [KT89] observed that the linear extensions
of such a 2-realizer are super-greedy. The definition of greedy and super-greedy can
be based on the following generic algorithm for linear extensions:

Linear Extension
for i = 1 to n do

choose xi ∈Min(P − {x1, .., xi−1})
output x1, x2, . . . , xn

LINEAR EXTENSION DIAMETER OF A POSET 369

• For greedy linear extensions xi is chosen from Min(P−{x1, .., xi−1})∩succ(xi−1)
whenever this set is nonempty.

• For super-greedy linear extensions xi is chosen from Min(P − {x1, .., xi−1}) ∩
succ(xj), where j < i is maximal such that this set is nonempty.

Lemma 5.1. Let P be a poset and L a super-greedy linear extension. Either P is
a chain or L reverses a critical pair.

Proof. We may assume that P has more than one minimal element. Let xi be
the minimal element of P that comes last in L = x1, . . . , xn. Since L is super-greedy,
P − {x1, .., xi} = succ(xi) and, hence, succ(xi−1) ⊆ succ(xi). Since pred(xi) = ∅ ⊆
pred(xi−1), the pair (xi, xi−1) is a critical pair reversed by L.

5.1. Extremal linear extensions. Call M an extremal linear extension if there
is a linear extension N such that there is no interval [M ′, N] properly containing
[M,N]. Interestingly, extremal linear extension are exactly the linear extensions par-
ticipating in locally extreme pairs.

Proposition 5.2. For a linear extension M the following is equivalent:

• M is an extremal linear extension.

• There exists a linear extension N such that M,N is locally extremal.

Proof. Let M be an extremal linear extension with witness N . We define a partial
order on G(P) with respect to a linear extension M as follows: L ≤M L′ if the set of
pairs of L′ which are in reverse order relative to M contains the corresponding set for
L. This is equivalent to saying that the interval [M,L′] contains the interval [M,L].
If we choose N ′ as a maximal element above N with respect to ≤M , then M,N ′ is
a locally extremal pair. M is extremal with respect to N ′ because N ′ ≤N ′ N ≤N ′
M ≤N ′ M ′ implies [M,N] ⊆ [M ′, N]. Since N is a witness for M ’s extremality, this
requires M = M ′. The other direction is obvious from the definitions.

With the next proposition we characterize extremal linear extensions. Recall
that a jump in a linear extension L = x1, x2, . . . , xn is a pair xi, xi+1 of consecutive
elements in L that are incomparable in P . If xi, xi+1 are comparable in P we call
the pair a bump of P . The bump decomposition of L is obtained by cutting L in each
bump. This gives an ordered partition L = α1, α2, . . . , αk such that each block αi is a
maximal interval of elements xij , .., xij+1−1 such that consecutive elements in αi form
a jump.

Example. Let P be the chevron labeled as in Figure 1. In M = 132456 there are
three jumps and two bumps; the bumps are (24) and (56). The bump decomposition
is α1 = 132, α2 = 45, α3 = 6.

Proposition 5.3. A linear extension L of P is extremal iff every block αi of the
bump decomposition α1, α2, . . . , αk of L induces an antichain in P .

Proof. Let N be such that L,N is a locally extremal pair. Assume that some
block αi does not induce an antichain and let x, y ∈ αi with x < y in P . Not all the
adjacent pairs of αi can be in reverse order to N , because this would imply y < x in
N . Hence some adjacent pair can be switched in αi to increase the distance to N ,
which is a contradiction.

In order to prove the other direction let N be the word resulting from L by
reversing every block of the bump decomposition of P . If all blocks induce antichains
in P , then N is a linear extension of P . Moreover, L is extremal with respect to N ,
since only the switch of an adjacent pair of some block yields a neighboring linear
extension of L. But such a linear extension is closer to N than L is.

370 STEFAN FELSNER AND KLAUS REUTER

Corollary 5.4. Every greedy linear extension is extremal.

Proof. If L is not extremal, then there exist x, y in some block αi of L with x
being covered by y in P . Observe that x and y cannot be adjacent in αi. Now, L is
not greedy, since y is a candidate to be chosen right after x.

In general, however, the class of extremal linear extensions contains nongreedy
linear extensions. Even both linear extensions of a locally extremal pair may be non-
greedy. Take for example the 3-crown C2

3 on {0, 1, 2, 0′, 1′, 2′} (element i′ is larger than
i, i − 1) the pair (2, 1, 0, 0′, 2′, 1′), (0, 1, 2, 1′, 2′, 0′) is extremal but neither is greedy.
Due to their vast amount, extremal pairs seem to be rather useless for heuristics or
approximations of the linear extension diameter. In the next subsection we discuss a
much stronger property.

5.2. Complementary linear extensions. Let L be a linear extension of P and
specify the choice function in the algorithm Linear Extension so that in each round
xi is the last element of Min(P) in L; i.e., take the reverse of L as preference list for
the construction of a new linear extension M . We call M the complementary linear
extension of L and denote the complementary mapping by ∗, i.e., ∗ : L → M = L∗.
The k fold iterated complementary map of L is L∗k.

Example. Let P be the chevron labeled as in Figure 1. If L = 132456, then
L∗ = 315624.

The intuition is that L∗ tends to have many pairs in the reverse order of L, hence,
the distance from L to L∗ should be large.

Proposition 5.5. Complementary linear extensions are super-greedy.

Proof. Let y1, .., yt be an initial segment of L∗. For element x ∈ Min(P −
{y1, .., yt}) let i(x) = max(i : x > yi). We have to prove that yt+1 is an element x′

with i(x′) maximal. Suppose that not yt+1 = x′ but that i(x′) = r < i(x) = s. The
choice of x′ implies that x <M x′. Consider the situation when ys was chosen and
note that at this time x′ was available. Since ys < x we have ys <M x′ contradicting
the choice of ys.

Corollary 5.6. For linear extensions the following implications hold:

complementary =⇒ super-greedy =⇒ greedy =⇒ extremal.

As is the case with super-greedy linear extensions, complementary linear ex-
tensions may be constructed by an algorithm based on a stack. To construct the
complementary linear extension of L begin with an empty stack S. Push the el-
ements of Min(P) onto S in the order induced by L on this set. For i = 1, .., n
repeat: xi ← pop(S) and push the new minimal elements, i.e., the elements of the
set Ci = Min(P − {x1, .., xi}) −Min(P − {x1, .., xi−1}) onto S. The order in which
elements of Ci are pushed is again the order induced by L on this set. The comple-
mentary linear extension L∗ of L is x1, . . . , xn, i.e., the elements ordered by the time
of their pop. The formal proof that the stack algorithm applied to L constructs the
complementary linear extension L∗ is very similar to the proof of Proposition 5.5.

We illustrate the two procedures for complementary linear extensions with the
following example (Table 5.1). Let P be the chevron with the labeling of Figure 1 and
let L = 132456. In the left column of the table we have L with elements already used
for L∗ removed. Underlined elements are the elements of Min(P −{x1, .., xi−1}), and
bold are the elements of Ci, i.e., the new minimal elements. The next three columns
correspond to the stack-based construction and explain themselves. Finally, there is a
column with the growing L∗. We like to remark that yet another way of interpreting
the construction of L∗ is as a certain depth-first-search on the diagram of P with a

LINEAR EXTENSION DIAMETER OF A POSET 371

Table 5.1
Demonstrating the construction of a complementary linear extension.

L Stack Pop Ci L∗

1 3 2 4 5 6 13 3 ∅ 3
1 2 4 5 6 1 1 {2, 5} 3 1

2 4 5 6 25 5 {6} 3 1 5
2 4 6 26 6 ∅ 3 1 5 6
2 4 2 2 {4} 3 1 5 6 2

4 4 4 ∅ 3 1 5 6 2 4

least element 0 added. The corresponding spanning tree consists of the edges (xi, y)
for y ∈ Ci.

A complementary pair is a pair L,M of linear extensions with M = L∗ and
L = M∗. Continuing with the example L = 132456, we saw L∗ = 315624 and
compute L2 = 125346 and L∗3 = 315624. Since L∗3 = L∗, the pair L∗, L∗2 is a
complementary pair. In this case it is a diametral pair as well.

Proposition 5.7. A realizer L,L′ of a two-dimensional poset is a complementary
pair.

Proof. In L′ the elements of Min(P) are in the reverse of their order in L.
Therefore, L′ and L∗ are equal in the first element x. Since L∗ = x + (L − x)∗ and
L− x, L′ − x is a realizer of P − x induction shows L′ = L∗.

From the definition it is not obvious that every poset has a complementary pair.
This, however, is an immediate consequence of the following “convergence” theorem.

Theorem 5.8. Let P be a poset of height h, and let L be a linear extension; then
L∗2h−1 = L∗2h+1. In other words L∗2h−1, L∗2h is a complementary pair of P .

The proof of the theorem will be based on two lemmas.
Lemma 5.9. Let I be a down-set of P . The restriction of L∗ to I equals the

complementary linear extension of the restriction of L to the suborder induced by P
on I.

With L|X denoting the restriction of L to a subset X of P , this can be written
as

L∗|I = (L|I)∗.

Proof. The proof is by induction on n = |P |. Let x be the last minimal element of
P in L and note that x is the first element of L∗. Consider P−x. With M = L|(P−x)
we have L∗ = xM∗.

If x 6∈ I, then M |I = L|I and

L∗|I = M∗|I = (M |I)∗ = (L|I)∗,

with the second equality being the induction hypothesis. Otherwise, if x ∈ I, then

L∗|I = x (M∗|(I − x)) = x (M |(I − x))
∗

= x (L|(I − x))
∗

= (L|I)∗,

with the second equality being the induction hypothesis.
Lemma 5.10. Let P be a poset, A ⊆ Max(P), and Q = P − A. If L is a linear

extension of P with L∗|Q = L∗3|Q, then L∗3 = L∗5.
Proof. For t ≥ 1 let L∗t = xt1, x

t
2, . . . , x

t
n and use the superscript t to denote

structures involved in the stack-based construction of L∗t. For example, the elements
of the set Cti = Min(P −{xt1, .., xti})−Min(P −{xt1, .., xti−1}) are the elements pushed
onto stack St after the pop of xti.

372 STEFAN FELSNER AND KLAUS REUTER

By Lemma 5.9 L∗|Q = L∗3|Q implies that L∗|Q,L∗2|Q is a complementary pair
for Q. If xti 6∈ Q, then obviously Cti = ∅. Hence, for t, t′ of the same parity (both
odd or both even) the same sets are pushed in the same order onto the stacks St

and St
′
. More formally, if qti denotes the index of the ith element of Q in L∗t, then

Ctqt
i

= Ct
′

qt
′
i

for t = t′ mod 2 and 1 ≤ i ≤ |Q|. Using the simplified notation Cti = Ctqt
i

(with calligraphic C) we restate this fact.

Fact. Cti = Ct′i for t = t′ mod 2 and 1 ≤ i ≤ |Q|.
The linear extension L∗t is completely determined by the evolution of the stack

St. From Cti = Ct′i we could conclude that L∗t depends only on the parity of t if
the order in which the elements of Cti are pushed onto St remained unchanged or,
equivalently, if the order of the elements of Cti in L∗t remained unchanged. This will
be proved for t ≥ 3.

Let Dij = C1
i ∩ C2

j = Coi ∩ Cej for o odd and e even and note that there is an order
αij of the elements of Dij such that in the sequence L∗t the order of these elements
alternates between αij for t odd and the reverse of αij for t even.

Claim. Let j < k and y ∈ Dij , x ∈ Dik. For t ≥ 3, t odd, x precedes y in L∗t.
Proof of claim. Assume the existence of o ≥ 3 odd such that y precedes x in L∗o;

we shorten notation, writing y <o x for this fact. Since x, y ∈ Coi we conclude that
x <o−1 y. Let e = o−1 and recall j < k and y ∈ Cej and x ∈ Cek. Hence, y was pushed
onto stack Se earlier than x, and since x <e y, element y was still buried in Se when
x was pushed. Inspection shows that there was a z ∈ Cej with z < x and z was pushed

after y onto Se. It follows that the order of x, y, z in L∗e−1 is y <e−1 z <e−1 x.

From x, y ∈ Ce−1
i = Coi and y <e−1 x, we obtain that x was pushed before y onto

Se−1. Since z < x, element z was pushed onto Se−1 before x and y.

To obtain y <e−1 z <e−1 x the stack Se−1 would thus get the elements pushed
in order z, x, y and pop them off in order y, z, x. This, however, corresponds to
a 3-element permutation that cannot be realized with a stack. This contradiction
concludes the proof of the claim.

It follows that for t ≥ 3, t odd the order of the elements of Coi in L∗t is αi,n−1 <t
αi,n−2 <t · · · <t αi,1. This completely determines the evolution of the stack; hence,
L∗3 = L∗5 = L∗7

Proof of Theorem 5.8. Let A1, A2, . . . , Ah be the canonical antichain partition of
P with height(P) = h; i.e., Ai+1 = Min(P − A1 − · · · − Ai) and

⋃h
1 Ai = P . Let

A≤k = A1 ∪A2 ∪ · · · ∪Ak and note that A≤k is a down-set.

Claim. L∗2k−1|A≤k = L∗2k+1|A≤k for k = 1, . . . , h.

Proof of claim. By Lemma 5.9 it suffices to prove (L|A≤k)∗2k−1 = (L|A≤k)∗2k+1.

For k = 1 this is trivially true. Since Ak ⊆ Max(A≤k) we can use Lemma 5.10
with L = L∗2k−4|A≤k for the induction step, proving the claim.

Since A≤h = P this implies the theorem.

Proposition 5.11. If M,N is a complementary pair, then the interval [M,N]
is locally extreme in G(P).

Proof. Assume that there is neighbor N ′ of N such that [M,N] ⊂ [M,N ′]. Let
(x, y) be the unique pair with x <N y and y <N ′ x. Since N = M∗ and both x and
y were minimal elements when x was chosen we find that y <M x. This implies that
N ′ is on a shortest path from M to N , which is a contradiction to [M,N] ⊂ [M,N ′].
Similar arguments disprove the other cases.

A diametral pair need not be a complementary pair. An example is given in
Figure 5.

LINEAR EXTENSION DIAMETER OF A POSET 373

Fig. 5. Left: P and its unique minimum two-dimensional extension. Middle and right: The
two complementary two-dimensional extensions of P .

Acknowledgment. We thank Michael Naatz for careful proofreading and sug-
gesting some improvements.

REFERENCES

[BS92] G. Brightwell and E. Scheinerman, Fractional dimension of partial orders, Order,
9 (1992), pp. 139–158.

[BW91] A. Björner and M. Wachs, Permutation statistics and linear extensions of posets,
J. Combin Theory Ser. A, 58 (1991), pp. 85–114.

[DPW85] B. Dreesen, W. Poguntke, and P. Winkler, Comparability invariance of the fixed
point property, Order, 2 (1985), pp. 269–274.

[Gal67] T. Gallai, Transitiv orientierbare Graphen, Acta. Math. Hungar., 18 (1967), pp. 25–66.
[KT89] H. Kierstead and W.T. Trotter, Super-greedy linear extensions of ordered sets, Ann.

New York Acad. Sci., 555 (1989), pp. 262–271.
[Reu96a] K. Reuter, The Comparability Graph and the Graph of Linear Extensions of a Poset,

Preprint, Universität Hamburg, 1996.
[Reu96b] K. Reuter, Linear Extensions of a Poset as Abstract Convex Sets, Preprint, Universität

Hamburg, 1996.
[Tro92] W.T. Trotter, Combinatorics and Partially Ordered Sets: Dimension Theory, The

Johns Hopkins Press, Baltimore, MD 1992.
[TW96] W.T. Trotter and P. Winkler, Ramsey theory and sequences of random variables,

Combin. Probab. Comput., 7 (1998), pp. 221–238.

RANKINGS OF DIRECTED GRAPHS∗

JAN KRATOCHVÍL† AND ZSOLT TUZA‡

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 3, pp. 374–384

Abstract. A ranking of a graph is a coloring of the vertex set with positive integers in such a
way that on every path connecting two vertices of the same color there is a vertex of larger color.
We consider the directed variant of this problem, where the above condition is imposed only on
those paths in which all edges are oriented consecutively. We show that the ranking number of an
orientation of a tree is bounded by that of its longest directed path plus one, and that it can be
computed in polynomial time. Unlike the undirected case, however, deciding whether the ranking
number of a directed (and even of an acyclic directed) graph is bounded by a constant is NP-complete.
In fact, the 3-ranking of planar bipartite acyclic digraphs is already hard.

Key words. graph, directed graph, oriented graph, ranking, algorithm, NP-completeness

AMS subject classifications. 05C15, 05C20, 05C05, 05C85

PII. S0895480197330242

1. Introduction. Given an undirected graph G, its ranking number χr(G) is
the minimum integer k for which there exists a (vertex) k-ranking ; that is, a mapping
f : V (G)→ {1, 2, . . . , k} such that every path connecting two vertices u, v of the same
rank f(u) = f(v) contains a vertex w with higher rank, f(w) > f(u). In particular,
adjacent vertices have to be assigned different ranks; therefore χr(G) ≥ χ(G) for
every graph. As a variant of graph coloring problems, vertex and edge rankings find
applications in scheduling, very large scale integration design, and notably in parallel
matrix-factorization algorithms (see, e.g., [1] for references).

It is well known [1] that for the path P` of length `− 1 on ` vertices,

χr(P`) = blog `c+ 1

holds, and the longest k-rankable path P2k−1 = x1x2 . . . x2k−1 admits the unique
optimal ranking f with

f(xi) = max {j : i ≡ 0 mod 2j}+ 1

for all 1 ≤ i < 2k. (Throughout, log means logarithm of base 2.) For the proof of
uniqueness, note that the highest rank k appears exactly once; otherwise the subpath
connecting two vertices of rank k would not contain a vertex of higher rank. Applying
induction, it also follows that rank k is assigned to the middle vertex and the subpaths
on its two sides are uniquely (k − 1)-ranked.

∗Received by the editors November 19, 1997; accepted for publication (in revised form) March
3, 1999; published electronically September 7, 1999. A preliminary version of this article appeared
as Rankings of directed graphs, in Graph-Theoretic Concepts in Computer Science, Proceedings of
the 24th International Workshop WG ’98, Smolenice Castle, Slovak Republic, June 18–20, 1998,
Lecture Notes in Comput. Sci. 1517, Springer-Verlag, Berlin, 1998, pp. 114–123.

http://www.siam.org/journals/sidma/12-3/33024.html
†Department of Applied Mathematics, Charles University, Malostranské nám. 25, 118 00 Praha

1, Czech Republic (honza@kam.ms.mff.cuni.cz). The research of this author was supported in part
by Czech research grants GAUK 194/1996, GAUK 158/1999, and GAČR 201/1996/0194.
‡Computer and Automation Institute, Hungarian Academy of Sciences, H–1111 Budapest, Kende

u. 13–17, Hungary (tuza@sztaki.hu). The research of this author was supported in part by the
Hungarian Scientific Research Fund, grants OTKA T–016416 and T–026575, and by Czech grant
GAČR 201/1999/0242.

374

RANKINGS OF DIRECTED GRAPHS 375

1 2 1 3 1 2 1

1 2 1 3 1 2 1

1 2 1 2 1 2 1

Fig. 1.1. Undirected and directed rankings of paths.

1 1

2

13 1

2

11

2

1

2

1

2

11 1 1 1 1 1 1

3

4 3

22

3

2

1

Fig. 1.2. Undirected and directed ranking of trees.

Recently, oriented chromatic number was introduced and intensively studied as
a variant of chromatic number for directed graphs [5, 9, 11, 10, 13]. In the same
spirit, it is natural to study the effect of orientations on rankings as well. This paper
is the first approach to the ranking of directed graphs. The ranking number of a
digraph G is naturally defined as the minimum k such that there exists a mapping
f : V (G) → {1, 2, . . . , k} with the property that every directed path (i.e., path in
which all edges are oriented consecutively) connecting two vertices u, v of the same
rank f(u) = f(v) contains a vertex w with higher rank, f(w) > f(u). We denote the
ranking number of a directed graph G again by χr(G).

Obviously, the ranking number of a directed path equals that of the undirected
path of the same length. Rankings of undirected and oriented paths are shown in
Figure 1.1.

Directed and undirected rankings, however, have a strikingly different behavior
already on trees. For instance, an undirected tree containing no path longer than t
can have a ranking number as large as dt/2e + 1. (One can show that the level-wise
ranking of a complete binary tree is optimal, which shows that the tree of height t/2
has longest path of length t and ranking number t/2 + 1.) This is far from being true
in the directed case. We shall prove that the ranking number of any orientation of a
tree can exceed that of its longest directed path by at most 1 (Corollary 2.3), hence
it grows just with log t. Examples of ranking an undirected complete binary tree and
an orientation of it are given in Figure 1.2.

We also consider rankings from the computational complexity point of view. The
problem Ranking takes as input a graph G and a positive integer k and asks whether
χr(G) ≤ k. It is known that Ranking on undirected graphs is NP-complete in general
but solvable in polynomial time for every fixed k ; see [1] for results and further
references. For the analogous problem of Directed Ranking, however, we prove in
Theorem 4.1 that it is NP-complete even if the input is restricted to fixed k = 3 and
to acyclic orientations of planar bipartite graphs. On the other hand, the 2-rankable
directed graphs can be characterized in several different ways, as shown in section
5. We also prove that the ranking number of oriented trees can be determined in

376 JAN KRATOCHVÍL AND ZSOLT TUZA

polynomial time (section 3).
The study of directed ranking is an appealing task in itself, leading to interesting

theoretical problems. It is worth mentioning, however, that in the context of the
original motivation for introducing the ranking number of graphs in [4], the directed
version defined in our present work may appear at least as natural as the undirected
one. Formally, the most general setting would be the study of rankings in partially
oriented graphs. This can be modeled, however, by introducing two oppositely ori-
ented arcs for each undirected edge of the input graph, and hence it turns out to be
equivalent to directed ranking in general digraphs (not just in oriented graphs). Our
results in section 4 provide relevant information on this more general problem as well.

2. Upper bound for trees. In this section we prove general bounds on the
ranking number of oriented trees and also on that of orientations of a path of given
length. We begin with some definitions.

Notation. We write p(`) := blog `c + 1 = χr(P`) for the ranking number of the
(directed or undirected) path with ` vertices (i.e., p(`) = k if and only if 2k−1 ≤
` ≤ 2k − 1). Moreover, we define rt(`) and rp(`) as the maximum ranking number of
orientations of trees and that of orientations of undirected paths, respectively, under
the condition that no directed subpath has more than ` vertices.

Clearly, rt(`) ≥ rp(`) ≥ p(`) holds for all ` ≥ 1. Our results will show that these
three functions are very close to each other, in the entire range of `.

Theorem 2.1. For every k ≥ 2 and ` such that 2k−2 + 1 ≤ ` ≤ 2k−1,

rt(`) = k .

Proof. We first show that χr(T) ≤ k holds, provided that every directed subpath
of a given oriented tree T has at most 2k−1 vertices. Consider an infinite directed
path with vertices xi and edges xixi+1, i ∈ Z. Define a mapping φ : {xi : i ∈ Z} →
{1, 2, . . . , k} by

φ(xi) =

{
k if i ≡ 0 mod 2k−1 ,
max {j : i ≡ 0 mod 2j−1} if i 6≡ 0 mod 2k−1 .

Obviously, any segment of at most 2k−1 vertices is ranked in a feasible way by φ.
Now we consider an oriented tree T containing no directed subpath with more

than 2k−1 vertices. We view such a tree as a Hasse diagram of a partially ordered set
and, as such, partition its vertex set into levels : we choose an arbitrary vertex and
call its level L(0), and then we recursively sort the other vertices—a vertex u is placed
into level L(i+ 1) if there is a vertex v already in level L(i) such that uv ∈ E(T), and
a vertex w is placed into level L(i− 1) if there is a vertex v already in level L(i) such
that vw ∈ E(T). A mapping f defined by f(u) = φ(xi) for u ∈ L(i) is then a feasible
k-ranking of T . (The above procedure partitions T into levels correctly, since T is a
tree.)

We next turn to the lower bound for rt(`), namely, rt(2
k−1+1) > k. For i = 2k−1,

2k−1−1, . . . , 3, 2, 1, 0, we construct a series of trees Tk(i) recursively (in this decreasing
order of i), with the following properties :

(1) Every directed subpath of Tk(i) has at most 2k−1 + 1 vertices;
(2) Tk(i) contains a nonextendable directed path P of length 2k−1−1 with vertices

x1, x2, . . . , x2k−1 and arcs xhxh+1, 1 ≤ h < 2k−1;
(3) for every j ≤ i, every directed path of Tk(i) passing through xj has at most

2k−1 vertices; and

RANKINGS OF DIRECTED GRAPHS 377

(4) for every feasible k-ranking f of Tk(i) and for every j > i, f(xj) 6= k.
The first step of the construction is for i = 2k−1, and for Tk(2k−1) we simply take
the path P = x1x2 . . . x2k−1 . In the recursive step, we take a copy T ′ of Tk(i + 1)
with vertex set disjoint from the vertex set of Tk(i+ 1) and add the arc x′i+1xi+1 to
the disjoint union of T ′ and Tk(i+ 1). (We assume that the copy of P is denoted by
P ′ = x′1x

′
2 . . . x

′
2k−1 in T ′.) This will be our Tk(i), and P = x1x2 . . . x2k−1 will keep

playing the role of the path P for property (2).
The properties (1)–(3) for Tk(i) clearly follow by induction. To prove (4), we

revoke the result known from undirected ranking: the longest (k − 1)-rankable path
has 2k−1 − 1 vertices. Hence, in any feasible k-ranking fi+1 of Tk(i + 1), at least
one of the vertices of P is ranked k. If fi is a k-ranking of Tk(i), by the induction
hypothesis none of the vertices x′j , j > i + 1, is ranked k, and hence at least one of
the vertices x′j , 1 ≤ j ≤ i + 1, is ranked k. On the other hand, the directed path
x′1 . . . x

′
i+1xi+1 . . . x2k−1 contains at most one vertex ranked k, and thus property (4)

follows for Tk(i).
The tree T = Tk(0) has no directed path with more than 2k−1 + 1 vertices and

it is not k-rankable. Indeed, if f0 were a feasible k-ranking, then property (4) would
imply that no vertex of P is ranked k, contradicting the fact that the path with 2k−1

vertices is not (k − 1)-rankable. Thus, rt(2
k−1 + 1) ≥ k + 1.

Next, we show that the ranking number of oriented trees of maximum degree
2 (i.e., orientations of undirected paths) usually equals the ranking number of their
longest paths.

Theorem 2.2. For every k ≥ 3 and every ` such that 2k−1 − 1 ≤ ` ≤ 2k − 2,

rp(`) = k .

Proof. We first prove the upper bound, i.e., rp(2
k − 2) ≤ k. It is easy to see

that every (directed or undirected) path with at most 2k − 2 vertices has a feasible
k-ranking such that the first vertex is ranked 1 and the last vertex is ranked 2. Thus,
if T is an orientation of a path consisting of several segments of length at most 2k− 3
(a segment is a maximal directed subpath), we can k-rank each segment separately
so that the sources are ranked 1 and the sinks are ranked 2.

On the other hand, to show the lower bound, we take two vertex-disjoint paths
of length 2k − 2 each and orient an arc from the first vertex of one of them to the
last vertex of the other one. The resulting graph has no feasible k-ranking, because
in every k-ranking of a directed path of length 2k − 2, both endvertices are ranked
1; thus the added arc would connect two vertices ranked 1, which is a contradiction.
Therefore rp(2

k − 1) ≥ k + 1.
Reformulating the results proven above, and relating the ranking number of an

oriented tree to the ranking number of its longest paths, we obtain the following
corollary.

Corollary 2.3. The ranking number of an oriented tree is always less than or
equal to the ranking number of its longest directed paths plus 1. This bound is best
possible, as

rt(`) =

{
p(`) if ` = 2k for some k,
p(`) + 1 otherwise.

Similarly, for orientations of undirected paths, we have

rp(`) =

{
p(`) + 1 if ` = 2k − 1 for some k,
p(`) otherwise.

378 JAN KRATOCHVÍL AND ZSOLT TUZA

3. Algorithm for trees. In this section we prove that the ranking number of
an oriented tree can be determined by a polynomial-time algorithm. Assuming that
a natural number k and a tree T with n vertices are given, our goal here is to decide
by an efficient algorithm if χr(T) ≤ k. At the end of the section we shall indicate how
the methods can be extended for graphs of bounded treewidth, too.

We shall use the following notation. We pick a vertex, say r, and regard T as
rooted in r. (This does not mean, however, that all edges of T are necessarily oriented
towards r.) For a vertex u of T , denote by Tu the subtree rooted in u and induced
by those vertices from which the path (in the underlying undirected graph of T) to
r passes through u. If u 6= r, then u+ denotes the first vertex on the path from u to
the root r. The vertices adjacent to u other than u+ are called the children of u. We
denote by Ch→(u) = {x : xu ∈ E(T)∧ x 6= u+} the set of children of u for which the
edges are oriented toward u, and by Ch←(u) = {x : ux ∈ E(T) ∧ x 6= u+} the set of
those children for which the edges are oriented from u.

Given a coloring f of the vertices of T with colors {1, 2, . . . , k}, we say that a
color i is up-visible from u if Tu contains a directed path P = u1 . . . uj , uj = u, such
that f(u1) = i and no vertex u`, ` = 2, . . . , j, is colored with a color higher than i.
Similarly, a color i is down-visible from u if Tu contains a directed path P = u1 . . . uj ,
u1 = u, such that f(uj) = i and no vertex u`, ` = 1, . . . , j − 1, is colored with a
color higher than i. The following obvious proposition is a key observation for the
forthcoming algorithm.

Proposition 3.1. For all v ∈ Ch→(u)∪Ch←(u), let fv be rankings of the Tv’s,
the subtrees rooted in the children of u. Then for any color i, the coloring f defined
by

f(x) =

{
i for x = u,
fv(x) if x ∈ Tv for some child v of u

is a proper ranking of Tu if and only if

(1) i is not down-visible in fv from v for any v ∈ Ch←(u),
(2) i is not up-visible in fv from v for any v ∈ Ch→(u),
(3) if j is down-visible in fv from v for some v ∈ Ch←(u) and up-visible in fv′

from v′ for some v′ ∈ Ch→(u), then j < i.

The algorithm described below scans recursively the vertices of T from the leaves
to the root and computes set systems V is→(u), V is←(u) for every u ∈ V (T). Each
of these systems is a family of subsets of {1, 2, . . . , k}, storing essential information
concerning the feasible rankings of the subtree rooted in u. Namely, S ∈ V is→(u)
if and only if Tu admits a ranking such that S is the set of colors up-visible from u,
and S ∈ V is←(u) if and only if Tu admits a ranking such that S is the set of colors
down-visible from u.

It follows directly from Proposition 3.1 how the values of V is←(u) and V is→(u)
can be computed from the values on the children of u.

Proposition 3.2. For any vertex u of T , the sets V is←(u) and V is→(u)
are nonempty if and only if there exist a color i and sets Sv← ∈ V is←(v) (for all
v ∈ Ch←(u)) and Sv→ ∈ V is→(v) (for all v ∈ Ch→(u)) such that

(1) i 6∈ ⋃v∈Ch←(u) S
v
←,

(2) i 6∈ ⋃v∈Ch→(u) S
v
→, and

(3) max (
⋃
v∈Ch←(u) S

v
← ∩

⋃
v∈Ch→(u) S

v
→) < i.

RANKINGS OF DIRECTED GRAPHS 379

In this case, (⋃
v∈Ch←(u)

Sv← ∩ {i+ 1, . . . , k}
)
∪ {i} ∈ V is←(u)

and (⋃
v∈Ch→(u)

Sv→ ∩ {i+ 1, . . . , k}
)
∪ {i} ∈ V is→(u) .

By the above propositions, the correctness of the next algorithm follows.
Algorithm TREE.

Input: An oriented tree T and a number k.
0. Choose a vertex r of T and consider it the root of T .
1. For every leaf u of T and for every i = 1, 2, . . . , k set

V is←(u) := {{1}, {2}, . . . , {k}} and
V is→(u) := {{1}, {2}, . . . , {k}}.

2. For every inner vertex u of T , in postorder do
2.1. V is←(u) := ∅ and V is→(u) := ∅;
2.2. Down(u) := {⋃v∈Ch←(u) Sv : Sv ∈ V is←(v)};
2.3. Up(u) := {⋃v∈Ch→(u) Sv : Sv ∈ V is→(v)};
2.4. for every A ∈ Down(u) and B ∈ Up(u) do

for every i > maxDown(u) ∩ Up(u) do
if i /∈ A ∪B then V is←(u) := V is←(u) ∪ {(A ∩ {i, i+ 1, . . . , k}) ∪ {i}};
if i /∈ A ∪B then V is→(u) := V is→(u) ∪ {(B ∩ {i, i+ 1, . . . , k}) ∪ {i}};

3. If V is←(r) = V is→(r) = ∅
then output χr(T) > k
else output χr(T) ≤ k.

(In step 2.3 we use max ∅ = 0.) To show that this algorithm can be implemented
in polynomial time it remains to show how steps 2.2 and 2.3 can be implemented. Note
that the role of these steps is to compute the sets of all unions of elements of V is←(v)
for v ∈ Ch←(u) (or of V is→(v) for v ∈ Ch→(u), respectively), taking one element
from each V is-set in all possible ways. This may in principle cover an exponential
number of possibilities (exponential in the degree of u). This can be avoided by using
dynamic programming as in the following subroutines.

Function Up(u) .
Let Ch→(u) = {u1, u2, . . . , us}.
Up := {∅};
for j := 1 to s do Up := {A ∪B : A ∈ Up,B ∈ V is→(uj)}.

Function Down(u) .
Let Ch←(u) = {u1, u2, . . . , ut}.
Down := {∅};
for j := 1 to t do Down := {A ∪B : A ∈ Down,B ∈ V is←(uj)}.

Proposition 3.3. The running time of the algorithm TREE(k) is at most
cnk2 22k, for some absolute constant c independent of k.

Proof. The function Up (which is a dynamic programming version for computing
the set of all unions of type

⋃s
j=1Aj for Aj ∈ V is→(uj)) needs at most 22k set unions

in each of the s steps. Hence, on a vertex with s ingoing children, Up runs in O(sk 22k)
time. The analogous property holds for Down as well. Throughout the entire tree

380 JAN KRATOCHVÍL AND ZSOLT TUZA

T , there are as many children of processed vertices as the number of edges of T , and
therefore Up and Down will consume in total at most O(nk 22k) steps.

Step 2.4 requires at most O(k2 22k) time for u fixed and, being performed for
every vertex, it takes at most O(nk2 22k).

In conclusion, we obtain the following theorem.

Theorem 3.4. For any oriented tree T on n vertices, the directed ranking
number of T can be determined in time O(n `2 log3 `), where ` ≥ 2 is the length of a
longest directed path in T .

Proof. Assume n ≥ 2. We know from Theorem 2.2 that 1 ≤ χr(T) − 1 ≤
log `. Therefore, it suffices to run the algorithm TREE(k) for at most log ` values of
k ≤ log ` + 1, and for each of them, TREE(k) takes at most O(n · log2 ` · 22 log `) =
O(n · `2 · log2 `) time.

It was not our aim to present an optimal algorithm. Note that various further
tricks can be implemented to achieve slightly better running time. Note also that
binary search can be used in order to determine the ranking number of an oriented tree
in time O(n `2 log2 ` log log `) and that our algorithm also can be used for partially
oriented trees. The above results can be extended to the following, more general
theorem whose proof is only sketched. (For the definition of treewidth, see, e.g., [1].)

Theorem 3.5. For every fixed natural number t, the directed ranking number
can be determined in polynomial time for any digraph whose underlying undirected
graph has treewidth at most t.

Proof (sketch). Recall first that the ranking number of a digraph does not exceed
the ranking number of its underlying undirected graph and, second, that this is ≤
c logn for graphs of bounded treewidth, say, w(G) ≤ t [1]. Note that each vertex
u of the decomposition tree corresponds to a cut set Xu in G of size ≤ t + 1. The
decomposition tree is considered rooted, and for the node u, Gu denotes the subgraph
of G induced by

⋃
Xv, where this union is taken over all nodes v such that u lies on

the path from the root to v.

The algorithm would scan recursively a tree-decomposition of G, storing for ev-
ery vertex u of the tree of the tree-decomposition the characteristics of all possible
rankings of Gu. For particular u, the characteristics of a ranking f of Gu consist of

(1) the restriction of the ranking f to Xu;

(2) for every vertex v ∈ Xu, the sets of up- and down-visible colors on paths
leading to and from Gu;

(3) for every color i the digraph on Xu such that xy is an arc if and only if there
exists a directed path in Gu from x to y whose vertices are all ranked ≤ i.

It is only a matter of a technical case analysis to show that the information
on characteristics can be propagated through the decomposition tree in polynomial
time. And obviously, χr(G) ≤ k if and only if the root of G allows a nonempty set

of characteristics. The amount of stored information is at most kt+1(2k)2t+2kt
2 ≤

O(n2(t+1)c logt
2+t+1 n).

4. Ranking number of bipartite acyclic digraphs. Here we consider the
algorithmic problem on directed acyclic graphs (DAGs).

Theorem 4.1. The problem Directed Ranking is NP-complete on DAGs
with planar bipartite underlying graphs, even for fixed k = 3.

Proof. We show a reduction from a variant of the Precoloring Extension
problem of undirected graphs. It is known [6] that the following problem is NP-
complete:

RANKINGS OF DIRECTED GRAPHS 381

Given a planar bipartite graph with some of its vertices properly col-
ored with three colors, does G admit a proper 3-coloring that extends
the precoloring ?

Given such a bipartite graph G = (A∪B,E), observe that we may assume without loss
of generality that all the precolored vertices belong to A. Indeed, for each precolored
vertex v ∈ B, we create two new precolored vertices of degree 1, adjacent to v, and
precolor them with the two colors different from the one prescribed for v; then v can
be made precolorless, as its precolored pendant neighbors force it to get the originally
prescribed color.

Given a planar bipartite graph G = (A∪B,E) with precolored vertex set Z ⊆ A
and precoloring φ : Z → {1, 2, 3}, we construct a directed graph D with vertex set

V (D) = A ∪B ∪ {zji : z ∈ Z, 1 ≤ i ≤ 7, 1 ≤ j ≤ 2}
and arc set

E(D) =
⋃

u∈A, v∈B
uv∈E

{uv} ∪
⋃
z∈Z

1≤i≤6
1≤j≤2

{zji zji+1} ∪
⋃
z∈Z
{zz1

i1(z), zz
2
i2(z)},

where

i1(z) =

{
6 if φ(z) = 1,
7 if φ(z) = 2 ∨ 3,

i2(z) =

{
4 if φ(z) = 1 ∨ 2,
6 if φ(z) = 3.

Obviously, D is acyclic, and it also remains planar and bipartite because so is G. We
claim that D is 3-rankable if and only if G admits a precoloring extension with three
colors.

Suppose first that D is 3-rankable, and let f : V (D) → {1, 2, 3} be a feasible
ranking. Since the paths Pz,j = zj1z

j
2 . . . z

j
7 (z ∈ Z, j = 1, 2) are uniquely 3-rankable

induced subgraphs of D, we must have f(zj1) = f(zj3) = f(zj5) = f(zj7) = 1, f(zj2) =

f(zj6) = 2, and f(zj4) = 3. In this way, each Pz,j excludes one well-defined color from
its neighbor in A, and the total effect is that precisely the two colors distinct from
φ(z) get excluded at each z ∈ Z. It follows that f(z) = φ(z) holds, and therefore f is
a proper 3-coloring of G extending the precoloring φ.

On the other hand, any proper precoloring extension of φ together with the color
sequence 1213121 on each Pz,j gives a feasible 3-ranking.

Corollary 4.2. For every fixed ranking number k ≥ 3, the problem Directed
Ranking is NP-complete on planar acyclic digraphs.

Proof. Take a DAG, G, whose χr(G) ≤ 3 is questioned. For every vertex x ∈
V (G), add a directed path Px = x1x2 . . . x2k−1 and join x to vertices xi such that
i ≡ 0 mod 8 by arcs directed from x towards Px. In any k-ranking of this planar
DAG G′, the vertices of each Px are uniquely ranked, and the neighbors of x receive
all colors 4, 5, . . . , k. Therefore, x must be colored 1, 2, or 3. Hence, G′ is k-rankable
if and only if G is 3-rankable.

5. Directed 2-rankable graphs. Here we investigate directed rankings with
k = 2 colors. For the structural characterization of 2-rankable digraphs the following
concept will be convenient to introduce. By an alternating walk of length ` we mean a
sequence P = x0x1 . . . x` of (not necessarily distinct) vertices such that its orientation
is x0 → x1 ← x2 → x3 ← · · · , i.e., x2ix2i+1 ∈ E for all 0 ≤ i < `/2 and x2ix2i−1 ∈ E
for all 1 ≤ i ≤ `/2. An alternating walk is an alternating path if its vertices are

382 JAN KRATOCHVÍL AND ZSOLT TUZA

mutually distinct. Moreover, we say that a vertex v is starting , central , or ending , if
there is a directed path P3 = x1x2x3 with x1 = v, x2 = v, or x3 = v, respectively. In
the present context, alternating paths and cycles of odd lengths will be crucial.

Theorem 5.1. For every digraph G = (V,E), the following conditions are
equivalent:

(1) G is 2-rankable.
(2) G contains no alternating path of odd length from a starting vertex to an

ending vertex.
(3) G contains no alternating walk of odd length with both endpoints being central

vertices.
(4) G admits a proper 2-coloring in which the set of central vertices is monochro-

matic.

Proof.

(1) ⇒ (2) Suppose that G is 2-rankable. Since P3 has the unique 2-ranking 121,
every starting and ending vertex must get the same color 1 in G. Consequently,
every path P (not only the alternating ones) joining two such vertices must have even
length, for otherwise the endpoints of P should get distinct colors in every proper
2-coloring (not only in the 2-rankings) of G.

(2) ⇒ (3) Let G be a graph satisfying condition (2), and suppose on the con-
trary that some W = x1x2 . . . x2t ⊂ G is an alternating walk of odd length, 2t − 1,
where both x1 and x2t are (possibly identical) central vertices. By definition, there
exist directed paths of length 2, P ′ = u′v′z′ and P ′′ = u′′v′′z′′, with v′ = x1 and
v′′ = x2t. Denoting x0 := z′ and x2t+1 := u′′, observe that W ∗ := u′′W−1z′ =
x2t+1x2tx2t−1 . . . x1x0 is an alternating walk of odd length 2t + 1 from the starting
vertex x2t+1 to the ending vertex x0. Now condition (2) implies that W ∗ cannot be a
path, i.e., xi = xj holds for some 0 ≤ i < j ≤ 2t+ 1. Assuming that j − i is as small
as possible, we find i and j so that C := xixi+1 . . . xj is a cycle.

We distinguish between two simple cases, depending on the parity of i − j. If
i − j is even, then C is an odd cycle in which xi is the middle vertex of a directed
P3, namely either xi+1xixj−1 or xj−1xixi+1. Thus, C − xi is an alternating path
of odd length from the starting vertex of this P3 to its ending vertex, which is a
contradiction to condition (2). On the other hand, if i− j is odd, then removing the
segment xj−1xj−2 . . . xi+2xi+1 from W ∗ we obtain a shorter alternating walk of odd
length from x2t+1 to x0, and repeating the same argument we eventually get a final
contradiction.

(3) ⇒ (4) Let G be a connected graph satisfying condition (3). We first show
that G is bipartite. Suppose on the contrary that C = x1x2 . . . x2k+1 is a cycle of odd
length in G. By the assumption on parity, at least two consecutive edges are oriented
in the same direction, and thus at least one vertex of C is central. It follows that,
taking subscript addition modulo 2k + 1, there exist two subscripts i and j (possibly
j = i+2k+1) such that j−i is odd, both xi and xj are central vertices, and no vertex
xk, i < k < j, is central. Then the walk xixi+1 . . . xj (or its inverse, xjxj−1 . . . xi) is
alternating.

Next, we show that all central vertices are located in the same bipartition class of
G. If this is not the case, let x, y be central vertices belonging to distinct classes and
being at minimum distance apart. (Recall that G is connected.) Now, any shortest
x–y path has odd length and is alternating, for otherwise G would contain two central
vertices in distinct classes closer to each other than x and y.

RANKINGS OF DIRECTED GRAPHS 383

(4) ⇒ (1) Let V (G) = A ∪ B be a bipartition of G such that all central vertices
belong to A. Then the mapping that assigns 1 to the vertices in B and 2 to the
vertices in A is a 2-ranking of G.

Remarks. 1. Algorithmically it is very easy to decide whether a digraph G 1. Al-
gorithmically it is very easy to decide whether a digraph G is
2-rankable. Indeed, the answer is negative whenever G is not bipartite, and oth-
erwise it suffices to test separately in each connected component if some of the two
possible 2-colorings are 2-rankings. See also condition (4) in Theorem 5.1.

2. Similar types of problems have been studied in the framework of precoloring
extension in several papers. Good characterizations are known for the existence of
k-colorings of trees with any number of prescribed monochromatic independent sets
[2, 3], and also for one prescribed monochromatic independent set in perfect graphs
[7]. (As we have mentioned before, the problem for bipartite graphs with at least
three precolored vertices of distinct colors is algorithmically hard [6], and this is true
for two monochromatic vertex pairs in distinct colors, too.) For an extensive survey
on this subject, see [12].

3. Some small subgraphs excluded by the degenerate “alternating” path of
length 1 are as follows:

• The cyclic triangle y1 → y2 → y3 → y1, where any two of the yi are adjacent
central vertices and also each edge joins a starting vertex with an ending
vertex;
• the transitive triangle y1 → y2 → y3 ← y1, where y1y3 is an edge from a

starting vertex to an ending vertex (and y2y3y1y2 is an odd alternating walk
from the central vertex y2 to itself);
• the path y1 → y2 → y3 → y4 of length 3, where the edge y2y3 joins a starting

vertex with an ending vertex, both of which are central as well.

Moreover, chordless odd cycles of lengths ≥ 5 (with any orientation) are also excluded
by the longer alternating paths or by the entire cycle as an alternating walk, according
to conditions (2) and (3) for longer paths and walks. Note that the characterization
of 2-rankable digraphs in terms of forbidden subgraphs involves an infinite family of
minimal configurations, which is not the case for undirected rankings.

6. Open problems. There are many interesting related problems arising in the
above context in a natural way. Below we mention some of them.

(1) Draw a sharper line between the polynomial instances of oriented trees (and
oriented planar graphs of bounded treewidth) and the NP-complete class of
directed acyclic bipartite planar graphs, by describing large subclasses of the
latter in which the ranking number still can be determined in polynomial
time.

(2) What is the complexity of Directed Edge Ranking for a fixed number of
colors ? (The undirected version is linear [1] but NP-complete if the number
of colors is unrestricted [8].)

(3) More generally, which classes of directed graphs admit polynomial-time de-
cision algorithms for k-ranking or edge k-ranking or both, for every fixed
k ?

Acknowledgment. The second author thankfully acknowledges support from
the Konrad-Zuse-Zentrum für Informationstechnik Berlin, where part of this research
was carried out.

384 JAN KRATOCHVÍL AND ZSOLT TUZA

REFERENCES

[1] H. L. Bodlaender, J. S. Deogun, K. Jansen, T. Kloks, D. Kratsch, H. Müller, and
Zs. Tuza, Rankings of graphs, SIAM J. Discrete Math., 11 (1998), pp. 168–181.

[2] M. Hujter and Zs. Tuza, Precoloring extension. II. Graph classes related to bipartite
graphs, Acta Math. Univ. Comenian., 62 (1993), pp. 1–11.

[3] M. Hujter and Zs. Tuza, Precoloring extension. III. Classes of perfect graphs, Combin.
Probab. Comput., 5 (1996), pp. 35–56.

[4] A. V. Iyer, H. D. Ratliff, and G. Vijayan, Parallel Assembly of Modular Products—An
Analysis, Technical Report 88-06, PDRC, Georgia Institute of Technology, Atlanta,
GA, 1988.

[5] A. V. Kostochka, E. Sopena, and X. Zhu, Acyclic and oriented chromatic numbers of
graphs, J. Graph Theory, 24 (1997), pp. 331–340.

[6] J. Kratochv́ıl, Precoloring extension with fixed color bound, Acta Math. Univ. Comenian.,
62 (1993), pp. 139–153.

[7] J. Kratochv́ıl and A. Sebő, Coloring precolored perfect graphs, J. Graph Theory, 25
(1995), pp. 207–215.

[8] T. W. Lam and F. L. Yue, Edge ranking of graphs is hard, Discrete Appl. Math., 85
(1998), pp. 71–86.

[9] A. Raspaud and E. Sopena, Good and semi-strong colorings of oriented planar graphs,
Inform. Process. Lett., 51 (1994), pp. 171–174.

[10] A. Sali and G. Simonyi, Oriented list colorings of undirected graphs, in Contemporary
Trends in Discrete Mathematics, R. L. Graham, J. Kratochv́ıl, J. Nešetřil, and F. S.
Roberts, eds., DIMACS Ser. Discrete Math. Theoret. Comput. Sci., AMS, Providence,
RI, 1999, pp. 307-316.

[11] E. Sopena, The chromatic number of oriented graphs, J. Graph Theory, 25 (1997), pp. 191–
205.

[12] Zs. Tuza, Graph colorings with local constraints—a survey, Discuss. Math. Graph Theory,
17 (1997), pp. 161–228.

[13] Zs. Tuza and M. Voigt, Oriented List Colorings, manuscript, 1998.

ON-LINE 3-CHROMATIC GRAPHS I.
TRIANGLE-FREE GRAPHS∗

ANDRÁS GYÁRFÁS† , ZOLTÁN KIRÁLY‡ , AND JENŐ LEHEL§

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 3, pp. 385–411

Abstract. This is the first half of a two-part paper devoted to on-line 3-colorable graphs.
Here on-line 3-colorable triangle-free graphs are characterized by a finite list of forbidden induced
subgraphs. The key role in our approach is played by the family of graphs which are both triangle-
and (2K2 + K1)-free. Characterization of this family is given by introducing a bipartite modular
decomposition concept. This decomposition, combined with the greedy algorithm, culminates in an
on-line 3-coloring algorithm for this family. On the other hand, based on the characterization of this
family, all 22 forbidden subgraphs of on-line 3-colorable triangle-free graphs are determined. As a
corollary, we obtain the 10 forbidden subgraphs of on-line 3-colorable bipartite graphs. The forbidden
subgraphs in the finite basis characterization are on-line 4-critical, i.e., they are on-line 4-chromatic
but their proper induced subgraphs are on-line 3-colorable. The results of this paper are applied in the
companion paper [Discrete Math., 177 (1997), pp. 99–122] to obtain the finite basis characterization
of connected on-line 3-colorable graphs (with 51 4-critical subgraphs). However, perhaps surprisingly,
connectivity (or the triangle-free property) is essential in a finite basis characterization: there are
infinitely many on-line 4-critical graphs.

Key words. on-line coloring, forbidden subgraphs

AMS subject classifications. 05C15, 05C75, 05C85

PII. S089548019631030X

Introduction. A proper coloring of a graph G is an assignment of positive inte-
gers (called colors) to its vertices in such a way that adjacent vertices have distinct
colors. The smallest number of colors in any proper coloring is denoted by χ(G) and is
called the chromatic number of G. An on-line coloring of a (finite) G is an algorithm
that colors the vertices as follows:

• Vertices of G are given in some order v1, v2, . . . (unknown by the algorithm).
• In the ith step the algorithm assigns a proper color to vi (and never changes

it later).
The most extensively studied on-line coloring algorithm is the greedy or first fit

algorithm (FF): in each step it assigns the smallest available positive integer as color
to the current vertex. In general, on-line coloring can be interpreted as a two-person
game of GraphDrawer and GraphPainter. Drawer’s moves consist of successively
revealing vertices of a graph G with all adjacencies to vertices already known by
Painter, and in each step Painter assigns a color to the current vertex. Painter’s aim
is to use as few distinct colors as possible while Drawer’s aim is to force Painter to
use as many colors as possible. The common optimum value will be called the on-line
chromatic number of G.

∗Received by the editors October 4, 1996; accepted for publication (in revised form) November
23, 1998; published electronically September 7, 1999.

http://www.siam.org/journals/sidma/12-3/31030.html
†Computer and Automation Research Institute, Hungarian Academy of Sciences, Kende u. 13-17,

Budapest, H-1111, Hungary (gyarfas@luna.aszi.sztaki.hu). The work of this author was supported
by OTKA grant T 16414.
‡Eötvös Loránd University, Department of Computer Science, Rákóczi út 5, Budapest, H-1088,

Hungary (kiraly@cs.elte.hu). The work of this author was supported by OTKA grants F 014919,
T 14302, and T 17580.
§Computer and Automation Research Institute, Hungarian Academy of Sciences, Kende u. 13-17,

Budapest, H-1111, Hungary, and University of Louisville, Louisville, KY (j0lehe01@athena.louisville.
edu). The work of this author was supported by OTKA grant T 16414.

385

386 ANDRÁS GYÁRFÁS, ZOLTÁN KIRÁLY, AND JENŐ LEHEL

Let G be a graph and A be some fixed on-line coloring algorithm. Then the max-
imum number of colors used by A during any coloring game (i.e., for all orderings of
the vertices of G) is called the A-chromatic number of G and is denoted by χA(G). The
on-line chromatic number, χ∗(G), is the minimum number of colors Painter succeeds
with when playing on G; that is, χ∗(G) = min{χA(G) : A is an on-line coloring}. A
graph G is (on-line) k-critical if χ∗(G) = k and χ∗(G′) < k holds for every proper
induced subgraph G′ ⊂ G.

The concept of on-line chromatic number of graphs was introduced in [GL1], [GL2];
a similar notion, recursive coloring, had been investigated earlier. The introduction
in [KPT1] gives a brief survey of the connection of these concepts. Our reference list
covers several areas of on-line graph colorings beyond our particular subject [GKL2],
[I], [K], [K1], [K2], [KK], [KT1], [KT], [LST], [V].

On-line 2-colorable graphs are rather trivial, and their connected components are
complete bipartite graphs. This statement is a good introductory exercise to on-line
colorings. It also shows that a single on-line algorithm, FF, provides a 2-coloring for
every on-line 2-colorable graph. This is not the case for on-line 3-colorable graphs
as demonstrated by the B-E paradigm [GL2]: although the graphs B and E (see
Figure 1) are on-line 3-colorable, Painter cannot color with three colors if Drawer does
not tell in advance which graph is to be presented. Thus a single on-line 3-coloring
algorithm cannot 3-color every on-line 3-colorable graph. The same phenomenon
explains that such a simple operation as addition of an isolated vertex may change
on-line 3-colorability of a graph. The smallest amusing example is the triangle with
a pendant edge on each of its vertices [GKL1]. A bipartite example comes from the
evolution of B. Adding an isolated edge and an isolated vertex to the graph B gives
an on-line 3-colorable graph, but if a further isolated vertex is added, an on-line 4-
chromatic graph is obtained. These examples might suggest that on-line 3-colorable
graphs are very restricted, but examples like the Petersen graph, K3 × K3 [GKL1],
seem to refute this view. It seems to us that the analysis of on-line 3-colorable graphs
is a good test case by which to understand paradoxical features of on-line colorings.
As pointed out by referees, our approach is tailored specifically to 3-colorable graphs
and at many places relies heavily on case analysis. Unfortunately, this seems to be
an inherent feature of the subject.

This paper gives a characterization of on-line 3-colorable triangle-free graphs. The
crucial role is played by the family of graphs which are both triangle- and (2K2 +K1)-
free. We use the notation (∆,Ξ)-free for this family in accordance with our notations
∆ for the triangle C3 and Ξ for 2K2 + K1. Our key result (Theorem 1) states that
(∆,Ξ)-free graphs are on-line 3-colorable—in fact, with a single on-line algorithm A
(section 3).

Theorem 1 is related to coloring results on (∆, T)-free graphs. A well-known
conjecture [G], [S] states that (∆, T)-free graphs have bounded chromatic number in
terms of the number of vertices of T , where T is a forest. The on-line version behaves
differently; in [GL1] it was shown that the on-line chromatic number of (∆, P6)-free
graphs is not bounded. Sumner proved that (∆, P5)-free graphs are 3-colorable [S] and
in fact are 3-colorable by FF as shown in [GL3]. A well-known example (the bipartite
complement of mK2) demonstrates that the FF-chromatic number is unbounded for
our (∆,Ξ)-free (even for (∆,K2 + 2K1)-free) family. Thus the on-line 3-coloring
algorithm A of Theorem 1 cannot be replaced by FF. Actually, A seems to be the
first algorithm essentially different from FF which is optimal for a family where FF
behaves very poorly. It is worth noting that, going a step further, the family of

ON-LINE 3-CHROMATIC GRAPHS I. TRIANGLE-FREE GRAPHS 387

(∆, 3K2)-free graphs are not 3-colorable even off-line since the Grötzsch graph is in
the family. Finally we note that (prepared by works in [GL2], [GL3], [KPT]) a deep
theorem of Kierstead, Penrice, and Trotter [KPT1] implies that the family of (∆, T)-
free graphs has a bounded on-line chromatic number if and only if each component
of the forest T is P6-free.

Structural and coloring properties of (∆,Ξ)-free graphs are interrelated. On one
hand, algorithm A is used to prove structural results; for example, the existence of
A immediately implies (through the B-E paradigm) that (∆,Ξ)-free graphs cannot
contain both B and E. On the other hand, algorithm A is based on our structural
characterization of the family.

To obtain a general structure theorem (Theorems II and 2) we shall introduce a
modular decomposition of Ξ-free bipartite graphs in section 2. The building blocks
(modules) are 2K2-free bipartite graphs (halfgraphs), and they are joined using com-
plete bipartite graphs. Nonbipartite members of the family are obtained by extending
bipartite ones having at most two modules, and their structure shows a peculiar cir-
cular symmetry (Theorem 1 and (2.7)). This is a graph theoretic structure theorem
independent of on-line coloring and so has its own interest.

In section 4.2 we extend algorithm A to color disconnected ∆-free graphs con-
taining B with three colors when it is possible.

A synthesis of our techniques results in a characterization of on-line 3-colorable
triangle-free graphs by finitely many (22) forbidden subgraphs (Theorem 4). In fact,
these are the triangle-free on-line 4-critical graphs displayed in Figures 3, 4, and
5 (except F1 and F5). We have learned that the Drawer-Painter game is rather
interesting on almost all of them due to diverse strategies with subtle details. During
a game on any of these graphs, a smart Painter has a chance to achieve a 3-coloring
against an imperfect Drawer. However, a perfect Drawer can always force any Painter
to use four colors.

Theorem 4 implies that on-line 3-colorability of a triangle-free graph can be
decided (theoretically) in polynomial time of its order, in contrast with off-line 3-
colorability which is known to be NP-complete [L].

In the companion paper [GKL1] Theorems 2 and 3 were used to obtain the fi-
nite basis characterization of connected on-line 3-colorable graphs (with 51 forbidden
on-line 4-critical subgraphs). In contrast to our expectations, the assumption of con-
nectivity was essential: we found an infinite family of (disconnected) on-line 4-critical
graphs. Therefore, on-line 3-colorable graphs (like off-line 2-colorable, i.e., bipartite
graphs) cannot be characterized with finitely many forbidden subgraphs.

We conclude the introduction with remarks concerning algorithmic aspects of
our results. The structural properties of on-line 3-colorable graphs developed in this
paper and in its companion led to a very simple on-line coloring algorithm (FF(C6) in
[GKL1]). This algorithm is a slight modification of FF, easy to implement, and uses
at most four colors on every on-line 3-colorable graph. Due to the B-E paradigm,
this is the best that a single on-line algorithm can achieve. Another algorithm for
the same purpose, List First Fit, was found independently by Kolossa [KO]. Vaguely
speaking, both algorithms are fast optimal, but it is extremely difficult to prove that
they do what they claim. Our attempt to sacrifice accuracy for clarity and the hope of
generalization led to an on-line algorithm for which it is easy to bound the maximum
number of colors (142) for any on-line 3-colorable input graph. Unfortunately, for
k > 3, the proof is not suitable to give an affirmative answer for the following more
general and seemingly important question. For fixed k, is it possible to find a single

388 ANDRÁS GYÁRFÁS, ZOLTÁN KIRÁLY, AND JENŐ LEHEL

Fig. 1. Graphs B and E.

on-line coloring algorithm Ak which colors every on-line k-colorable graph with a
bounded number of colors (in terms of k)? [GKL3].

1. Notations and results. LetKn, Pn, and Cn denote the n-clique, the induced
path with n vertices, and the induced n-cycle, respectively. For a positive integer k,
kG is the union of k disjoint copies of G and G+H is the disjoint union of the graphs
G and H. We use the following nonstandard notation: II = 2K2, Ξ = II+K1, B is a
6-cycle together with a long chord, and E is the graph obtained from B by removing
two consecutive edges from its 6-cycle adjacent to the long chord (see Figure 1). The
triangle is often denoted by ∆. Graphs with more than one forbidden subgraph are
indicated by the list of subgraphs within parentheses.

The main result of the paper is the following theorem.
Theorem 1. If G is (∆,Ξ)-free, then χ∗(G) ≤ 3. In addition, a 3-coloring for

all (∆,Ξ)-free graphs is obtained by a single on-line algorithm, A.
The proof of Theorem 1 is presented in sections 2 and 3. In section 2 we prove a

structure theorem for (∆,Ξ)-free graphs by introducing a new modular decomposition
concept. Section 3 concludes the proof of Theorem 1 by presenting the on-line 3-
coloring algorithm A, a combination of FF and a natural but not simple algorithm
based on the structure theorem.

Structural characterization of (∆,Ξ)-free graphs is developed in several stages.
First, II-free members of the family are described (see (2.2) and (2.3)). Next, bipar-
tite Ξ-free graphs are characterized using a modular decomposition technique. The
decomposition relies on the fact that a bipartite graph G is Ξ-free if and only if every
connected component of the bipartite complement of G contains no II (see (2.4)).
Finally we give extension rules by which all nonbipartite members of the family are
derived from bipartite ones (see (2.6) and (2.7)). We summarize here the conclusion
of section 2 without explaining the definitions in details. (These can be found at the
end of the present section and throughout section 2.)

Theorem I. A ∆-free graph G with no equivalent vertices is Ξ-free if and only
if G satisfies one of the following properties:

(a) G = C5 +K1.
(b) G is a bipartite graph such that its bipartite complement is the disjoint union

of connected II-free bipartite graphs (called reduced halfgraphs).
(c) G is the induced subgraph of a graph H with the following structure: The

vertices of H are partitioned into six nonempty sets Ai,j , 1 ≤ i ≤ 3, 1 ≤ j ≤ 2,
such that the graph induced by Ai1,j1 and Ai2,j2 is a complete bipartite graph,
if i1 = i2, j1 6= j2; a halfgraph or a reduced halfgraph, if i1 6= i2, j1 = j2;
and a graph with no edges otherwise. Furthermore, for any x ∈ A1,j , y ∈
A2,j , z ∈ A3,j the set {x, y, z} induces neither a triangle nor the complement
of a triangle.

The coloring result of Theorem 1 leads to the following theorem.

ON-LINE 3-CHROMATIC GRAPHS I. TRIANGLE-FREE GRAPHS 389

Fig. 2. The five minimal ∆-free graphs of FF -chromatic number 4.

Theorem II. Let G be a connected ∆-free graph containing a copy of B. Then G
is E-free if and only if G is Ξ-free.

For this purely graph theory statement we could not find a short direct proof that
avoids on-line colorings. Actually, Theorem II is proved in the following stronger form
in section 3.1.

Theorem 2. If G is a connected ∆-free graph containing a copy of B, then the
following statements are equivalent:

(1) G is E-free.
(2) G has no induced subgraph isomorphic to any of F3, F4 in Figure 2 and

B1, B2, B3, B4 in Figure 4.
(3) G is Ξ-free.
(4) G has on-line chromatic number χ∗(G) ≤ 3.

Theorem 2 also helps in finding the list of all minimal graphs that are excluded
from graphs of on-line chromatic number 3. Before formulating this result in Theo-
rem 3 we present some critical graphs from the list. Let us start with the observation
that any graph G of on-line chromatic number 4 must contain an induced subgraph
G′ such that χFF (G′) = 4. In [GKL1] we determined all graphs with FF-chromatic
number 4 which are minimal with respect to that property. From the list of these 22
graphs, Figure 2 shows the ∆-free ones.

In [GKL1] it was also shown that F2, F3, and F4 are 4-critical, F1 = B and F5

are not. Hence, if G is a ∆-free 4-critical graph different from F2, F3, and F4, then
G contains at least one of B and F5. Figure 3 shows all 4-critical graphs obtained in
[GKL1] which contain F5.

The analysis of 4-critical graphs results in the following finite basis theorems.

Theorem 3. If G is a ∆-free graph containing B, then G has on-line chromatic
number at most 3 if and only if G has no induced subgraph isomorphic to any of F3, F4

in Figure 2 and Bi, 1 ≤ i ≤ 10, in Figure 4.

Theorem 4. A ∆-free graph G has on-line chromatic number 3 if and only if G
has no induced subgraph isomorphic to any of F2, F3, F4 in Figure 2 and the 19 graphs
in Figures 3 and 4.

A corollary of Theorem 4 is the following finite basis result for bipartite graphs.

Theorem 5. A bipartite graph G has on-line chromatic number at most 3 if and
only if G has no induced subgraph isomorphic to F2, F3 in Figure 2 and B1, B2, B3,
B5, B7, B8,B9, B10 in Figure 4.

The vertex and the edge set of a graph G is respectively denoted by V (G) and
E(G). The relation D ⊂ G means that D is an induced subgraph of G. Throughout
the paper subgraph always means induced subgraph (i.e., “G has a P4” actually means
that P4 is an induced subgraph of G). For D ⊂ G and v ∈ V (G), D + v and D − v

390 ANDRÁS GYÁRFÁS, ZOLTÁN KIRÁLY, AND JENŐ LEHEL

Fig. 3. All ∆-free 4-critical graphs containing F5.

Fig. 4. All ∆-free 4-critical graphs containing B.

denote the subgraph of G induced by V (D) ∪ {v} and V (D) \ {v}, respectively.

Define N(v) = {u ∈ V (G) : uv ∈ E(G)} (and NU (v) = {u ∈ U ⊆ V (G) : uv ∈
E(G)}) to be the (U -) neighborhood set of v ∈ V (G). Vertices u, v ∈ V (G) are
called equivalent if and only if N(u) = N(v). A graph is called primitive if it contains
no equivalent pair of vertices. Vertex multiplication is the operation of replacing a
vertex x of a graph with a certain number of equivalent copies of x. If a graph G is the
vertex multiplication of some primitive graph G′ then we say that G′ is a primitive
representative of G. For a graph G and v ∈ V (G), let CG(v) ⊂ V (G) denote the set
of all vertices of G equivalent to v. Obviously, any subgraph of G induced by the set
containing one vertex from each equivalence class is a primitive representative of G.

ON-LINE 3-CHROMATIC GRAPHS I. TRIANGLE-FREE GRAPHS 391

Throughout the paper it is assumed that bipartite graphs are given together
with a bipartition of their vertices. A bipartite graph with partite sets X and Y
is denoted by [X,Y] and is called here a bigraph. General graphic operations have
natural bipartite versions for bigraphs. In case of bigraphs the equivalence and the
vertex multiplication are involving vertices in the same partite set. A bigraph is called
primitive if it contains no equivalent pair of vertices. (A primitive bigraph can have

two isolated vertices, one in each class.) For a bigraph G = [X,Y], let Ĝ denote the

bipartite complement of G, that is, x ∈ X and y ∈ Y are adjacent in Ĝ if and only
if xy is not an edge of G. A vertex v is called a star vertex of the bigraph [X,Y]
if N(v) = X or Y . A subgraph of an arbitrary graph G induced by two disjoint
independent sets X,Y ⊂ V (G) is a bigraph [X,Y] of G.

2. Characterizations of (∆,Ξ)-free graphs. Graph classes we shall consider
in this section are closed under vertex multiplication. (It is worth noting that this is
not true for the whole class of on-line 3-colorable graphs.) This property is formulated
in our first proposition. (The trivial proof is omitted.)

(2.1) Let H be a primitive (bi)graph. Then G is an H-free (bi)graph if and only if
any primitive representative of G is H-free.

A Ξ-free graph G with no triangle is of one of the following two types: either
G is II-free or G contains II and is disconnected (Type 1), or G contains II and is
connected (Type 2).

Type 1. Let G be a graph of Type 1. No connected component of G may contain
II; otherwise, G would be connected, which contradicts the definition of Type 1
graphs. If G has two nontrivial connected components, then it contains II; thus no
third component might exist. Because both components must be (K2 +K1)-free, G is
bipartite, and it is the disjoint union of two complete bipartite graphs. Assume next
that G has exactly one nontrivial connected component, that is, G is II-free.

First let G be a nonbipartite graph of Type 1. Since G is ∆-free with no II,
its shortest induced odd cycle must be a C5. This observation combined with (2.1)
results in the following easy characterization.

(2.2) A nonbipartite ∆-free graph G is of Type 1 if and only if G is the vertex
multiplication of C5 or C5 +K1.

Next let G be a bipartite graph of Type 1 containing one nontrivial connected
component, or, equivalently, let G = [X,Y] be a II-free bigraph. The following four
properties are obviously equivalent:

(i) G = [X,Y] is II-free;
(ii) for every x, x′ ∈ X, either N(x) ⊆ N(x′) or N(x′) ⊆ N(x);
(iii) X has an ordering x1, . . . , xp such that Y ⊇ N(x1) ⊇ · · · ⊇ N(xp);
(iv) Y has an ordering y1, . . . , yq such that N(y1) ⊆ · · · ⊆ N(yq) ⊆ X.
The equivalence of (i) and (iii) characterizes II-free bigraphs as follows: G =

[X,Y] is II-free if and only if {N(x) : x ∈ X} defines a chain on Y (and {N(y) :
y ∈ Y } defines a chain on X). The chain on X may start with the empty set
(corresponding to an isolated vertex of Y); it may contain several copies of the same
subset (corresponding to equivalent vertices of Y), and its last member is either the
whole set X (which corresponds to a star vertex in Y) or the set of nonisolated vertices
in X.

Using these observations together with (2.1), all II-free bigraphs can be obtained
from the containment graphs of simple chains, called halfgraphs. The nth halfgraph,

392 ANDRÁS GYÁRFÁS, ZOLTÁN KIRÁLY, AND JENŐ LEHEL

H(n), is defined as a bigraph on vertex set {x1, . . . , xn}∪{y1, . . . , yn} with xiyj being
an edge if and only if i < j. Notice the symmetry of H(n) defined by the automorphism
xi ←→ yn+1−i (i = 1, . . . , n) between its partite sets. In this paper we call a bigraph
halfgraph if it is a vertex multiplication of some H(n). The primitive halfgraphs will
be written as halfgraphs. A halfgraph which does not have isolated vertices in both
bipartition classes will be called a reduced halfgraph.

(2.3) A bigraph G is of Type 1 if and only if G is the vertex multiplication of II
or it is a halfgraph or a reduced halfgraph.

The type of Ξ-free bigraphs can be determined by introducing a new modular
decomposition concept which also will be useful for the whole structural description
of (∆,Ξ)-free graphs. Observe first that the bipartite complement of the bigraph Ξ is

a P5. Hence a bigraph G is Ξ-free if and only if its bipartite complement Ĝ is P5-free.
Furthermore, a connected component of Ĝ contains no P5 if and only if it is II-free.
According to the discussion before (1.3) each connected II-free bigraph is a connected
reduced halfgraph, that is, either some isolated vertices or a halfgraph with all of its
isolated vertices removed. Note that ÎI ∼= II; hence the connected components of ÎI
are isomorphic to K2 (i.e., a connected reduced H(2)).

(2.4) A bigraph is Ξ-free if and only if every connected component of its bipartite
complement is a connected reduced halfgraph.

Let G be a Ξ-free bigraph and denote by G1, . . . , Gk the connected components
of its bipartite complement Ĝ. Then Ĝi, i = 1, . . . , k, are called the modules of G. If
a module contains just one vertex, then it is called a trivial module; otherwise, it is a
nontrivial module. Observe that any two vertices from distinct partite sets and from
distinct modules are adjacent in G; in particular, trivial modules are star vertices of
the bigraph. It is easy to check that the bipartite complement of a connected reduced
halfgraph is either a single vertex or a halfgraph. Therefore, by (2.3), each nontrivial
module of the unique module decomposition of G is a halfgraph. Note that the two
modules of the bigraph II are isomorphic to H(1). Thus we obtain that a Ξ-free
bigraph G is of Type 1 if and only if G has k ≤ 2 nontrivial modules and, in case of
k = 2, neither contains an edge.

Type 2. As a result of the module decomposition concept introduced for Ξ-free
bigraphs we obtain that a bigraph G is of Type 2 if and only if G is connected and
has k ≥ 2 nontrivial modules. Nonbipartite graphs of Type 2 will be described as
extensions of Ξ-free bigraphs.

Let G be a graph, D ⊂ G, and z ∈ V (G) \ V (D). If D is a bigraph and D + z
is also bipartite, then z is called a bipartite extension of D. If D + z is nonbipartite
(i.e., z induces an odd cycle together with some vertices of D), then z is called an odd
extension of D. The obvious transition rule of bipartite extensions are described as
follows.

(2.5) Let G be a (∆,Ξ)-free graph and let D = [X,Y] be a connected induced
bigraph of G. If z ∈ V (G) \ V (D) is a bipartite extension of D and M is the
module of D + z containing z, then M = {z}, or M − z is a module of D, or
M − z consists of at most one nontrivial module and a set of trivial modules
of D.

For characterizing nonbipartite graphs of Type 2 we need to extend the notion
of halfgraphs. Let F = [X,Y] be a halfgraph and let z be a new vertex adjacent to
some vertices of F , i.e., z is an extension of F with neighborhood sets X(z) ⊆ X and

ON-LINE 3-CHROMATIC GRAPHS I. TRIANGLE-FREE GRAPHS 393

Y (z) ⊆ Y . The graph F + z is called an extended halfgraph if the following properties
are all satisfied:

• X(z) 6= ∅ and Y (z) 6= ∅.
• F + z is ∆-free.

• If x ∈ X, y ∈ Y, xy 6∈ E, then at least one of zx and zy is an edge.

The second and third properties together say that there are neither triangles nor
empty triangles of form zxy.

The following statement describes the structure of nonbipartite graphs of
Type 2.

(2.6) Let G be a connected (∆,Ξ)-free graph and let D = [X,Y] be an induced
bigraph of G. Assume that the set Z ⊂ V (G) \ V (D) of all odd extensions of
D is nonempty. Then D and Z satisfy (i)–(iv):

(i) D has at most two nontrivial modules. Furthermore, for any fixed z ∈ Z, the
neighbors of z in D belong to the same nontrivial module.

(ii) If M1 ⊂ D is the module containing the neighbors of z ∈ Z, then M1 + z is
an extended halfgraph.

(iii) If z1, z2 ∈ Z are distinct, then z1z2 ∈ E(G) if and only if z1 and z2 are
adjacent to distinct nontrivial modules of D.

(iv) Let M1 = [X1, Y1] ⊂ D be a module and Z1 = {z ∈ Z : neighbors of
z are in M1}, and let A,B,C denote the sets X1, Y1, Z1 in any order and
c1, c2 ∈ C. Then either NA(c1) ⊆ NA(c2) or NA(c2) ⊆ NA(c1). Moreover, if
NA(c1) ⊂ NA(c2), then NB(c2) ⊆ NB(c1).

Proof. Recall that every nontrivial module of D is a halfgraph and its trivial
modules are star vertices. Because G is Ξ-free with no triangle, all induced odd
cycles of D+z ⊂ G are isomorphic to either C5 or C7. Because z is an odd extension,
at least one induced odd cycle containing z must exist in D + z.

Because G is connected, every nonbipartite subgraph of G must be connected (oth-
erwise, as easily can be checked, G would contain Ξ). In particular, D+z is connected
for every z ∈ Z.

(i) Let z ∈ Z and assume that C is an induced odd cycle of D + z with x ∈
V (C) ∩X(z) and y ∈ V (C) ∩ Y (z). Because xy /∈ E(G), x and y are vertices of the
same module, say, M1 = [X1, Y1]. If u ∈ V (D) is a vertex not in M1, then one of ux
and uy is an edge of G; thus zu /∈ E(G) follows (because G is ∆-free). This shows
that the neighbors of z in D belong to M1. Assuming that D has more than two
nontrivial modules, a copy of II between M2 and M3 together with z would induce a
Ξ of G. Thus D has at most two nontrivial modules.

(ii) Let M1, x, and y be as in case (i). As G is ∆-free and z is an odd exten-
sion with all neighbors in M1, M1 + z satisfies the first two properties of extended
halfgraphs. Suppose there are x′ ∈ X1 and y′ ∈ Y1 such that none of zx′, x′y′, y′z is
an edge. First observe that as xy 6∈ E, one of xy′ and x′y is also not an edge (M1

does not contain II); by symmetry we can assume that x′y 6∈ E. As we noted at the
beginning of the proof, the graph induced by C+x′ is connected. Denote the neighbor
of x′ in C by y∗. As x′y∗ is an edge, y∗ differs from z, y, y′ and is in Y . zy∗ is not an
edge because C was induced. Therefore, x′y∗, zy and y′ induce Ξ, a contradiction.

(iii) Let z1, z2 ∈ Z be vertices with neighbors in the same module M1 = [X1, Y1].
For proving z1z2 6∈ E it is enough to see that they have a common neighbor in M1.
Let y1 ∈ Y1 be an isolated vertex of M1. Either it is a common neighbor and we are
done, or, e.g., z1y1 6∈ E. Then by (ii) and by the third property of extended halfgraphs

394 ANDRÁS GYÁRFÁS, ZOLTÁN KIRÁLY, AND JENŐ LEHEL

z1 is connected to every vertex in X1 and by the first property z2 is connected to at
least one vertex in X1.

Let z1z2 /∈ E(G), let xi ∈ X, yi ∈ Y be neighbors of zi in Mi for i = 1, 2, and
suppose M1 6= M2. Observe that the subgraph D′ induced by {z1, x1, y2, z2, x2, y1} is

a C6. Since Ĉ6 = 3K2, D
′ has three nontrivial modules. Hence, by (i), D′ ⊂ G has

no odd extensions, which contradicts M1 6= M2.
(iv) The first statement says that none of the bigraphs [A,B], [B,C], and [C,A]

contains II. As we know this fact about [X1, Y1] it is enough to prove it for [Z,X1].
Suppose z1x1 and z2x2 induce a II. If X has a vertex connected to neither z1 nor z2,
then G contains Ξ. Hence X = X1. Now if a vertex in Y1 is isolated in M1, then it is
also isolated in D. Since the vertices zi are odd extensions, both of them must have
a neighbor in Y1 which is not isolated in M1. However, in the halfgraph M1 there
exists an x ∈ X1 which is connected to every nonisolated vertex of Y1, so x cannot be
connected to any of the zi’s.

To prove the second statement indirectly, suppose that a ∈ NA(c2) \NA(c1) and
b ∈ NB(c2) \NB(c1). Since ac2b is not a triangle, ab 6∈ E. Since ac1b is not an empty
triangle, ab ∈ E.

In the next proposition we formulate a converse of (2.6) which shows that a graph
with properties (i)–(iv) is Ξ-free. To get an even nicer symmetry, we swap the role of
X1 and Y1. The proof is routine and the details are left to the reader.

(2.7) Suppose that the vertices of a graph G are partitioned into six nonempty
sets Ai,j , 1 ≤ i ≤ 3, 1 ≤ j ≤ 2, such that the graph induced by Ai1,j1 and
Ai2,j2 is a complete bipartite graph if i1 = i2, j1 6= j2; a halfgraph or reduced
halfgraph if i1 6= i2, j1 = j2; and a graph with no edges otherwise. Suppose
furthermore that for any x ∈ A1,j , y ∈ A2,j , z ∈ A3,j the set {x, y, z} induces
neither a triangle nor the complement of a triangle. Then G is Ξ-free.

3. On-line 3-coloring of (∆,Ξ)-free graphs. Let G be (∆,Ξ)-free graph. If
G is of Type 1, then by (2.2) and (2.3) it is either bipartite or 3-chromatic. Assume
now that G is of Type 2 and nonbipartite. Then it has the structure described in
(2.6). In particular, there is a bipartite subgraph [X,Y] with nontrivial modules
M1 = [X1, Y1] and M2 = [X2, Y2] such that all odd extensions can be partitioned into
sets Z1 and Z2 in a manner that a vertex in Zi has neighbors only in Z3−i and in
Mi. Since the three sets X, Z1 ∪ (Y \ Y1) and Z2 ∪ Y1 are all independent, we get the
following result:

(3.1) If G is a (∆,Ξ)-free graph, then χ(G) ≤ 3.

This section contains the proof of Theorem 1 (stated in the introduction), which
claims that the stronger χ∗(G) ≤ 3 also holds in (3.1). Let us consider the on-line
coloring game on graph G. At some step of the game let D ⊂ G denote the colored
subgraph (i.e., the subgraph induced by the set of all colored vertices of G), and
denote by z the current vertex to be colored. For any on-line coloring algorithm A
and for an integer r, let A(r) denote the set of all vertices of G colored with r. If x
is a colored vertex, c(x) will denote its color.

Our on-line algorithm A consists of three consecutive stages. In the first stage,
called FF -stage, first fit coloring is applied. The FF-stage ends up when II first
appears in D + z. The current vertex z that terminates the FF-stage gets a color
in the second stage including a single step, called II-step. After a suitable color is
assigned to z a bigraph D0 ⊆ D + z, called reference graph, is defined in the II-step

ON-LINE 3-CHROMATIC GRAPHS I. TRIANGLE-FREE GRAPHS 395

to start the last stage. In the last stage z is considered as the (bipartite or odd)
extension of the actual reference graph D0. In each step of the last stage the color of
z is determined with respect to D0 and D0 is updated for the next step.

FF-stage. z gets the smallest color r such that z has no neighbor in D colored
with r.

Note that FF assigns the same color to equivalent vertices. In the early steps
of the coloring game D is bipartite and eventually is disconnected. In this case we
assume, for convenience, that all isolated vertices of D = [X,Y] belong to Y. In
particular, X 6= ∅ implies that A(2) ∩X 6= ∅. Notice, however, that the partite set of
an isolated vertex is undefined in D, that is, it may change at a subsequent step of
the game.

(3.2) If G is a (∆,II)-free graph, then χFF (G) ≤ 3.

Proof. If G is nonbipartite, then by (2.2) its primitive representative is C5 or
C5 + K1. Since, in both cases, the maximum degree is 2, χFF (G) ≤ 3 follows. Note
that the coloring of C5 by FF is unique: 12123 (in some cyclic ordering of the vertices).

Assume now that G is bipartite and contains at least one edge. Now G is a
reduced halfgraph. Recall that all isolated vertices are considered to be in Y . In any
FF-coloring of G, by definition, FF(1) is a maximal independent set, and FF(2) is a
maximal independent set in G− FF(1). So either FF(1)=Y and FF(2)=X or FF(1)
is a maximal independent set containing vertices from both X and Y and FF(2)⊆ X,
FF(3)⊆ Y such that each 2-colored vertex is connected to every 3-colored vertex
(because a reduced halfgraph minus a maximal independent set is either a graph with
no edges or a complete bipartite graph).

The properties of the coloring patterns obtained in the proof of (3.2) will be used
in the II-step below.

II-step. We shall see that starting with this step A is able to color the current
vertex z so that the overall colored graph satisfies a set of properties we call Ruleset.

Ruleset for a graph D. In D there is maximal induced bigraph D0 = [X,Y] with
nontrivial modules M1 = [X1, Y1], M2 = [X2, Y2], etc., and with some trivial modules
such that all odd extensions of D0 are connected to either M1 (forming the set Z1) or
M2 (forming the set Z2). Furthermore, the coloring by A satisfies the following rules:

For some permutation s1, s2, s3 of colors 1, 2, and 3,
(i) if x and y are equivalent vertices in D, then c(x) = c(y);
(ii) A(s3) ∩ Y ⊆ Y1 ⊆ Y ⊆ A(s1) ∪A(s3);

(iii) A(s3) ∩X ⊆ X1 ⊆ X ⊆ A(s2) ∪A(s3);
(iv) Z2 ⊆ A(s3), Z1 ⊆ A(s1) ∪A(s2);
(v) the bigraphs [A(s1) ∩ Y1, A(s2) ∩X1], [A(s2) ∩ Z1, A(s3) ∩ Y1], and [A(s1) ∩

Z1, A(s3) ∩X1] are complete.
In the II-step A determines D0 and properly colors z so that D + z satisfies

Ruleset. Note that as the colored graph extends, the same Ruleset will be maintained
by A in each step of the last stage. Now we show how Ruleset can be achieved in the
II-step.

Take any II in D + z and let D0 = [X0, Y0] be a maximal bipartite subgraph of
D+ z containing that II. Clearly z is in D0. As D0− z is II-free, D0 has exactly two
nontrivial modules M = [X,Y] and M ′ = [X ′, Y ′] and we can assume {z} = X. Let
y be an arbitrary vertex in Y .

Case 1. D is bipartite. Only M can have odd extensions forming the set Z.

396 ANDRÁS GYÁRFÁS, ZOLTÁN KIRÁLY, AND JENŐ LEHEL

If the graph D is colored by two colors, then let s1 = c(y), s2 = 3−s1, s3 = 3, and
color z by 3. If D has no isolated vertices, then D is connected so the color of a vertex
is uniquely determined by its distance (in D) from y and Ruleset is satisfied. Suppose
D has some isolated vertices, those isolated vertices are in Y ′. (They are connected
to z because D + z is Ξ-free and they cannot be odd extensions.) If c(y) = s1 = 1,
then Ruleset remains satisfied. If c(y) = s1 = 2, then change s2 to 3 and s3 to 1. Now
with M1 = M ′ Ruleset is satisfied again. (X ′ ⊆ A(1) = A(s3), Z ⊆ A(1) = A(s3)
and there cannot be trivial modules in X0.)

If D is 3-colored, then first suppose that if t ∈ Y , then c(t) 6= 1. Thus all vertices
in Z have color 1. Let s1 = c(y), s2 = 5− s1, s3 = 1, and color z by s2. Note that in
(D0 − z) ∪ Z there is a complete bipartite graph between the s1- and the s2-colored
vertices. Consequently every s2-colored vertex which is different from z is connected
to y. As vertices in Z have color s3 all vertices with color s2 are in X0. Thus color
s2 for z is permitted and all vertices with color s1 are in Y0. The isolated vertices
of D are in Y ′ as before so if none of the trivial modules is colored by s3 = 1, then
Ruleset is satisfied with M1 = M ′. As D is 3-colored, color 1 appears in Y0, so trivial
modules in X0 have different color. If y∗ ∈ Y0 is a trivial module colored by 1, then
X ′ is uniformly colored by s2. In this case vertices in Y0 \Y have no neighbors colored
by 1, so they themselves are colored by 1 = s3 and consequently swapping s1 and s3

and choosing M1 = M Ruleset is satisfied again.

Now suppose D is 3-colored and there is a t ∈ Y, c(t) = 1. Observe that Y cannot
be uniformly 1-colored because in this case color 3 could not appear in D, so there is
a t′ ∈ Y, c(t′) 6= 1. Let s1 = 1, s3 = c(t′), s2 = 5 − s3. Now vertices in X0 − z are
colored by s2, so vertices in Y0 \ Y are colored by 1 = s1 and there is no s2-colored
vertex in Y . The s3-colored t′ has a 1-colored neighbor z1; it must be in Z. If z2 ∈ Z
is colored by s3, then z1t

′ and z2t induce a II, which is not the case. Thus we are
allowed to color z by s3. To check that Ruleset is satisfied with M1 = M we need to
check rule (v). Every vertex in Z is connected to z. Let z2 ∈ Z be an arbitrary vertex
colored by s2. By (2.6)(iv) one of NY (z1) and NY (z2) contains the other. Clearly
NY (z1) ⊂ NY (z2) because z1 does not have any 1-colored neighbor in Y while z2

does. Therefore, the arbitrarily chosen s2-colored z2 ∈ Z and s3-colored t′ ∈ Y are
connected.

Case 2. D is not bipartite. As D+z is of Type 2, it is connected by the observation
made at the beginning of the proof of (2.6)—every nonbipartite subgraph must be
connected. Thus D is a vertex multiplication of C5.

Let Z be the (maybe empty) set of odd extensions connected to M and Z ′ be the
set of odd extensions connected to M ′. As D is a vertex multiplication of C5 both M
and M ′ are vertex multiplications of H1 and either Z is empty or there are no trivial
modules in Y0. Moreover, the equivalence classes of the C5 are uniformly colored and
one class is colored by 3 while the others are colored by 1212. It is easy to check (five
cases depending on which class is colored by 3) that we can color z in a manner such
that every II in D + z will be colored by three colors and Ruleset is satisfied in all
these cases with appropriate permutation s1, s2, s3.

Last stage. When the algorithm observes that D contains II it knows that D
satisfies Ruleset and is able to determine appropriate D0, M1, M2, and permutation
s1, s2, s3. In every step of the last stage A colors z in such a way that D + z always
satisfies Ruleset. In particular, G becomes 3-colored when A terminates.

Case 1. D is connected and z is an odd extension of D0. If z is connected to
M2, then color z by s3 and D+ z clearly satisfies Ruleset. Furthermore, suppose z is

ON-LINE 3-CHROMATIC GRAPHS I. TRIANGLE-FREE GRAPHS 397

connected to M1. If all neighbors of z are colored by s3, then z is uniformly connected
to either A(s3) ∩ X1 or A(s3) ∩ Y1; otherwise an empty triangle could be found. In
the first case s1 and in the second s2 is the appropriate color for z to satisfy rule
(v). Now by symmetry we can suppose that z is connected to an x ∈ X1 such that
c(x) = s2. The following line of thought will be used in further cases:

(3.3) We claim that if x′ ∈ X1 and c(x′) = s3, then zx′ ∈ E. For getting a contra-
diction suppose that z is connected to x but not to x′. By this assumption and
by (2.6)(iv) NZ1+z(x) ⊃ NZ1+z(x

′) in graph D+ z and so NY1
(x) ⊆ NY1

(x′).
In the graph D all vertices in Z and Y1 have a color satisfying rule (v), so
NZ1

(x) = NZ1
(x′) and NY1

(x) = NY1
(x′). We get x ∼ x′ in D and this

contradicts rule (i).

To finish Case 1 observe that if z is connected to any y ∈ Y1, c(y) = s1, then xyz
would be a triangle. The argument above says that z is connected to every s3-colored
vertex in X1; consequently s1 is the proper color for z.

Case 2. D is connected and z is a bipartite extension of D0. Let M = [X,Y]
be the module of D0 + z which contains z. By symmetry we can assume z ∈ X. If
M 6⊇ M1, then color z by s2 and Ruleset remains satisfied. Suppose M1 ⊆ M . First
observe that vertices in M \M1 different from z cannot make any rule wrong. (They
are trivial modules of D0.) If z is equivalent to some vertex in M , then the color of
that vertex is also good for z.

Suppose there is a y ∈ Y , c(y) = s3, and zy ∈ E. If z1 ∈ Z1 and z is connected to
z1, then y is not connected to z1 so c(z1) 6= s2. A similar argument as in (3.3) shows
that z must be connected to every s1-colored vertex in Y ; consequently s2 is a proper
color for z.

The remaining case is that all neighbors of z in Y are colored by s1. If z is
uniformly connected to A(s1) ∩ Z1, then s3 is a proper color for z. If there is a
z1 ∈ Z1 such that c(z1) = s1 and zz1 is not an edge, then the absence of empty
triangles shows that every s1-colored vertex in Y is connected to z. An argument
similar to (3.3) says that z has no s2-colored neighbors in Z1, so s2 is the proper color
for z.

Case 3. D is not connected. Now D is a vertex multiplication of II and is
3-colored (satisfying Ruleset). Note that when adding z to D some vertices might
change their partite sets. To resolve this problem consider D + z that is a connected
bigraph (with a unique bipartition). Then remove z and keep the eventually modified
bipartition for D. It is easy to check that in each case a permutation s1, s2, s3 can be
obtained so that Ruleset holds true for the modified bigraph D. Then the procedure
described in Case 2 applies. This concludes the proof of Theorem 1.

4. ∆-free critical graphs of on-line chromatic number 4. In this section we
characterize ∆-free 4-critical graphs. Obviously, every graph G with on-line chromatic
number 4 must contain an induced subgraph G′ such that χFF (G′) = 4. In [GKL1]
we list all graphs of FF-chromatic number 4 which are minimal. From the list of these
22 graphs the ∆-free ones are Fi, 1 ≤ i ≤ 5, shown in Figure 2. It is also shown in
[GKL1] that F2, F3, and F4 are 4-critical graphs, F1 = B and F5 are not. This is
formulated in the following proposition.

(4.1) Let G be a ∆-free 4-critical graph. Then either G is isomorphic to one
of F2, F3, and F4 or G contains at least one of B and F5, shown in Fig-
ure 2.

398 ANDRÁS GYÁRFÁS, ZOLTÁN KIRÁLY, AND JENŐ LEHEL

Fig. 5.

The list of all 4-critical graphs containing F5 is obtained in [GKL1] and shown in
Figure 3. The analysis performed in this section results in a list of 4-critical graphs
containing a copy of B; see Figure 4. First we show that every graph in Figure 4 has
on-line chromatic number 4. Then we prove that the list contains 4-critical graphs
and is complete. We discuss connected and disconnected graphs separately in sections
4.1 and 4.2.

To prove χ∗(Bi) ≥ 4 we show that Drawer has a 4-forcing strategy against Painter
for every 1 ≤ i ≤ 10. Let v1, v2, . . . be the order of vertices of G as revealed by Drawer,
and let Dk be the colored subgraph after the kth step of the coloring game.

BE-strategy. Let D4 be isomorphic to II. If D4 becomes 2-colored, then Drawer
wins on B (see Figure 5(a)). If D4 is 3-colored, say, (1, 2) and (1, 3) are the colored
edges, then let v5 be an isolated vertex. Painter essentially has two different choices
to color v5. In both cases Drawer wins on E (see Figures 5(b) and 5(c)). It is easy to
check that E ⊂ Bi for 1 ≤ i ≤ 4; thus χ∗(Bi) ≥ 4 is satisfied by these graphs.

Pigeonhole strategies. Let v1, v2, v3, v4 be isolated vertices. If D4 contains
three vertices of the same color, say, v1, v2, v3 are colored 1, then Drawer reveals
v5, v6, v7 with edges v1v5, v2v6, and v3v7. In D7 two of these edges have the same
coloring pattern, say, (1, 2), and Drawer wins on B (see Figure 5(a)). If D4 contains
three vertices of distinct colors, then Drawer wins on a “claw” (see Figure 5(d)). This
strategy is feasible if the graph has 3K2 + K1. Therefore, one may assume that for
every Bi, i = 7, 8, and 9, D4 is 2-colored according to the pattern (1, 1, 2, 2). From the
fifth step the strategy depends on the graph in question. For B7, a fifth isolated vertex
v5 is Drawer’s winning move. Indeed, by this move Drawer forces three vertices of the
same color or three distinctly colored vertices; both are winning positions for Drawer
as before. For B8, the winning position is 4K2. In that case D8 always has two edges

ON-LINE 3-CHROMATIC GRAPHS I. TRIANGLE-FREE GRAPHS 399

Fig. 6.

with the same coloring pattern, by the pigeonhole principle, and then Drawer wins
on B.

Ξ-variant. In the case of B9 and B10 Drawer starts with the pigeonhole strategy
and obtains three isolated vertices v1, v2, v3 with coloring pattern (1, 1, 2). Then v4 is
given by Drawer with edge v1v4 and a new edge, v5v6 (so until now a Ξ is given). If
Painter uses color 3, then Drawer wins as in Figure 5(e) or as in Figure 5(f); otherwise
the edges are colored by 1 and 2 and Drawer wins as in Figure 5(g).

A-variant. The strategy for B5 and B6 differs from the fourth step; however,
its elements are the same as before. After the first three isolated vertices D3 contains
two vertices with the same color, say, v1, v2 are colored 1 and v3 is colored 2. Then
Drawer’s winning move consists in giving v4 with edge v1v4. Depending on the color
of v4 (2 or 3) Drawer wins on graph A or on F (see Figures 5(i) and 5(j)).

In the next step of our analysis we show that all graphs in Figure 4 are 4-critical.
The removal of any vertex of Bi, 1 ≤ i ≤ 4, results in a (∆-free) graph which is either
Ξ-free or B- and F5-free. In the first case the proper subgraphs have on-line chromatic
number at most 3, by Theorem 1. In the second case FF is obviously a 3-coloring (c.f.
(4.1)). Hence Bi, is 4-critical for 1 ≤ i ≤ 4. To see that Bi is 4-critical for 5 ≤ i ≤ 10
it is enough to check the on-line chromatic number of its proper subgraphs containing
B (otherwise FF is a 3-coloring). Among all of these graphs it is enough to deal with
the maximal ones: Gj , 1 ≤ j ≤ 7, listed in Figure 6.

Since algorithm A defined in section 3 works also for (∆-free) graphs with a Ξ-
free connected component plus any number of isolated vertices, χA(Gj) ≤ 3 follows
for 1 ≤ j ≤ 4. The on-line 3-colorability of G5, G6, and G7 will be settled in section
4.2.

4.1. Connected 4-critical graphs. Let G be a connected ∆-free graph con-
taining B. The main goal of the present section consists of proving Theorem 2, which
states that the following statements are equivalent:

(1) G is E-free.
(2) G has no induced subgraph isomorphic to any of F3, F4 in Figure 2 and

B1, B2, B3, B4 in Figure 4.
(3) G is Ξ-free.
(4) G has on-line chromatic number χ∗(G) ≤ 3.
Our algorithm A in the proof of Theorem 1 is an on-line 3-coloring whenever G is

Ξ-free; thus we have (3) =⇒ (4). If G contains both B and E, then Drawer may use
the BE-strategy mentioned above and forces a 4-coloring; hence (4) =⇒ (1). Observe
that all graphs in (2) contain a copy of E, thus (1) =⇒ (2) . Therefore, it is enough
to prove the remaining implication (2) =⇒ (3).

400 ANDRÁS GYÁRFÁS, ZOLTÁN KIRÁLY, AND JENŐ LEHEL

Fig. 7.

(4.2) Let G be a connected ∆-free graph containing B. Then G is Ξ-free if and
only if G has no induced subgraph isomorphic to any of F3, F4 in Figure 2
and B1, B2, B3, B4 in Figure 4.

Proof. Since all forbidden graphs contain Ξ, necessity is obvious. We prove suffi-
ciency by contradiction. Suppose there exists a minimal counterexample G containing
Ξ. Let D be a maximal bipartite Ξ-free subgraph of G such that it contains a copy of
B. First we show that every vertex of V (G) \ V (D) has a neighbor in D. Suppose to
the contrary that there are vertices z, z0 /∈ V (D) such that zz0 is an edge, z0 has no
neighbors in D, and D + z is connected. By the minimality of G and by the choice
of D, it follows easily that D = B and z is an odd extension of B. Consequently,
G = (B + z) + z0 is the graph shown in Figure 7, which contains F3, a contradiction.
Hence D + z is connected for every z ∈ V (G) \ V (D).

The proof of (4.2) (i.e., that the counterexample G does not exist) is arranged in
three steps. Let z be called an illegal extension of D if D + z contains Ξ. In Steps 1
and 2, we show that D has no illegal (bipartite or odd) extension. In Step 3 we prove
that the set of all odd extensions of D satisfy the conditions required by the structure
theorems in section 2. The contradiction is obtained by (2.7), which implies that G
is Ξ-free.

Step 1. We show that the bigraph D = [X,Y] has no illegal bipartite extension.
Suppose on the contrary that z ∈ V (G) \ V (D) is an illegal bipartite extension of D.
By symmetry, one may assume that z extends X, which is adjacent to some vertex of
Y . Note also that z is nonadjacent to some vertex of Y (since otherwise it would not
be illegal). To get a contradiction, we shall show that D+z contains one of F3, B1, B2,

and B3 or, equivalently, the bipartite complement D̂ + z contains one of F̂3 = P6+K1,
B̂1 = P5 + 2K1, B̂2 = F2 (see Figure 2), and B̂3 = E + K2. For convenience, we

are working on the bipartite complement of G, and G∗ = D̂ + z is considered as the
extension of D̂. Note that Y contains both neighbors and nonneighbors of z also
in G∗. Let Gi = [Xi, Yi] be the nontrivial connected components of D̂, 1 ≤ i ≤ k.
By (2.4), each Gi is a connected reduced halfgraph. Since D contains B, and since

B̂ = Ξ, we have k ≥ 2. From the assumption that z is an illegal extension it follows
that G∗ has a P5.

Assume that G1 has a pair of nonadjacent vertices x ∈ X1, y ∈ Y1. Supposing that
z is (uniformly) nonadjacent to Y1 any P5 avoids G1 and together with {x, y} induces
a P5 + 2K1 ⊂ G∗. Suppose now that z is uniformly adjacent to Y1, and consider a P5

induced by {x1, y, z, y2, x2}, where x1 ∈ X1, x2 ∈ X2, and y2 ∈ Y2 (a P5 in this form
must exist). Then some y′ /∈ Y1 is nonadjacent to z. Hence {x1, y, z, y2, x2, y

′, x}
induces a P6 + K1 or P5 + 2K1 in G∗, depending on whether x2y

′ is an edge (see
Figure 8(a)). As a corollary, one may assume that for each Gi (1 ≤ i ≤ k) different
from the complete bigraph, Gi+z contains one of L1 and L2 in Figure 8 as an induced
subgraph. (z has both neighbors and nonneighbors in Yi and [Xi, Yi] is a connected
reduced halfgraph.)

ON-LINE 3-CHROMATIC GRAPHS I. TRIANGLE-FREE GRAPHS 401

Fig. 8.

If there exist two components different from the complete bigraph, then G∗ con-
tains the union of Li and Lj (1 ≤ i ≤ j ≤ 2) sharing a common vertex z. Since
this union contains a P6 + P1 for each of the three possible choices of (i, j), one may
assume that all but possibly one component is a complete bigraph.

Case a. G1 is not a complete bigraph.
First suppose that L1 ⊂ G1 + z. To get a contradiction we show that there exists

a copy of L1 and there are two nonadjacent vertices x ∈ X, y ∈ Y not in L1 such that
x and y have no neighbor in L1 − z. Since k ≥ 2 and G2 contains an edge x2y2, the
claim follows if G∗ has at least one more component. If this is not true, then (since
B ⊂ D) it follows easily that G1 + z contains either L′1 or L′′1 in Figure 8 with x or y
in G1. Obviously, L1 and x2y2 together with x or y contain either a P5 + 2K1 or a
P6 +K1.

Suppose now that L2 ⊂ G1 + z. If G1 + z has a P5 (in this case it must have
an L1 as well), then we are done by using the previous argument. Hence there exists
an edge zy, for some y not in G1. Let x2y2 ∈ E(G2). If x2y is a nonedge, then
V (L2) ∪ {x2, y2, y} induces either an E + K2 or an F2, depending on whether z and
y2 are nonadjacent or adjacent (see Figure 9(a)). If y 6= y2, zy2 is a nonedge and x2y

402 ANDRÁS GYÁRFÁS, ZOLTÁN KIRÁLY, AND JENŐ LEHEL

Fig. 9.

is an edge, then the subgraph induced by V (L2) ∪ {x2, y2, y} contains P6 + K1 (see
Figure 9(b)). Hence one may assume that y = y2. If some y′ /∈ Y1 is nonadjacent
to x2, then the subgraph induced by V (L2) ∪ {x2, y2, y

′} either contains a P6 + K1

or induces an F2 (see Figure 9(c)). If this last condition does not hold, then (using
B ⊂ D) we easily obtain the existence of y′ ∈ Y1 nonadjacent to L2. Then the
subgraph induced by V (L2) ∪ {x2, y2, y

′} contains a P6 +K1.

Case b. Gi is a complete bigraph for every i = 1, . . . , k.

ON-LINE 3-CHROMATIC GRAPHS I. TRIANGLE-FREE GRAPHS 403

Suppose that (x1, y1, z, y2, x2) is a P5 with xi ∈ Xi and yi ∈ Yi (i = 1, 2). Since
B ⊂ D, there are two more components (possibly trivial) containing vertices x3 ∈ X
and y4 ∈ Y . One may assume that zy4 ∈ E(G∗) (because otherwise a P5 + 2K1 is
found). Then by the connectivity of D + z, we have yz /∈ E(G∗) for some y ∈ Y .
If yx3 is a nonedge, then we get a P5 + 2K1; otherwise, {x1, y1, z, y2, x2, y4, y, x3}
induces an E +K2 (see Figure 9(d)).

In each case there is a forbidden configuration; therefore, D has no illegal bipartite
extension.

Step 2. Next we show that D has no illegal odd extension. Suppose to the contrary
that z ∈ V (G)\V (D) is an illegal odd extension of the bigraph D = [X,Y]. Consider
the modular decomposition of D and let Mi = [Xi, Yi], 1 ≤ i ≤ k, be the nontrivial
modules. Since D contains a B, we have k ≥ 2. Denote by X(z) ⊂ X and Y (z) ⊂ Y
the set of all neighbors of z in X and Y , respectively. Since z is an odd extension of
D and G is ∆-free, X(z) and Y (z) are nonempty sets belonging to the same module,
say, M1, and X(z)∪ Y (z) is an independent set of D. Clearly, GX = (D+ z)−X(z)
and GY = (D + z) − Y (z) are bipartite proper subgraphs of G. Moreover, one of
them contains Ξ (since z is an illegal extension). Hence, by the minimality of G,
Ξ ⊂ GX (or Ξ ⊂ GY) implies that GX (or GY) either is disconnected or B-free. This
observation implies that k = 2 as follows. If k ≥ 3, then GX (and GY) is connected,
and any II between M2 and M3 together with z would induce Ξ in GX (and GY).
Consequently, GX (and GY) must be B-free. In particular, k ≤ 3 and D has no trivial
module. Suppose that k = 3. If M1 has an edge xy, then one of its end vertices is not
in X(z)∪Y (z), say, x /∈ X(z). Then clearly GX has a B, which is not allowed. Hence
M1 has no edge. If one of M2 and M3 has an edge, then GX (and GY) also contains
a B. We have obtained that D has exactly three modules, none of which contains an
edge. Then D has no B, a contradiction. Therefore, k = 2 follows.

Next we show that M1 + z is an extended halfgraph. Suppose that H(n) is a
primitive representative of M1 with partite sets {x1, . . . , xn} and {y1, . . . , yn} with
xiyj an edge if and only if i < j. It is enough to prove that at least one of CM1(xt)
and CM1(yt) is uniformly adjacent to z for every 1 ≤ t ≤ n. First assume that there
exist vertices x ∈ CM1

(xt) ∩X(z), x̃ ∈ CM1
(xt) \X(z), and suppose on the contrary

that ỹ ∈ CM1
(yt) \ Y (z). (By the symmetry of CM1

(xt) and CM1
(yt), our argument

also applies when the roles of X and Y are interchanged.)

Let x′ ∈ X2 and y′ ∈ Y2 be nonadjacent vertices of D −M1. If t < n, then let
us choose an arbitrary vertex y′′ ∈ CM1

(yn). Since x ∈ X(z) and xy′′ ∈ E(D), we
have y′′ /∈ Y (z). Then the set {z, x, x̃, ỹ, x′′, y′′, y′} induces an F3 (see Figure 10(a)),
a contradiction. The same contradiction can be deduced for t = n if there exists a
vertex y′′ ∈ Y \ Y1 adjacent to x′.

We analyze further the case t = n assuming that D−M1 has no Ξ with its isolated
vertex in Y . Then, from the condition B ⊂ D, it follows easily that D contains a
copy of B such that x′yi, y′xj (1 ≤ i ≤ j ≤ n) are the top and bottom edges (i.e.,
edges of the II-part) and x∗y∗ with x∗ ∈ X, y∗ ∈ Y1 is the middle edge (i.e., the edge
between the two star vertices). Observe that any vertex of CM1(yn) may play the role
of y∗; thus (in the present case) we may set y∗ = ỹ. If xj ∈ X(z), then we get an F3

(see Figure 10(b)). Thus we assume that xj /∈ X(z) holds. Supposing that x∗ /∈ X1,
we may choose for yi any vertex of Y1 adjacent to z. This would result in a copy of
F3 (see Figure 10(c)); thus we may assume that x∗ ∈ X1 holds.

Supposing that x∗ ∈ X(z) (and because xj /∈ X(z)), we obtain a B1 (see Fig-
ure 10(d)). Thus we may assume that x∗ /∈ X(z) also holds. Regardless of whether zyi

404 ANDRÁS GYÁRFÁS, ZOLTÁN KIRÁLY, AND JENŐ LEHEL

Fig. 10.

is an edge or a nonedge, we get an F3; see Figure 10(e) if yi /∈ Y (z) and Figure 10(c)
otherwise. Thus we have obtained that the existence of the vertices x ∈ CM1

(xt)∩X(z)
and x̃ ∈ CM1

(xt) \ X(z) (1 ≤ t ≤ n) implies that CM1
(yt) ⊂ Y (z). Recall that the

same is true when interchanging the role of X and Y .

ON-LINE 3-CHROMATIC GRAPHS I. TRIANGLE-FREE GRAPHS 405

Fig. 11.

In the next step we show that CM1
(y1)∩ Y (z) 6= ∅. Suppose that ỹ /∈ Y (z)) holds

for every ỹ ∈ CM1
(y1). Notice that Y (z) 6= ∅ implies that n ≥ 2. Therefore (since G

is ∆-free), there exist vertices x̃ ∈ CM1
(x1) \X(z) and x ∈ X(z). If there is a vertex

y′′ ∈ Y \ Y1 adjacent to x′, then we get F3 (see Figure 10(a)). Otherwise, consider
again the copy of B with vertex set {xj , yi, x∗, y∗, xj , x′, y′}, where y∗ ∈ CM1(yn) and
x∗ ∈ CM1(x1) ∪ (X \ X1). Notice that x∗ /∈ X(z) holds (by the same argument as
before).

If xj ∈ X(z), then we get F3 as in Figure 10(a), with x = xj , x̃ = x∗, and y′′ = y∗.
Thus we may assume that xj /∈ X(z) holds for every vertex in the role of xj . Therefore
(since X(z) 6= ∅), there exists x ∈ CM1

(xn) ∩X(z). If the situation is different from
the one in Figure 10(e) (with ỹ = y∗), then either yi ∈ Y (z) or y∗ ∈ Y (z) holds, but
not both, since in this case we get an F3 (see Figure 11(a)).

In either case we get an F3: see Figure 10(c) (with ỹ = y∗) if yi ∈ Y (z), and see
Figure 11(b) if y∗ ∈ Y (z).

This proves that CM1(y1) ∩ Y (z) 6= ∅. By the symmetry of halfgraphs, the same
argument shows that CM1(xn) ∩ X(z) 6= ∅. From the previous steps of the proof it
follows that at least one of the properties CM1

(yt) ⊂ Y (z) and CM1
(xt) ⊂ X(z) holds

for t = 1 and n.

To conclude the proof, suppose that there exist vertices x̃ ∈ CM1
(xt) \X(z) and

ỹ ∈ CM1
(yt) \ Y (z), for some 1 < t < n. Let y∗ ∈ CM1

(yn) and x∗ ∈ CM1
(x1). If

y∗ ∈ Y (z), then we get F3 as in Figure 11(b) (with xj = x̃ and yi = ỹ). If x∗ ∈ X(z),
then we get F3 as in Figure 10(c) (with xj = x̃, yi = ỹ and ỹ = y∗). Assuming that
x∗ /∈ X(z), y∗ /∈ Y (z), and choosing a vertex x ∈ CM1(xn) ∩ X(z), we get F3 as in
Figure 10(e) (with xj = x̃, yi = ỹ, and ỹ = y∗).

Hence, for every 1 ≤ t ≤ n, at least one of CM1(xt) and CM1
(yt) is uniformly

adjacent to z. This implies that M1 + z is an extended halfgraph. In particular, by
(2.7), G+ z is Ξ-free, a contradiction. Therefore, D has no illegal odd extension.

Step 3. If the subgraph G − z is bipartite for some z ∈ V (G) and contains B,
then by the choice of D, D = G− z; furthermore, z is an illegal extension of D. This
is not possible as we have seen in Steps 1 and 2. Therefore, by the maximality of D,
one may assume that G − D has at least two vertices, and each z ∈ V (G − D) is a

406 ANDRÁS GYÁRFÁS, ZOLTÁN KIRÁLY, AND JENŐ LEHEL

Fig. 12.

legal odd extension of D. Hence, by the structure result in section 2, D has exactly
two nontrivial modules.

Let Zi be the set of all odd extensions of D adjacent to Mi, i = 1, 2. By (2.6), for
every z ∈ Zi, Mi + z form an extended halfgraph. By Step 2, and since G is ∆-free,
Z1 and Z2 are independent sets.

First we prove that, for Z1 6= ∅, the bigraph H = [Z1, Y1] is II-free. Then, by sym-
metry, the same is true for the bigraphs [Zi, Yi], [Zi, Xi] (i = 1, 2). Let {x1, . . . , xn}
and {y1, . . . , yn} be the partite sets of a primitive representative H(n) of M1 with
xiyj ∈ E(D) if and only if i < j. For any z ∈ Z1, let X(z) = {x ∈ X1 : xz ∈ E(G)}
and Y (z) = {y ∈ Y1 : yz ∈ E(G)}. Assume that zu and z′u′ are edges of a II ⊂ H,
where z, z′ ∈ Z1 and u, u′ ∈ Y1. If u and u′ are not equivalent in M1, then there
exists a vertex x ∈ X1 such that, say, ux is an edge but u′x is not. But if zx is an
edge, then zux is a triangle; if it is not, then zu′x is an empty triangle. Thus u and
u′ belong to the same equivalence class, CM1(yt), for some 1 ≤ t ≤ n.

Let x′ ∈ X \X1 and y′ ∈ X \X1 be nonadjacent vertices of D−M1 and choose a
copy of B such that x′yi and y′xj (1 ≤ i ≤ j ≤ n) are the top and bottom edges and

ON-LINE 3-CHROMATIC GRAPHS I. TRIANGLE-FREE GRAPHS 407

Fig. 13.

x∗y∗ with x∗ ∈ X, y∗ ∈ Y is the middle edge. If x∗ ∈ X \X1 and y∗ ∈ Y \ Y1, then
(since xt ∈ X(z) ∩X(z′)) we get a copy of B4 (see Figure 12(a)).

One may assume that at least one of x∗ and y∗ is in M1. This implies that n ≥ 2;
furthermore, every vertex of CM1

(yn) or CM1
(x1) may play the role of x∗ ∈ X1 or

y∗ ∈ Y1. If 1 < t < n, we obtain a B4 (see Figure 12(a) with x∗ = x1, y
∗ = yn). If

t = n, then either y∗ /∈ Y1 or yi must be different from y∗, u, u′ ∈ CM1(yn). Choosing
x∗ = x1, we get B4 as in Figure 12(a) or we get B1 (see Figure 12(b)).

If t = 1, then either x∗ /∈ X1 or yi must be different from u, u′ ∈ CM1
(y1). Choosing

y∗ = yn, we get B4 as in Figure 12(a), and for the second case, see Figure 12(c). This
proves that [Z1, Y1] is II-free, and, by symmetry, the same is true for each [Zi, Yi],
[Zi, Xi] (i = 1, 2).

Let zi ∈ V (G − D) (i = 1, 2) be two odd extensions of D adjacent to module
Mi of D. We prove that z1z2 ∈ E(G). Suppose on the contrary that this is not
true. For i = 1, 2, let H(ni) be the primitive representative of Mi, and assume that
n = n1 ≥ n2. Let {x1, . . . , xn} and {y1, . . . , yn} be the partite sets of H(n) with
xiyj ∈ E(D) if and only if i < j. Let x ∈ X(z1) ∩ CM1

(xn), y ∈ Y (z1) ∩ CM1
(y1),

and y′ ∈ Y (z2). If M1 has no edge (that is, n = 1), then neither has M2 (recall that
n ≥ n2). Then B ⊂ D implies that (D −M1)−M2 contains an edge x∗y∗. Thus we

408 ANDRÁS GYÁRFÁS, ZOLTÁN KIRÁLY, AND JENŐ LEHEL

Fig. 14.

get an F4 (see Figure 13(a)). From now on n ≥ 2.
Suppose that D −M1 has a vertex nonadjacent with z2, say, y∗ /∈ Y (z2). Let us

choose vertices x∗ ∈ CM1
(x1) and x′ ∈ X(z2) adjacent with y∗. (Notice that x′ can

be chosen from M2, by Step 2.) Then we get one of F3 and B4; see Figure 13(b) if
x∗ /∈ X(z1) and see Figure 13(c) if x∗ ∈ X(z1). Thus we may assume that X(z2) ∪
Y (z2) = X2 ∪ Y2.

Consider the copy of B defined above, and observe that (in the present case) both
x∗ and y∗ are in M1. Hence, we may assume that x∗ ∈ CM1

(x1) and y∗ ∈ CM1
(yn).

It follows from 1 < i ≤ j < n that xj ′ ∈ X(z1) and yi ∈ Y (z1) may be assumed.
Since G is ∆-free, one of x∗ and y∗ is not adjacent to z, say, y∗ /∈ Y (z1). Then, by
letting x = xj , we obtain one of F3 and B4; see Figure 13(b) if x∗ /∈ X(z1) and see
Figure 13(c) (with yi in the role of yn) if x∗ ∈ X(z1).

In each case there is a forbidden configuration; therefore, z1z2 ∈ E(G) follows.
To conclude the proof of (4.2) we refer to the structure theorems in section 2. As

we have shown in Steps 1–3, the conditions of (2.7) are satisfied by G; therefore, G
has no Ξ, a contradiction.

It is worth noting that our list of forbidden graphs in (4.2) is minimal. Obviously,
B1, B2, B3, and B4 must be on the list; hence each contains B. To see this for F3 and
F4, in Figure 14 we give connected ∆-free graphs containing B such that their only
subgraph from the list is F3 and F4, respectively.

4.2. Disconnected 4-critical graphs. Let G be a disconnected ∆-free graph
containing B. The connected component G0 ⊂ G which contains B is called the major
component of G. If G is on-line 3-colorable, then the major component must be Ξ-free
by the results in section 4.1. Furthermore, G −G0 is (K2 + 2K1)- and II-free, since
B7 and B8 in Figure 4 are not 3-colorable. If G−G0 has no edge, then the algorithm
A in the proof of Theorem 1 is obviously 3-color G.

Therefore, when looking for further 4-critical graphs, one may assume that G−G0

has just one component with an edge, called the secondary component of G. Moreover,
the secondary component is either a C5 or a Km,n −K2 or an induced subgraph of
Km,n + K1 (i.e., in this last case the secondary component is a complete bipartite
graph and G possibly has one more isolated vertex).

(4.3) Let G be a disconnected ∆-free graph containing B. Then G has on-line
chromatic number at most 3 if and only if the major component of G is Ξ-
free and G has no induced subgraph isomorphic to any of the graphs Bi,
5 ≤ i ≤ 10, in Figure 4.

Proof. All excluded graphs are on-line 4-chromatic (see the beginning of this
section); thus we have only to prove that the list is complete. We may assume that
G has a major component, a secondary component, and possibly one more isolated
vertex. Since B5 and B6 are not 3-colorable, we may also assume that the major
component G0 has no H1 ⊂ B5 and no H2 ⊂ B6 (see Figure 15).

ON-LINE 3-CHROMATIC GRAPHS I. TRIANGLE-FREE GRAPHS 409

Fig. 15.

First we show that the major component G0 ⊂ G is bipartite; moreover, its
modules have no edge. To see this, let us consider a maximal bipartite induced
subgraph D ⊆ G0 containing B. Clearly, D has at least two nontrivial modules. Let
M1 be a module of D with primitive representative H(n) such that n is as large as
possible. Observe that the bipartite complement of H1 (see Figure 15) is P4+K2+K1,
and H(n) contains the bipartite complement of P4 +K1 for n ≥ 3. Thus we obtain an

H1 in D if n ≥ 3. Suppose that n = 2, and notice that H(2) = P̂4. It is easy to check
that D ⊇ B implies that the bipartite complement of D−M1 contains K2 +K1. Thus
we obtain an H1 in D also for n = 2. Therefore, n = 1 follows; that is, the modules
of D have no edge. Since any odd extension of any module of D contains an H2 (see
Figure 15), D obviously has no odd extension. Hence G0 = D follows and concludes
the proof of the claim.

Next we define the required on-line 3-colorings depending on the type of the
secondary component. Let z1, z2, . . . be the order of vertices of G as revealed by
Drawer, and let Dk be the colored subgraph after the kth step of the coloring game.
For any integer r, let A(r) denote the set of all vertices of G colored with r by an
on-line algorithm A.

Case 1. G−G0 = K2. To make the definition on the algorithm easier we introduce
two new on-line coloring rules. The equivalence rule is as follows: if there are some
equivalent vertices with the current vertex z, assign to z the minimum color appearing
on a z-equivalent vertex. The parity first fit rule (PFF) says that the current vertex
should be colored by the smallest color which does not appear on a vertex that is at
an odd distance from the current one. We define an algorithm A∗ as follows:

• If zk+1 is an isolated vertex, Dk has exactly two components but none of
them has three different colors, then color zk+1 by 2.

• Otherwise, use the equivalence rule when it applies.
• Otherwise, if the component of zk+1 in Dk+1 is not a complete bipartite

graph, then apply the PFF rule.
• In any other cases apply the FF rule with two exceptions:

– If every neighbor of zk+1 is colored by 1, there exist a component in Dk

which is 2-colored by 1 and 2, there are no 1- and 3-colored vertices in
the same component, and there are no both 1- and 2-colored isolated
vertices, then color zk+1 by 3.

– If every neighbor of zk+1 is colored by 2, there are no 2- and 3-colored
vertices in the same component of Dk and there are no both 1- and
2-colored isolated vertices, then color zk+1 by 3.

We have to show that A∗ is a 3-coloring for this class. Let G be a graph with
major component G0 and secondary component K2 such that the modules of the
bipartite graph G0 have no edges. Let z1, z2, . . . be an ordering of the vertices of G,

410 ANDRÁS GYÁRFÁS, ZOLTÁN KIRÁLY, AND JENŐ LEHEL

l is a natural number, and Gl0 = [X,Y] is a subgraph of G0 induced by {z1, . . . zl}.
It is not too hard to see that when applying A∗ on G with order z1, z2, . . . then
after coloring l vertices either X or Y lacks for either any 1-colored or any 2-colored
vertices. A similar (but easier) argument shows that the case is similar with 1 and
3 or with 2 and 3. Using these one can check that neither X nor Y can have three
different colors. Consequently, there are colors {a, b} ⊂ {1, 2, 3}, a 6= b, such that X
does not have a-colored and Y does not have b-colored vertices. It is obvious that in
this case A∗ cannot use more than three colors.

Case 2. G−G0 6= K2. In this case G−G0 is a subgraph of either a Km,n +K1 or
a Km,n−K2 or a C5 and either K2 +K1 or K1,2 is contained in it. As B9 and B10 are
not contained in G it is easy to see that the edgeless nontrivial modules of G0 consist
of two vertices such that G0 is a complete bipartite graph with some nonincident
edges deleted. We define algorithm A∗∗, which is similar to (but simpler than) A∗,
as follows:

• If zk+1 is an isolated vertex and Dk has exactly two or exactly three compo-
nents, then color zk+1 by 2.
• Otherwise, use the equivalence rule when it applies.
• Otherwise, if the component of zk+1 in Dk+1 is not a complete bipartite

graph, then apply the PFF rule.
• In any other cases apply the FF rule with two exceptions:

– If every neighbor of zk+1 is colored by 1 and there are no 1- and 3-colored
vertices in the same component of Dk, then color zk+1 by 3.

– If every neighbor of zk+1 is colored by 2 and there are no 2- and 3-colored
vertices in the same component of Dk, then color zk+1 by 3.

A similar argument as in Case 1 shows that A∗∗ is really a 3-coloring for this
class.

Let us note that by using the algorithms in the proof of (4.3) we obtain that
each graph Gj , j = 5, 6, 7, in Figure 6 is on-line 3-colorable. Indeed, χA∗(G5) ≤ 3,
χA∗∗(G6) ≤ 3, and χA∗∗(G7) ≤ 3 follow.

As a corollary of (4.2) and (4.3) we obtain the list of all 4-critical graphs excluded
from on-line 3-chromatic graphs containing B: F3, F4 in Figure 3, and Bi, 1 ≤ i ≤ 10
in Figure 4. This concludes the proof of Theorem 3.

REFERENCES

[G] A. Gyárfás, On Ramsey Covering Numbers, Infinite and Finite Sets, Colloq. Math. Soc.
János Bolyai 10, North-Holland/American Elsevier, New York, 1975, pp. 801–816.

[GKL1] A. Gyárfás, Z. Király, and J. Lehel, On-line 3-chromatic graphs. II. Critical graphs,
Discrete Math., 177 (1997), pp. 99–122.

[GKL2] A. Gyárfás, Z. Király, and J. Lehel, On-line graph coloring and finite basis problems,
Combinatorics, Paul Erdős is Eighty, Vol. 1, Bolyai Soc. Math. Stud., János Bolyai
Mathematical Society, Budapest, Hungary, 1993, pp. 207–214.

[GKL3] A. Gyárfás, Z. Király, and J. Lehel, On-line competitive on-line algorithms, Technical
Report TR-9703-1, Department of Mathematics, Eötvös Loránd University, Budapest,
Hungary; also available online from http://www.cs.elte.hu/tr97/.

[GL1] A. Gyárfás and J. Lehel, On-line and first fit colorings of graphs, J. Graph Theory, 12
(1988), pp. 217–227.

[GL2] A. Gyárfás and J. Lehel, First fit and on-line chromatic number of families of graphs,
Ars Combin., 29C (1990), pp. 168–176.

[GL3] A. Gyárfás and J. Lehel, Effective on-line coloring of P5–free graphs, Combinatorica, 11
(1991), pp. 181–184.

[I] S. Irani, Coloring Inductive Graphs On-line, in Proceedings of the 31st Annual Symposium
on the Foundations of Computer Science, 1990, pp. 470–479.

ON-LINE 3-CHROMATIC GRAPHS I. TRIANGLE-FREE GRAPHS 411

[K] H. A. Kierstead, The linearity of first-fit coloring of interval graphs, SIAM J. Discrete
Math., 1 (1988), pp. 526–530.

[K1] H. A. Kierstead, Recursive and On-Line Graph Coloring, manuscript,
[K2] H. A. Kierstead, On-Line Coloring k-Colorable Graphs, manuscript, 1996.
[KK] H. A. Kierstead and K. Kolossa, On-line coloring of perfect graphs, Combinatorica, 16

(1996), pp. 479–491.
[KO] K. Kolossa, On the on-line chromatic number of the family of on-line 3-chromatic graphs,

Discrete Math., 150 (1996), pp. 205–230.
[KPT] H. A. Kierstead, S. G. Penrice, and W. T. Trotter, On-line and first-fit coloring of

graphs that do not induce P5, SIAM J. Discrete Math., 8 (1995), pp. 485–498.
[KPT1] H. A. Kierstead, S. G. Penrice, and W. T. Trotter, On-line coloring and recursive

graph theory, SIAM J. Discrete Math., 7 (1994), pp. 72–89.
[KT1] H. A. Kierstead and W. T. Trotter, An extremal problem in recursive combinatorics,

Congr. Numer., 33 (1981), pp. 143–153.
[KT] H. A. Kierstead and W. T. Trotter, On-line graph coloring, DIMACS Ser. Discrete

Math. Theoret. Comput. Sci. 7, Amer. Math. Soc., Providence, RI, 1992, pp. 85–92.
[L] L. Lovász, Coverings and colorings of hypergraphs, Fourth Southeastern Conference on

Combinatorics, Graph Theory, and Computing, Utilitas Math., 1973, pp. 3–12.
[LST] L. Lovász, M. Saks, and W. T. Trotter, An on-line graph coloring algorithm with sub-

linear performance ratio, Discrete Math., 75 (1989), pp. 319–325.
[S] D. P. Sumner, Subtrees of a graph and the chromatic number, in Theory and Applications

of Graphs, G. Chartrand, ed., John Wiley, New York, 1981, pp. 557–576.
[V] S. Vishwanathan, Randomized online graph coloring, J. Algorithms, 13 (1992), pp. 657–669.

NOTE: AN UPPER BOUND FOR THE DIAMETER OF A GRAPH∗

RUSSELL MERRIS†

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 3, pp. 412–412

Abstract. In an article [SIAM J. Discrete Math., 7 (1994), pp. 443–457], Chung, Faber, and
Manteuffel established an inequality for the diameter of a graph in terms of its Laplacian eigenvalues,
one that could be stated more attractively if graphs with a given property did not exist. The purpose
of this note is to exhibit graphs having that given property.

Key words. Laplacian, diameter, eigenvalues

AMS subject classification. 05C50

PII. S0895480195282471

Let G = (V,E) be a graph with vertex set V = {1, 2, . . . , n} and edge set E ⊂
V (2), the 2-element subsets of V . The Laplacian matrix, L(G) = (qij), is defined
by qij = the degree of vertex i when j = i, −1 when j 6= i, but {i, j} ∈ E, and 0
otherwise. It is well known that L(G) is positive semidefinite and singular. Denote its
eigenvalues by 0 ≤ λ2 ≤ · · · ≤ λn. In [1, Thm. 5.3], an upper bound for the diameter,
D(G), is obtained in terms of λ2 and λn, provided G 6= Kn = (V, V (2)). In a remark
on p. 448 of [1], the authors observe that their result “would be more aesthetically
pleasing if it yielded

D(G) ≤

cosh−1(n− 1)

cosh−1

(
λn + λ2

λn − λ2

)
 ,

[where d e is the ceiling function]. This inequality fails only if D(G) = m+ 1 with

(1) m =
cosh−1(n− 1)

cosh−1

(
λn + λ2

λn − λ2

) .
Does such a graph exist?”

The answer to the question is yes. Let M be an r-matching of Kn. (Then M
is a set of r ≥ 1 nonadjacent edges of Kn.) If G = Kn −M = (V, V (2)\M), then
D(G) = 2, m = 1, λn = n, and λ2 = n − 2, so (1) is satisfied. If M is a perfect
matching, then G = Kn−M is the so-called hyperoctahedral or cocktail party graph.

REFERENCE

[1] F. R. K. Chung, V. Faber, and T. A. Manteuffel, An upper bound on the diameter of a
graph from eigenvalues associated with its Laplacian, SIAM J. Discrete Math., 7 (1994),
pp. 443–457.

∗Received by the editors March 6, 1995; accepted for publication March 5, 1999; published elec-
tronically September 7, 1999.

http://www.siam.org/journals/sidma/12-3/28247.html
†Department of Mathematics and Computer Science, California State University, Hayward, CA

94542 (rmerris@gauss.sci.csuhayward.edu).

412

COMPLEXES OF DIRECTED GRAPHS∗

ANDERS BJÖRNER† AND VOLKMAR WELKER‡

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 4, pp. 413-424

Abstract. Let P be a monotone property of directed graphs on n vertices, and let ∆P
n denote

the abstract simplicial complex whose simplices are the edge sets of graphs having property P . We
prove the following:

1. If “P = acyclic,” then ∆P
n is homotopy equivalent to the (n− 2)-sphere.

2. If “P = not strongly connected,” then ∆P
n has the homotopy type of a wedge of (n − 1)!

spheres of dimension 2n− 4.

The lattice of all posets on {1, 2, . . . , n} plays an important role in the analysis. We also discuss
some other properties of directed graphs from this point of view.

Key words. directed graph, acyclic, strongly connected, complex of graphs, lattice of posets

AMS subject classifications. 05E25, 05C20, 05C40

PII. S0895480198338724

1. Introduction. A property of graphs is called monotone if it is preserved
under the deletion of edges. Thus, a monotone graph property can be interpreted
as a simplicial complex, and one can study its topological properties. This has been
done for undirected graphs in a number of recent papers. See [1, 13] and the further
references cited there.

Here we look at some monotone properties of directed graphs from this point of
view. Let [n] = {1, 2, . . . , n}. We identify a digraph G on the node set [n] with the
set E(G) of its edges, which is a subset of the set Ω = [n]× [n] \ {(i, i) | 1 ≤ i ≤ n}.
In particular, in this paper digraphs have no multiple edges and no loops.

A digraph is said to be acyclic if it contains no directed cycle of edges. Our first
result is the following theorem.

Theorem 1.1. The complex ∆ACY
n of acyclic digraphs on n vertices is homotopy

equivalent to the (n− 2)-dimensional sphere.

A digraph is strongly connected if for every pair (i, j) ∈ Ω there is a sequence
(vk, vk+1), k = 0, . . . , f of edges in E(G) such that v0 = i and vf+1 = j. Thus, the
property of being not strongly connected is monotone.

Theorem 1.2. The complex ∆NSC
n of not strongly connected digraphs on n

vertices is homotopy equivalent to a wedge of (n− 1)! spheres of dimension 2n− 4.

The proofs of both theorems, to be given in sections 2 and 3, resp., rely on an
analysis of certain properties of the lattice of all partially ordered sets (posets) on the
ground set [n]. For two such posets P and P ′, say that P is less than P ′ if i < j
in P implies that i < j in P ′ for all (i, j) ∈ Ω. This partial order, augmented by a
top element, is a lattice whose proper part we denote by Posn. We show that Posn

∗Received by the editors May 13, 1998; accepted for publication (in revised form) March 11, 1999;
published electronically October 19, 1999.

http://www.siam.org/journals/sidma/12-4/33872.html
†Matematiska Institutionen, Kungl. Tekniska Högskolan, S-100 44 Stockholm, Sweden (bjorner@

math.kth.se). The research of this author was supported by the Göran Gustafsson Foundation for
Research in Natural Sciences and Medicine.
‡Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, 35032 Marburg, Ger-

many (welker@mathematik.uni-marburg.de). The research of this author was supported by Deutsche
Forschungsgemeinschaft (DFG).

413

414 ANDERS BJÖRNER AND VOLKMAR WELKER

is homotopy equivalent to the (n − 2)-sphere by relating it to the covering of the
(n− 2)-sphere given by open hemispheres of the braid arrangement.

In sections 4–6 we comment on complexes of some other classes of digraphs, viz.
directed matchings, nonspanning digraphs, and arborescences. We also present some
computations and conjectures and remark on the action of the symmetric group on
the homology of the graph properties considered in Theorems 1.1 and 1.2.

The computer calculations presented in sections 4 and 6 were done using a pro-
gram written by Frank Heckenbach.

2. Acyclic digraphs and the lattice of all posets. We will use a number of
tools that have become fairly standard in topological combinatorics. For convenience
these are summarized in an appendix (section 7), to which we also refer for explanation
of notation and terminology.

For any digraph G on the node set [n], let G̃ denote its transitive closure. Thus,

(i, j) is an edge of G̃ if and only if there is a directed path in G from i to j. The

mapping G→ G̃ is a closure operator on the Boolean lattice of all subsets of Ω.
If G is acyclic, then G̃ is the comparability graph of a poset on [n], and conversely

the comparability graphs of posets are precisely the digraphs of the form G̃ for acyclic
digraphs G. Thus the mapping G → G̃ restricts to a closure operator on L(∆ACY

n)
with image Posn.

Lemma 2.1. ∆ACY
n and ∆(Posn) are homotopy equivalent.

Proof. Since ∆ACY
n

∼= ∆(L(∆ACY
n)) (barycentric subdivision) this follows directly

from the closure lemma, Corollary 7.2.
The poset Posn consists of all partially ordered sets on the set [n] except for the

antichain. As was mentioned, Posn is the proper part of a lattice that we denote
Pos#

n . Indeed, in Pos#
n the meet of two posets (P,≤P) and (Q,≤Q) is given by the

poset (R,≤R) defined by x ≤R y if and only if x ≤P y and x ≤Q y. The lattice Pos#
n

is graded with rank function rank(P) being the number of strict order relations in P ,
i.e., the number of P ’s edges as an acyclic digraph. The bottom element of Pos#

n is
the antichain (i.e., the poset with empty order relation). The atoms of Pos#

n are the
posets with exactly one comparability relation, and the coatoms are the n! total orders
on [n]. In particular, the length of Pos#

n is
(
n
2

)
+ 1. Moreover, every poset P ∈ Pos#

n

is the join of the atoms below it (whose number equals rank(P)) and the meet of the
coatoms above it. The latter is due to the well-known fact that P is the intersection
of its linear extensions (these are precisely the coatoms above P). Figure 2.1 shows
the poset of posets for n = 3.

Theorem 1.1 will follow from Lemma 2.1 and the following.
Theorem 2.2. ∆(Posn) is homotopy equivalent to the (n − 2)-dimensional

sphere.
Proof. Let Xn = {x ∈ Rn | x1 + · · · + xn = 0 and ‖x‖ = 1}. This is the unit

sphere in an (n− 1)-dimensional subspace of Rn; hence, Xn is an (n− 2)-dimensional
sphere.

With each atom i < j of Posn we associate the open hemisphere Hi,j = {x ∈
Xn | xi < xj}. Let N denote the nerve of the covering of Xn by these hemispheres.
Thus, N is the simplicial complex whose vertex set is the set A of atoms of Posn and
whose simplices are the subsets of atoms corresponding to collections of hemispheres
with nonempty intersection. By the nerve lemma (see, e.g., [3, Thm. 10.7]) N '
Xn = Sn−2.

It is easy to see that a collection of hemispheres Hi,j has nonempty intersection
if and only if the corresponding edges i → j determine an acyclic digraph. The

COMPLEXES OF DIRECTED GRAPHS 415

2
3

1
3

2

1
1

3

2
3

1

23

1
2

3

2
1

1

2 3

1

3

2 1 3

2

3

21

32

1 3

2

1

1

2

3

1

3

2

3

2

1 2

3

1

2

1

3

3

2

1

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

Fig. 2.1. Pos3.

transitive closure of this acyclic digraph is a poset. Therefore the nerve N equals the
crosscut complex Γ(Pos#

n , A), and using the crosscut theorem, Proposition 7.4, we get
∆(Posn) ' Γ(Pos#

n , A) = N ' Sn−2.

In the remainder of this section we will study the structure of intervals in the
lattice Pos#

n . This has no immediate relevance for the topology of graph properties;
thus, the rest of this section can be skipped without loss of continuity. Let us mention,
however, that a different proof of Theorem 2.2 is given as a special case of the proof
of Theorem 2.6 below.

We could not find any reference in the literature to the full lattice Pos#
n of all

posets on [n], although such a fundamental object must surely have been considered
before. However, its lower intervals [0̂, P] for P 6= 1̂ have been studied by Edelman
and Klingsberg [7] and others before them; see the references in [7]. A lattice of the
form [0̂, P] is the lattice of all subposets of a given poset P . It is known that such
lattices are meet-distributive, meaning that if x is the meet of all elements covered
by y, then the interval [x, y] is Boolean. From this can be deduced that the order
complex of each open interval (Q,P), P 6= 1̂, is either contractible or a sphere, and
the Möbius function takes values µ(Q,P) ∈ {0,±1} for P 6= 1̂.

We will extend this topological description of open intervals to all intervals of
Pos#

n and make it more explicit in the known cases.

We call a poset (P,≤P) ∈ Pos#
n a Coxeter poset if it is the antichain (i.e., the

bottom element 0̂) or if there is a point (x1, . . . , xn) ∈ Xn = {x ∈ Rn | x1 + · · ·+xn =
0 and ‖x‖ = 1} such that i <P j if and only if xi < xj . It follows that i and j are
incomparable in P if and only if xi = xj . We say that the point (x1, . . . , xn) realizes
P .

Lemma 2.3. For a poset (P,≤P) ∈ Posn ∪ {0̂} the following are equivalent:

(i) P is a Coxeter poset.
(ii) No element in P is incomparable to both elements of some 2-element chain.

416 ANDERS BJÖRNER AND VOLKMAR WELKER

(iii) P is an ordinal sum of antichains.

Proof. Assume i is incomparable to j <P k. Then P is not a Coxeter poset, since
otherwise xi = xj < xk = xi for the coordinates of every point that realizes P .

We have shown that (i)⇒ (ii), and (ii)⇒ (iii) follows from an easy combinatorial
argument.

Suppose that P = A1 ⊕ A2 ⊕ · · · ⊕ Ak, where the Ai’s denote antichains on the
respective blocks Ai of a partition of the set [n]. If k = 1 assertion (i) follows trivially.
Assume k ≥ 2. Define a point y = {y1, . . . , yn} ∈ Rn by setting yi = j if i ∈ Aj ,
and let N =

∑n
1 yi. Then let z be the point obtained by subtracting N/n from each

coordinate of y, and finally let x be the vector z normalized to length one. One easily
checks that x ∈ Xn and that x realizes P . Hence, P is a Coxeter poset.

For example, the Coxeter posets in Pos3 are the twelve elements on the two top
rank levels; see Figure 2.1.

In the following we denote by Coxn the Coxeter complex of the symmetric group
Σn. The Coxeter complex is constructed as follows. For each p ∈ Xn let p be the
intersections of all closed hemispheres of the form {x ∈ Xn | xi ≤ xj} that contain p.
The sets of the form p are the simplices of a triangulation of the (n − 2)-sphere Xn

called the Coxeter complex Coxn; see, e.g., [5, Chapter 2.3]. We describe an inclusion
map from the face poset of Coxn to Posn.

Lemma 2.4. The subposet of Posn consisting of all Coxeter posets is isomorphic
to the proper part of the face lattice of the Coxeter complex Coxn.

Proof. This follows immediately from Lemma 2.3 and its proof.

A Coxeter poset can easily be identified with a chain in the Boolean lattice Bn.
Namely, if the poset is the ordinal sum A1 ⊕ A2 ⊕ · · · ⊕ Ak, where the Ai’s denote
antichains, the corresponding chain in Bn is A1, A1 ∪ A2, A1 ∪ A2 ∪ A3, Thus,
the face lattice of Coxn is isomorphic to the order complex of the proper part Bn of
the Boolean lattice, or, to the barycentric subdivision of the boundary of an (n− 1)-
simplex. This is a well-known combinatorial description of Coxn.

We will call a poset (P,≤P) a chainbreaker for a poset (Q,≤Q) if P < Q and
for at least one chain i <Q j <Q k in Q the element i is incomparable to k in P .
The second part of the following lemma expresses the meet-distributivity of lower
intervals; see also [7].

Lemma 2.5. Let [P,Q] be an interval in Pos#
n , with Q 6= 1̂. If P is a chainbreaker

for Q, then the open interval (P,Q) is contractible. Otherwise [P,Q] is isomorphic to
the Boolean lattice on a rank(Q)− rank(P) element set.

Proof. Let i <Q j <Q k be a chain in Q such that i is incomparable to k in P .
The order relation i < k will be present in any poset covered by Q. In particular, in
the meet of all coatoms of [P,Q] we will have the order relation i < k. Thus P is not
the meet of these coatoms. But this shows that the crosscut complex Γ([P,Q]∗, A) of
the dual lattice (i.e., all order relations reversed) of [P,Q] is the full simplex over the
set A of coatoms of [P,Q]. In particular, it is contractible.

Now assume that P is not a chainbreaker for Q. Let i <Q k be an order relation
in Q such that i and k are incomparable in P . Let (R,≤R) be the poset which inherits
all order relations from Q except i <Q k. We have to show that R is indeed a poset.
Only the transitivity of the order relation is not completely trivial. But it follows
from the observation that there are no chains i <Q j <Q k in Q, since otherwise P
would be a chainbreaker for Q. Thus we can remove an arbitrary order relation from
Rel(Q) \ Rel(P) and obtain a poset R covered by Q. Since P is not a chainbreaker
for R the assertion follows by induction.

COMPLEXES OF DIRECTED GRAPHS 417

We are now ready to formulate a theorem describing all intervals of Pos#
n up to

homotopy type. The height of a poset P is by definition the maximal number k such
that P contains some chain y0 < y1 < · · · < yk.

Theorem 2.6. Let (P,Q) be an open interval in Pos#
n .

(i) If either Q 6= 1̂ and P is a chainbreaker for Q or Q = 1̂ and P is not a
Coxeter poset, then the interval (P,Q) is contractible.

(ii) If Q 6= 1̂ and P is not a chainbreaker for Q, then (P,Q) is homeomorphic to
a sphere of dimension rank(Q)− rank(P)− 2.

(iii) If Q = 1̂ and P is a Coxeter poset, then (P,Q) is homotopy equivalent to a
sphere of dimension n− 2− height(P).

It follows as a special case of part (iii) that Posn = (0̂, 1̂) is homotopy equivalent
to the (n− 2)-dimensional sphere, so we obtain below a new proof for Theorem 2.2.

Proof. Lemma 2.5 settles the case Q 6= 1̂. It therefore remains to show the
following for the case Q = 1̂:

(a) If P is not a Coxeter poset, then the interval (P, 1̂) is contractible.
(b) If P is a Coxeter poset, then (P, 1̂) is homotopy equivalent to a sphere of

dimension n− 2− height(P).
All assertions are trivial for n = 1, so we assume n ≥ 2.
By Lemma 2.3 we know that if (P,≤P) is not a Coxeter poset, then there is an

element j that is incomparable to a 2-element chain i <P k. Now consider the poset
(R,≤R) which is the meet of all linear extensions of P such that i <P j <P k (such
extensions exist!). Clearly, i <R j <R k in R and hence (R,≤R) 6= (P,≤P). We claim
that there is no poset (S,≤S) in (P, 1̂) that complements R (i.e., such that the meet
of S and R is P and their join is 1̂). Let us distinguish three cases:

• “j <S k”: Then j is smaller than k in the meet of S and R. In particular,
the meet is not P .
• “i <S j”: Then j is larger than i in the meet of S and R. In particular, the

meet is not P .
• “j is incomparable to i <S k in S”: Then there is a linear extension (T,≤T)

of S such that i ≤T j ≤T k. But then T ≥ R and the join of S and R is not
1̂.

By Proposition 7.3 it follows that (P, 1̂) is contractible.
For part (b) we consider the inclusion map f : L(Coxn) ↪→ Posn from the face

poset of Coxn to Posn described in Lemma 2.4. We will use Quillen’s fiber lemma,
Proposition 7.1. Let (P,≤P) be a poset in Posn and set Q := f−1((Posn)≥P).

Claim. Q is contractible.

Let R := L(Coxn) \Q, and let

XP =
{

(x1, . . . , xn) ∈ Xn

∣∣∣ i <P j ⇒ xi < xj

}
.

We have that XP is an intersection of open hemispheres. From the fact that P is a
poset it follows that XP is nonempty. Thus XP is contractible. On the other hand,
X \XP is triangulated by ∆(R), so via a retraction argument (see, e.g., [5, Lemma
4.7.27]) ∆(Q) and XP are homotopy equivalent.

Thus the Quillen fiber lemma implies that, for all P in the image of f , the interval
(P, 1̂) in Pos#

n is homotopy equivalent to the interval (P, 1̂) in L(Coxn). An upper
interval (σ, 1̂) in the face lattice of a simplicial complex is homeomorphic to the link
of σ in the complex. Now, Coxn is a PL triangulation of the (n − 2)-sphere, so the
link of a simplex of dimension c is homeomorphic to a sphere of dimension n− 3− c.

418 ANDERS BJÖRNER AND VOLKMAR WELKER

It is easily seen that the dimension of P as a simplex of Coxn is height(P)− 1. This
completes the proof.

Corollary 2.7. The Möbius function of Pos#
n is for P < Q given by

µ(P,Q) =

0 if Q 6= 1̂ and P is a chainbreaker for Q,

(−1)rank(Q)−rank(P) if Q 6= 1̂ and P is not a chainbreaker for Q,

(−1)n−height(P) if Q = 1̂ and P is a Coxeter poset,

0 if Q = 1̂ and P is not a Coxeter poset.

3. Not strongly connected digraphs. Let G be a digraph on the node set
[n]. Say that two nodes u and v are G-equivalent if there is a directed path from u to
v and a directed path from v to u. This is clearly an equivalence relation, and hence
determines a partition of the set of nodes into equivalence classes Bi. We will denote
this partition by π(G) = |B1| · · · |Bk|. The induced subgraphs GBi on the node sets
Bi are called the strongly connected components of G.

We have defined an order-preserving map π from the set of all digraphs on [n]
(ordered by inclusion of edge sets) to the partition lattice Πn. Note that π(G) =
|1| · · · |n| (the bottom element of Πn) if and only if G is acyclic. Also, π(G) = |1 · · ·n|
(the top element of Πn) if and only if G is strongly connected.

Let Posn⊕Πn be the ordinal sum of Posn and the proper part Πn of the partition
lattice Πn, and define a map ϕ : ∆NSC

n \ {∅} → Posn ⊕Πn by

ϕ : G 7→
{
G̃ ∈ Posn if G is acyclic,
π(G) ∈ Πn otherwise.

Thus, ϕ sends a not strongly connected digraph G to its transitive closure G̃ in case
π(G) is the bottom element of Πn and to the partition π(G) otherwise. This mapping
is clearly order-preserving, and from now on we think of it as a poset map defined on
the face poset of ∆NSC

n .
Lemma 3.1. The poset mapping ϕ : L(∆NSC

n) → Posn ⊕ Πn induces homotopy
equivalence of order complexes.

Proof. We will use Quillen’s fiber lemma, Proposition 7.1. To simplify notation,
let Q := Posn ⊕ Πn for the duration of this proof. Let q ∈ Q. We have to show that
the fiber ϕ−1(Q≤q) is contractible. There are two cases to consider.

Case 1. q ∈ Posn. Here the fiber ϕ−1(Q≤q) has a unique greatest element,
namely, the comparability graph of the poset q. So its order complex is a cone and
hence contractible.

Case 2. q ∈ Πn. We will use the k = 2 case of Lemma 7.7. Now q is a nontrivial
partition of the node set [n]. Assume that B is a nonsingleton block in this partition
and choose two elements in B. Without loss of generality we may assume that the
two elements are 1 and 2.

The fiber ∆ := ϕ−1(Q≤q) is the subcomplex of ∆NSC
n consisting of those digraphs

G such that π(G) ≤ q. Let ∆1 ⊆ ∆ be the subcomplex consisting of those graphs in
∆ that contain no simple directed path from 1 to 2 except possibly for the edge (1, 2).
The map G 7→ G±(2, 1) (defined in connection with Lemma 7.7) maps ∆1 into itself.
If (2, 1) ∈ G this is clear. If (2, 1) 6∈ G, then π(G±(2, 1)) might differ from π(G) by
the merging of the blocks B1 and B2 containing 1 and 2. But then we still have that
π(G±(2, 1)) ≤ q, since B1 and B2 are both subsets of B. Similarly, G 7→ G±(1, 2)
maps ∆ \ ∆1 into itself, because π(G±(1, 2)) = π(G). Hence, by Lemma 7.7, ∆ is
contractible.

COMPLEXES OF DIRECTED GRAPHS 419

The following result will, together with Lemma 3.1, imply the truth of Theorem
1.2.

Lemma 3.2. ∆(Posn ⊕Πn) has the homotopy type of a wedge of (n− 1)! spheres
of dimension 2n− 4.

Proof. From the definition of ordinal sum follows that ∆(Posn⊕Πn) = ∆(Posn)∗
∆(Πn), where “∗” denotes join of simplicial complexes. It is a known fact that if ∆1

is homotopy equivalent to a wedge of k1 spheres of dimension d1 and ∆2 is homotopy
equivalent to a wedge of k2 spheres of dimension d2, then their join ∆1∗∆2 is homotopy
equivalent to a wedge of k1 · k2 spheres of dimension d1 + d2 + 1 (see, for example, [6,
Lemma 2.5]). It is also well known that the proper part Πn of the partition lattice
has the homotopy type of a wedge of (n − 1)! spheres of dimension n − 3; see, e.g.,
[6]. Also by Theorem 2.2 we know that Posn is homotopy equivalent to an (n − 2)-
sphere. Hence ∆(Posn ⊕ Πn) is homotopy equivalent to a wedge of (n − 1)! spheres
of dimension (n− 2) + (n− 3) + 1 = 2n− 4.

4. Directed matchings. An undirected graph is called a matching if the degree
(number of incident edges) at every node is at most 1. Similarly, we define a directed
matching to be a digraph for which both the in-degree and out-degree at every vertex
is at most one. So, the components of a directed matching are either directed paths
or directed cycles.

Let ∆DM
n be the simplicial complex of directed matchings on the node set [n].

This complex, whose set of vertices is Ω, can be described differently as follows.

Let A be a finite set of squares on a large enough chessboard. The chessboard
complex CA is the simplicial complex whose vertex set is A and whose simplices are
the subsets of A corresponding to nontaking rook positions (i.e., no two squares in
the same row or in the same column). Such complexes have been studied in several
papers; see [1, 14] and the further references given there.

The following is immediately clear by identifying the edges (i, j) of Ω with the
corresponding squares (i, j) of the n× n chessboard.

Lemma 4.1. Let A be the n × n chessboard minus one diagonal. Then CA ∼=
∆DM
n .

Using this lemma and a result of Ziegler [14] we can deduce this connectivity
lower bound.

Theorem 4.2. The complex ∆DM
n is (b 2n+1

3 c − 2)-connected.

Proof. This is a consequence of [14, Theorem 3.3]. That theorem says that if a
chessboard A contains a certain “admissible k-shape” Σ(m,n, k), then the (k − 1)-
skeleton of its complex CA is vertex-decomposable of dimension k − 1, and hence, in
particular, is (k−2)-connected. Now the n×n chessboard minus one diagonal contains
an isomorphic copy of the admissible k-shape Σ(n, n, k) for k = b2n+1

3 c.
It is easy to see that the (n−1)-dimensional complex ∆DM

n collapses to its (n−2)-
skeleton. Hence we may deduce the following vanishing result:

H̃i(∆
DM
n) 6= 0 =⇒

(⌊
2n+ 1

3

⌋
− 1

)
≤ i ≤ n− 2.

These bounds are sharp for n ≤ 7, as Table 4.1 shows.

The only torsion appearing in the table is modulo 3. Thus the directed matching
complexes ∆DM

n seem to share the mysterious “torsion mod 3” phenomenon empir-
ically observed for undirected matching complexes; see the discussion in [1, Section
9.1].

420 ANDERS BJÖRNER AND VOLKMAR WELKER

Table 4.1
Homology groups H̃i(∆

DM
n).

n\i 0 1 2 3 4 5 6

2 0 0 0 0 0 0 0

3 0 Z2 0 0 0 0 0

4 0 0 Z4 0 0 0 0

5 0 0 Z Z13 0 0 0

6 0 0 0 Z24 ⊕ Z5
3 Z32 0 0

7 0 0 0 0 Z415 ⊕ Z15
3 Z95 0

5. Nonspanning digraphs and arborescences. In this section we will first
consider a digraph property that is defined with respect to a root node. Since only
outgoing edges from the root play a role, this introduces a small asymmetry into the
ground sets of nodes and of edges. Thus we enlarge our standard ground sets [n] to
[n]0 = [n] ∪ {0} and Ω (defined in section 1) to Ω0 = Ω ∪ {(0, j) | 1 ≤ j ≤ n}. This
means simply that we introduce 0 as the root node and add edges from 0 to all other
nodes j.

A rooted digraph is called spanning (or, initially connected) if it contains a di-
rected path from the root 0 to every other node i. The nonspanning digraphs form a
simplicial complex on the vertex set Ω0 that we denote ∆NS

n .
Theorem 5.1. The complex ∆NS

n is contractible.
Proof. Let f : L(∆NS

n)→ Bn be the map that assigns to each digraph in L(∆NS
n)

the subset of [n] consisting of all nodes that can be reached from 0 on a directed path.
Clearly, this map is order preserving and its image consists of all subsets of [n] of
cardinality ≤ n − 1. In particular, the order complex of f(L(∆NS

n)) is contractible,
since it is a cone with the empty set as apex. Thus we are done once we show
that f induces a homotopy equivalence. For this we apply the Quillen fiber lemma,
Proposition 7.1.

For j = 0, 1, . . . , n− 1, let ∆j := {G ∈ ∆NS
n |f(G) ⊆ [j]}. Thus, ∆j consists of all

digraphs such that only a subset of [j] = {1, . . . , j} can be reached along a directed
path from 0. We have that ∆0 ⊆ ∆1 ⊆ · · · ⊆ ∆n−1 and plan to use Lemma 7.7.

First observe that ∆0 is the full simplex on the vertex set Ω, and hence is a cone.
Then, notice that G 7→ G±(j + 1, j) maps ∆j \∆j−1 into itself for all 1 ≤ j ≤ n− 1.
Hence, by Lemma 7.7, every complex ∆j is contractible.

The argument is now finished, since by symmetry the Quillen fiber f−1((Bn)≤A)
is isomorphic to ∆|A| for every subset A of [n] such that |A| ≤ n− 1.

Another digraph property we will consider here is that of being an arborescence
(or, directed forest). This means that each connected component is a directed tree,
i.e., a tree having a node r such that every other node of the tree can be reached
from r along a directed path. In other words, every component of an arborescence
is a tree in which all edges are directed “away” from some particular node. Being
an arborescence is clearly a hereditary property. We denote by ∆AR

n the complex of
arborescences. It is a simplicial complex on the vertex set Ω0.

Relying on some results on greedoids by Björner, Korte, and Lovász [4] we can
deduce the following.

Theorem 5.2. The complex ∆AR
n is shellable and contractible.

Proof. We will here freely use greedoid terminology. See [4] for all definitions.
Consider the branching greedoid G of the complete digraph Ω0 rooted at 0. The

feasible sets of G are the directed trees rooted at 0, and the bases are the maximal

COMPLEXES OF DIRECTED GRAPHS 421

Table 6.1
Homology groups H̃j(∆

NSC,2
n).

n\j 0 1 2 3 4 5 6 7 8 9 10

3 0 0 0 0 Z 0 0 0 0 0 0
4 0 0 0 0 0 0 0 Z4 0 0 0
5 0 0 0 0 0 0 0 0 0 0 Z18

arborescences (by necessity rooted at 0). Hence, ∆AR
n is the primal complex of G,

which by [4, Theorem 5.8] is shellable and by [4, Theorem 5.9] is contractible.
For n ≥ 4 Theorem 5.1 can also be proved using methods from greedoid theory.
Proof (greedoid proof of Theorem 5.1). Once more, let G be the branching gree-

doid of the complete digraph Ω0 rooted at 0. A digraph D is spanning if and only
if D contains a basis of G, which is same as saying that the complement Ω0 \D be-
longs to the dual complex G⊥. Hence, ∆NS

n is Alexander dual to G⊥ in the sense of
Proposition 7.5, which therefore gives

H̃i(∆
NS
n) ∼= H̃n2−i−3(G⊥).

By [4, Corollary 5.12] G⊥ is homeomorphic to a ball. Hence, H̃i(∆
NS
n) = 0 for all i.

If n ≥ 4, then ∆NS
n has a complete 2-skeleton, so ∆NS

n is simply-connected in this
case and therefore contractible.

Remark 5.3. The complex of arborescences has been studied also by Kozlov [8].
He proves shellability both for Ω0 (as in Theorem 5.2) and for the smaller ground set
Ω.

Remark 5.4. The argument by Alexander duality in the last proof can be ex-
tended to all greedoids. Let G be a rank r greedoid on a ground set of cardinality m.
By [4, Theorem 5.1] the dual complex G⊥ is shellable. Since it is also pure and of

dimension m−r−1 it follows that H̃j(G⊥) = 0 for all j 6= m−r−1 and H̃m−r−1(G⊥)
is free. The complex NS of nonspanning sets of G, which is Alexander dual to G⊥,
therefore satisfies H̃i(NS) = 0 for all i 6= m−(m−r−1)−3 = r−2, and H̃r−2(NS) is
free. If r ≥ 4, then NS has a complete 2-skeleton and is therefore simply-connected.
From these facts we may conclude (see also [3, (9.18)]) that NS has the homotopy
type of a wedge of (r − 2)-spheres.

A particular case of this is given by the complex of disconnected undirected graphs
on the vertex set [n], denoted by ∆1

n in [1]. This is the complex of nonspanning sets
in the circuit matroid of the complete graph Kn, a greedoid of rank n− 1. It is well
known that ∆1

n has nonvanishing homology only in dimension n − 3; see, e.g., [1,
Proposition 2.1].

6. Final remarks.

6.1. Strongly i-connected digraphs. Following the program pursued in [1]
one can extend the considerations of section 3 to the complex ∆NSC,i

n of not strongly
i-connected digraphs on the node set [n]. We will say that a digraph (V (G), E(G))
is strongly i-connected, for a number 0 < i < |V (G)|, if for any j vertices v1, . . . , vj ,
j < i, the digraph that is obtained from G by removing v1, . . . , vj and all incident
edges is strongly connected. In particular, ∆NSC

n = ∆NSC,1
n . Computer calculations

for i = 2 yield the homology groups shown in Table 6.1 (no nonvanishing homology
occurs for j not in the table).

Based on this table one is led to suspect the following.

422 ANDERS BJÖRNER AND VOLKMAR WELKER

Conjecture 6.1. ∆NSC,2
n is homotopy equivalent to a wedge of (n− 2)!(n− 2)

spheres of dimension 3n− 5.
Now we consider situations when i is close to n. A digraph is not strongly (n−1)-

connected if there is a pair of vertices such that the subgraph induced on these vertices
is not strongly connected. But this is equivalent to the condition that the graph is
not the complete digraph on [n] vertices. Thus, ∆NSC,n−1

n is the full boundary of an

(n2 − n− 1)-simplex, and hence ∆NSC,n−1
n

∼= Sn
2−n−2.

In order to study ∆NSC,n−2
n we consider the dual complex in the sense of Propo-

sition 7.5. It is easily derived from the definitions that a digraph lies in (∆NSC,n−2
n)∗

if and only if the out-degree and in-degree at each node are at most 1. Hence, by
Proposition 7.5,

H̃i(∆
NSC,n−2
n) ∼= H̃n2−n−i−3(∆DM

n),

and the results of section 4 apply.

6.2. Action of the symmetric group. For each monotone property P of di-
graphs on n nodes, the complex ∆P

n is invariant under the action of the symmetric
group Σn by permutations of the node set n. This action induces a Σn-representation
on each homology group H̃i(∆

P
n ;C). For ∆ACY

n and ∆NSC
n we can describe these

representations.
Essentially, what has to be done is to keep track that all the homotopy equiva-

lences established in sections 2 and 3 are compatible with the group action. This can
be done using an equivariant version of the Quillen fiber lemma due to Thévenaz and
Webb [12] and the equivariant versions of crosscut theorem and homotopy comple-
mentation that can be derived from it. Using this strategy the following results can
be obtained:

• The complex ∆ACY
n is Σn-homotopy equivalent to the Coxeter complex Coxn.

• The complex ∆NSC
n is Σn-homotopy equivalent to the join of Coxn and ∆(Πn).

It is easily seen and well known that on the single nonvanishing homology group
H̃n−2(Coxn;C) of Coxn the group Σn acts by the sign-character signn. By re-
sults of Stanley [11] the character of Σn on the only nonvanishing homology group

H̃n−3(∆(Πn);C) of ∆(Πn) is given by signn · lien. Here lien := e
2πi
n ↑Σn

Cn
, where Cn

denotes the cyclic group of order n generated by an n-cycle and e
2πi
n the character of

Cn which assumes the value e
2πi
n on a generator of the group. Using these two facts

and the Σn-homotopy equivalences stated above we immediately obtain the following:
• The character of Σn on H̃n−2(∆ACY

n ;C) is the sign-character.

• The character of Σn on H̃2n−4(∆NSC
n ;C) is the character lien.

We remark that lien is also the character of Σn on the multigraded part of the
free Lie algebra on n generators (see, e.g., [10]).

7. Appendix: Notation and tools. In this section we will summarize the
main tools used. We refer the reader to the survey paper [3] for more details and
references.

Let P be a finite poset. If P has a unique minimum element 0̂ and a unique
maximum element 1̂, we denote by P the proper part of P ; that is, the poset obtained
by removing from P the elements 0̂ and 1̂. By ∆(P) we denote the simplicial complex
of all chains in P , called the order complex of P . Via the functor ∆(·) one can speak
of the homology and homotopy type of a poset P .

By convention we include the empty set ∅ in every simplicial complex. For any
simplicial complex ∆, the face lattice L(∆) is the poset of faces of ∆, ordered by

COMPLEXES OF DIRECTED GRAPHS 423

inclusion and enlarged by an additional greatest element 1̂. The proper part L(∆) =
L(∆) \ {∅, 1̂} is called the face poset. The order complex ∆(L(∆)) is homeomorphic
to ∆ — indeed, ∆(L(∆)) is the barycentric subdivision of ∆.

The ordinal sum P ⊕Q of two posets P and Q is the poset on their set union for
which the order relation on pairs of elements of P (resp., Q) is inherited, and each
element of P is defined to be less than each element of Q. This operation on posets
is associative, so repeated ordinal sums P1 ⊕ P2 ⊕ · · · ⊕ Pk are well defined.

For a poset P and p ∈ P we denote by P≤p the subposet {p′ | p′ ∈ P ; p′ ≤ p }, and
similarly for P≥p. For p ≤ p′ in P we denote by [p, p′] the closed interval P≥p ∩ P≤p′ ,
and by (p, p′) the open interval [p, p′] \ {p, p′}. By a map f : P → Q of posets we
always mean a poset homomorphism (i.e., x ≤ y implies f(x) ≤ f(y)).

Proposition 7.1 (Quillen fiber lemma (see [9], [3, Thm. 10.5])). Let f : P → Q
be a map of posets. Assume that f−1(Q≤q) is contractible for all q ∈ Q. Then ∆(P)
and ∆(Q) are homotopy equivalent.

A map f : P → P from a poset to itself is called a closure operator if f(x) ≥ x
and f(f(x)) = f(x) for all x ∈ P . The Quillen fiber lemma immediately implies the
following fact.

Corollary 7.2 (closure lemma). Let f : P → P be a closure operator on the
partially ordered set P . Then ∆(P) and ∆(f(P)) are homotopy equivalent.

A poset L is called a lattice if suprema, denoted by “∨”, and infima, denoted by
“∧”, exist. Note that if L is a finite lattice, then there is a least element 0̂ and a
greatest element 1̂ in L. The elements covering 0̂ are called atoms and the elements
covered by 1̂ are called coatoms. In a lattice an element x is called complement of the
element y if x ∨ y = 1̂ and x ∧ y = 0̂.

Proposition 7.3 (homotopy complementation (see [2], [3, Thm. 10.15])). If
some element of a lattice L has no complement, then ∆(L) is contractible.

Let A be the set of atoms of a lattice L. Define the crosscut complex Γ(L,A) to
be the simplicial complex on the vertex set A whose simplices are the subsets S ⊆ A
such that ∨S < 1̂.

Proposition 7.4 (crosscut theorem (see [2], [3, Thm. 10.8])). The complexes
Γ(L,A) and ∆(L) are homotopy equivalent.

Our next tool is the combinatorial version of a standard duality theorem from
algebraic topology. See, e.g., [1, Prop. 10.4] for a proof.

Proposition 7.5 (combinatorial Alexander duality). Let ∆ be a finite simplicial
complex on vertex set V and define

∆∗ = {B ⊆ V | V \B 6∈ ∆}.
Then

H̃i(∆) ∼= H̃ |V |−i−3(∆∗).

Finally, we make use of the following simple collapsing argument. Assume there
is a fixed ground set V and for F ⊆ V and a ∈ V define the operation

F±a =

{
F ∪ {a} if a 6∈ F,
F \ {a} if a ∈ F.

Lemma 7.6. Let ∆1 ⊆ ∆2 be simplicial complexes. Assume there exists some
vertex a such that F 7→ F± a maps ∆2 \∆1 into itself. Then ∆2 collapses to ∆1.

Proof. Take a pair (F, F±a), a 6∈ F ∈ ∆2 \ ∆1, of maximal dimension among
all such pairs. Suppose that F is not a free face. Then F ∪ {b} ∈ ∆2 \∆1 for some

424 ANDERS BJÖRNER AND VOLKMAR WELKER

b 6∈ F ∪ {a}. But since a 6∈ F ∪ {b}, then also F ∪ {b} ∪ {a} ∈ ∆2 \∆1, contradicting
the choice by maximal dimension. Hence, F is a free face, so the removal of {F, F±a}
is an elementary collapse step. Now continue by induction.

The following generalization of the concept of a cone (the k = 1 case) is an
immediate consequence.

Lemma 7.7. Let ∆1 ⊆ ∆2 · · · ⊆ ∆k = ∆ be simplicial complexes, and put ∆0 = ∅.
Assume there exist vertices a1, a2, . . . , ak such that F 7→ F±ai maps ∆i \∆i−1 into
itself, for i = 1, . . . , k. Then ∆ is collapsible.

REFERENCES

[1] E. Babson, A. Björner, S. Linusson, J. Shareshian, and V. Welker, Complexes of not
i-connected graphs, Topology, 38 (1999), pp. 271–299.

[2] A. Björner, Homotopy type of posets and lattice complementation, J. Combin. Theory Ser.
A, 30 (1981), pp. 90–100.

[3] A. Björner, Topological Methods, in Handbook of Combinatorics, R. Graham, M. Grötschel,
and L. Lovász, eds., North-Holland, Amsterdam, 1995, pp. 1819–1872.

[4] A. Björner, B. Korte, and L. Lovász, Homotopy properties of greedoids, Adv. in Appl.
Math., 6 (1985), pp. 447–494.

[5] A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. M. Ziegler, Oriented Ma-
troids, Encyclopedia of Mathematics and Its Applications, Vol. 46, Cambridge University
Press, Cambridge, UK, 1993.

[6] A. Björner and V. Welker, The homology of “k–equal” manifolds and related partition
lattices, Adv. Math., 110 (1995), pp. 277–313.

[7] P. H. Edelman and P. Klingsberg, The subposet lattice and the order polynomial, European
J. Combin., 3 (1982), pp. 341–346.

[8] D. Kozlov, Complexes of Directed Trees, preprint, 1998.
[9] D. Quillen, Homotopy properties of the poset of non-trivial p-subgroups of a group, Adv.

Math., 28 (1978), pp. 101–128.
[10] C. Reutenauer, Free Lie Algebras, London Mathematical Society Monographs, New Series,

Vol. 7, Oxford University Press, Oxford, UK, 1993.
[11] R. P. Stanley, Some aspects of groups acting on finite posets, J. Combin. Theory Ser. A, 32

(1982), pp. 132–161.
[12] J. Thévenaz and P. Webb, Homotopy equivalence of posets with group action, J. Combin.

Theory Ser. A, 56 (1991), pp. 173–181.
[13] V. A. Vassiliev, Complexes of connected graphs, in The Gelfand Mathematical Seminar, 1990–

1992, L. Corwin et al., eds., Birkhäuser, Boston, MA, 1993, pp. 223–235.
[14] G. M. Ziegler, Shellability of chessboard complexes, Israel J. Math., 87 (1994), pp. 97–110.

A 3/2-APPROXIMATION ALGORITHM FOR THE MIXED
POSTMAN PROBLEM∗

BALAJI RAGHAVACHARI† AND JEYAKESAVAN VEERASAMY‡

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 4, pp. 425-433

Abstract. The mixed postman problem, a generalization of the Chinese postman problem, is
that of finding the shortest tour that traverses each edge of a given mixed graph (a graph containing
both undirected and directed edges) at least once. The problem is solvable in polynomial time
either if the graph is undirected or if the graph is directed, but it is NP-hard in mixed graphs. An
approximation algorithm with a performance ratio of 3/2 for the postman problem on mixed graphs
is presented.

Key words. mixed postman problem, Chinese postman problem, NP-completeness, graphs,
approximation algorithms

AMS subject classifications. 05C38, 05C45, 05C85, 68Q20, 68R10, 90B06, 90C27

PII. S0895480197331454

1. Introduction. Problems of finding paths and tours on graphs are of fun-
damental importance and find many practical applications. The traveling salesman
problem (TSP) is a well-known and widely studied problem. The objective is to find
the shortest tour that visits all vertices of a given graph exactly once. The problem is
known to be NP-hard. Postman problems are similar to the TSP at first glance but
are quite different in terms of the complexity of the problems. Given a graph G, the
Chinese postman problem (CPP) is to find a minimum-cost tour covering all edges of
G at least once [10]. It is the optimization version of the Euler tour problem, which
asks if there is a tour that traverses every edge of a graph exactly once. Edmonds
and Johnson [4] showed that the problem is solvable in polynomial time. They also
showed that the problem is solvable in polynomial time if G is a directed graph.

The mixed postman problem (MPP) is a generalization of the Chinese postman
problem and is listed as problem ND25 by Garey and Johnson [9]. In the MPP, the
input graph may contain both undirected edges and arcs (directed edges). The objec-
tive is to find a tour that traverses every edge at least once and that traverses directed
edges only in the direction of the arc. Even though both undirected and directed ver-
sions of the CPP are polynomially solvable, Papadimitriou [15] showed that MPP is
NP-hard. There are other related problems, such as the rural postman problem and
the windy postman problem, which are also NP-hard [5, 6]. Many practical applica-
tions like mail delivery, snow removal, and trash pick-up can be modeled as instances
of MPP, and hence it is important to design good approximation algorithms for this
problem.

A key performance indicator of an approximation algorithm is its approximation
ratio, which is the maximum ratio between the cost of the solution output by the

∗Received by the editors December 11, 1997; accepted for publication (in revised form) April 6,
1999; published electronically October 19, 1999. The research of the first author was supported by
NSF Research Initiation Award CCR-9409625.

http://www.siam.org/journals/sidma/12-4/33145.html
†Department of Computer Science, The University of Texas at Dallas, Richardson, TX 75083-0688

(rbk@utdallas.edu).
‡Department of Computer Science, The University of Texas at Dallas, Richardson, TX 75083-

0688, and Samsung Telecommunications America, Inc., 1130 E. Arapaho Rd., Richardson, TX 75081
(veerasam@utdallas.edu).

425

426 BALAJI RAGHAVACHARI AND JEYAKESAVAN VEERASAMY

algorithm and the cost of optimal solution over all input instances. An approximation
algorithm with approximation ratio α is referred to as an α-approximation algorithm.

Previous work. Numerous articles have appeared in the literature over the past
three decades about the MPP. Edmonds and Johnson [4] and Christofides [3] presented
the first approximation algorithms. Frederickson [8] showed that the algorithm of [4]
finds a tour whose length is at most two times the length of an optimal tour (i.e.,
approximation ratio of 2). He also presented a mixed strategy algorithm, which
used the solutions output by two different heuristics, and then selected the shorter
of the two tours. He proved that the approximation ratio of the mixed strategy
algorithm is 5

3 . Comprehensive surveys are available on postman problems [2, 5].
Integer and linear programming formulations of postman problems have generated a
lot of interest in recent years [11, 14, 18]. Ralphs [18] showed that a linear relaxation
of MPP has optimal solutions that are half-integral. One could use this to derive
a 2-approximation algorithm for the problem. Improvements in implementation are
discussed in [14, 17]. It is interesting to note that Nobert and Picard [14] state that
their implementation has been used for scheduling snow removal in Montreal. Several
other articles have appeared on generalized postman problems, such as k-CPP [16]
and the windy postman problem [5].

Our results. Even though numerous articles have appeared in the literature on
MPP after Frederickson’s paper in 1979, his result has been the best approximation
algorithm for MPP in terms of proven worst-case ratio until now. In this paper,
we present an improved approximation algorithm for MPP with an approximation
ratio of 3

2 . We derive a new lower bound on the cost of an optimal solution using the
properties of intermediate solutions to MPP. Our algorithm uses a subtle modification
of Frederickson’s algorithm, and the improved performance ratio is derived from the
new lower bound.

2. Preliminaries. Problem statement. The input graph G = (V,E,A) con-
sists of a set of vertices V , a multiset of edges E, and a multiset of arcs (directed
edges) A. A nonnegative cost function C is defined on edges and arcs. We extend
the definition of C to multigraphs (multisets of edges and arcs) by taking the sum of
the costs of its edges and arcs. The goal is to find the shortest tour that traverses all
edges and arcs of G at least once. The tour may traverse edges in either direction,
but must go through an arc only along its direction. We assume that the input graph
is strongly connected, i.e., there exists a path from any vertex u to any other vertex
v, since the problem is clearly infeasible for graphs that are not strongly connected.
The output is a tour which may travel each edge or arc several times. Therefore,
except for traversing each edge/arc once, the traversal could always use the shortest
path between any two nodes.

Definitions. A cut is a partition of the vertex set into S and V − S. It is called
nontrivial if neither side is empty. An edge crosses the cut if it connects a vertex
in S to a vertex in V − S. For a vertex v ∈ V , let outdegree(v) be the number of
outgoing arcs from v. Similarly, indegree(v) is the number of incoming arcs into v.
Let degree(v) be the total number of edges and arcs incident to v. We say v has
even degree if degree(v) is even. A graph has even degree if all its vertices have even
degree. Let surplus(v) = outdegree(v) − indegree(v). If surplus(v) is negative, we
may call it a deficit. The definition of surplus can be extended to sets of vertices
S, by finding the difference between outgoing and incoming edges that cross the cut
(S, V − S). Given a graph and a subset of vertices, a T-join is defined as a subset of
edges in which the degree of each vertex in the specified subset is odd and even for all

ALGORITHM FOR THE MIXED POSTMAN PROBLEM 427

other vertices. More formally, in a graph G = (V,E) and T ⊆ V , a T-join is a subset
of edges E′ such that, in the subgraph G′ = (V,E′), the degree of v is odd if and only
if v ∈ T .

T-joins and matchings. In a connected graph G = (V,E), there exists a
T-join for any subset T ⊆ V as long as the cardinality of T is even. A minimum-
cost T-join can be computed using an algorithm for minimum-cost matchings on an
auxiliary graph called the closure graph. The closure graph of G is a complete graph
H = (V, V × V), where c(u, v) is the cost of a shortest path between u and v. It can
be shown that minimal T-joins in G correspond to matchings in H in which all nodes
of T are matched. Refer to the book by Nemhauser and Wolsey [13] for more details
on T-joins.

Properties of Eulerian graphs. A graph is called Eulerian if there is a tour
that traverses each edge of the graph exactly once. It is known that an undirected,
connected graph is Eulerian if and only if the degree of each vertex is even. For a
directed graph to be Eulerian, the underlying graph must be connected, and for each
vertex v, outdegree(v) = indegree(v). In other words, for each vertex v, surplus(v) =
0. A mixed graph G = (V,E,A) is Eulerian if the graph is strongly connected and
satisfies the following properties [7, 14].

• Even degree condition: Every vertex v is incident to an even number of edges
and arcs, i.e., degree(v) is even. This condition implies that the number of
edges and arcs crossing any cut (S, V − S) is even.

• Balanced set condition: For every nontrivial cut S ⊂ V , the absolute value
of the surplus of S must be less than or equal to the number of undirected
edges crossing the cut (S, V − S).

The above conditions can be checked in polynomial time using algorithms for the
maximum flow problem [7]. In other words, we can decide in polynomial time whether
a given mixed graph is Eulerian. The problem we are interested in is to find a set
of additional edges and arcs of minimum total cost that can be added to G to make
it Eulerian, and this problem is NP-hard. In the process of solving an instance of
the mixed postman problem, arcs and edges may be duplicated. For convenience, we
may also orient some undirected edges by giving them a direction. The output of
our algorithm is a Eulerian graph H that contains the input graph G (in which some
edges have been oriented) as a subgraph. So each edge of H can be classified either
as an original edge or as a duplicated edge. Also, each arc of H is either an original
arc, a duplicated arc, an oriented edge, or a duplicated and oriented edge.

3. Frederickson’s MIXED algorithm. Frederickson defined the following algo-
rithms as part of his solution to MPP:

• Evendegree: Augment a mixed graph G by duplicating edges and arcs
such that the resulting graph has an even degree. A minimum-cost solution
is obtained by disregarding the directions of the arcs (i.e., by taking the
underlying undirected graph) and solving CPP by adding a minimum-weight
T-join of all odd-degree nodes.
• Inoutdegree: Augment a mixed graph G by duplicating edges and arcs

and orienting edges such that in the resulting graph, for each vertex v,
surplus(v) = 0. We will refer to this as the Inout problem. A minimum-
cost solution GIO is obtained by formulating a flow problem and solving it
optimally. The flow problem is formulated such that the original undirected
edges can be oriented free of cost. The augmentation cost, CIO(G), is defined
as the cost of additional edges and arcs that are added to G to get GIO by
Inoutdegree.

428 BALAJI RAGHAVACHARI AND JEYAKESAVAN VEERASAMY

In order to be self-contained, we briefly describe the min-cost flow formulation
used by Frederickson [8] for the Inout problem. Let G = (V,E,A) be the
input graph, where E is a set of undirected edges and A is a set of arcs. A
flow network N = (V,E′) is created as follows. E′ = A ∪ E1 ∪ E2, where
E1 and E2 are defined as follows. For each edge (v, w) ∈ E, we add the arcs
(v, w) and (w, v) to E1 and also to E2. The cost of an edge s is denoted by
cs. For a vertex v, let bv = −surplus(v) denote the imbalance created by the
arcs of A.

min z =
∑
s∈A

csxs +
∑
s∈E1

csxs

subject to

xs ≤ 1 for all s ∈ E2,(3.1)

Out(v) =
∑
{xs|s ∈ E′ is directed away from v} for all v ∈ V ,(3.2)

In(v) =
∑
{xs|s ∈ E′ is directed towards v} for all v ∈ V ,(3.3)

Out(v) − In(v) = bv for all v ∈ V ,(3.4)

xs ≥ 0 for all s ∈ E′.(3.5)

The arcs of E2 are used to represent the fact that the edges of E can be
oriented for free by the flow problem. Therefore, E2 does not figure in the
objective function, but the capacity of its edges is limited to 1 (constraint
(3.1)). The arcs of E1 represent the edges of E that are duplicated and
oriented by the flow problem. Hence the variables corresponding to E1 appear
in the objective function. Each node v has an imbalance of bv, which is defined
as the number of arcs in A that are directed towards v minus the number of
arcs in A that are directed away from v. Constraint (3.4) ensures that the
solution to the flow problem corrects this imbalance at each vertex. It is
not necessary to specify integrality conditions on the variables, since basic
optimal solutions to flow problems are always integral. It can be shown that
an integer optimal solution to the above linear program can be found using
standard algorithms for the min-cost flow problem [1]. There is no loss of
generality in assuming that, in an optimal solution to the above problem,
both directed arcs corresponding to an undirected edge are not used in the
solution. This is true because if a solution uses both arcs corresponding to
an edge, then deleting both of these arcs retains feasibility of the solution
without increasing the cost.
• Evenparity: When applied to the output of Inoutdegree on an even-

degree graph, Evenparity restores even degree to all nodes without increas-
ing the cost while retaining the property that indegree = outdegree at all
nodes. Edmonds and Johnson [4] indicated that Inoutdegree can be ap-
plied to an even-degree graph in such a way that the resulting graph has even
degree and is hence Eulerian. Frederickson [8] showed a simple linear-time
algorithm to perform the task. The basis of this algorithm is that a suit-
ably defined subgraph of undirected edges and duplicated edges/arcs forms a
collection of Eulerian graphs.
• Largecycles: Largecycles is similar to Evendegree except only edges

are allowed to be duplicated, and arcs are not considered.

ALGORITHM FOR THE MIXED POSTMAN PROBLEM 429

Evendegree

Inoutdegree

Evenparity

Inoutdegree

Largecycles

Mixed1
Mixed2

Select the output graph
with minimum cost

Input graph G = (V,E,A)

Fig. 1. Mixed algorithm.

Frederickson [8] presented an approximation algorithm for MPP called Mixed
algorithm (see Figure 1). The algorithm comprises two heuristics called Mixed1 and
Mixed2. Heuristic Mixed1 first runs Evendegree to make the degree of all nodes
even. Then it runs Inoutdegree to make indegree = outdegree for all vertices.
Finally, Evenparity restores even degree to all the nodes without increasing the
cost, and the graph becomes Eulerian. Heuristic Mixed2 first calls Inoutdegree and
then makes the graph Eulerian by calling Largecycles. Since Largecycles does
not duplicate arcs of the graph, no further steps are needed. The Mixed algorithm
outputs the best solution of the two heuristics, and Frederickson showed that its
performance ratio is at most 5

3 .

4. Improved lower bound for MPP. Consider a mixed graph G = (V,E,A),
with edges E and arcs A. Let C∗ be the weight of an optimal postman tour of G.
Suppose, given G as input, Inoutdegree outputs GIO = (V,U,M). U ⊆ E are the
edges of G that were not oriented by Inoutdegree. M ⊇ A are arcs that satisfy
indegree = outdegree at each vertex. For any edge {u, v} ∈ E, if M contains both
arcs (u, v) and (v, u), remove both of these arcs and add the edge {u, v} to U . This
step does not affect the feasibility of the Inout solution. Let CM and CU be the total
weight of M and U , respectively. Note that CM +CU = CIO(G)+C(G). Consider the
graph induced by M in the vertex set V . It contains one or more strongly connected
components when M is not empty. Since all nodes in GIO have surplus zero, each
arc of M is in one of the strongly connected components. We will refer to such
components as directed components. Let us define an equivalence relation Q on the
nodes of G as follows: for any two nodes u and v, uQv if and only if u and v are
in the same directed component in GIO. It can be verified that Q is an equivalence
relation. Suppose we shrink G by replacing the nodes of each equivalence class of Q
by a single node. Let us denote the output multigraph as UG. Note that UG can also
be derived from GIO simply by shrinking each directed component to a single node.
Since all arcs are part of directed components, there are no arcs in UG. We will refer

430 BALAJI RAGHAVACHARI AND JEYAKESAVAN VEERASAMY

to the nodes of UG as supernodes for clarity. Any node not adjacent to arcs in M is
itself a directed component and hence a supernode of UG.

If all supernodes of UG are of even degree, we can find a T-join of all odd degree
nodes of G by duplicating only the arcs and edges of M , and in this case it is possible
to achieve an approximation ratio of 3

2 using Frederickson’s analysis. However, if there
are supernodes of UG that have odd degree, i.e., if there are equivalence classes of Q
with an odd number of odd degree nodes in them, then a T-join of odd-degree nodes
is forced to use a subset of U . We need to improve the lower bound to account for
these edges in order to achieve a 3

2 approximation ratio for this case.

Consider a T-join J of the odd-degree nodes of G. The degree of each vertex in
the union of J and G is even. Hence every cut in it is crossed by an even number of
edges. Odd-degree supernodes in UG correspond to cuts in G that are crossed by an
odd number of edges. Since the addition of J makes the number of edges crossing each
of these cuts even, it can be verified that the set of edges of J that connect different
supernodes forms a T-join of the odd-degree supernodes of UG. Also, if a T-join of
the odd-degree supernodes of UG is added to GIO, the number of odd-degree vertices
in each of its directed components becomes even, and therefore the resulting graph
can be made to have even-degree by duplicating edges of M alone. We show that
Frederickson’s lower bound on the optimal cost of MPP can be improved to include
the cost of a minimum-weight T-join of the odd-degree supernodes of UG.

If we run Evendegree on UG, it adds a minimum-cost T-join of odd-degree
nodes (i.e., a subset of U) to make the degree of each supernode in UG even. Let
the cost of this T-join be CX . Frederickson [8] used a lower bound of CM + CU
on C∗. We show an improved lower bound on C∗, which allows us to improve the
approximation ratio. We first show that when we find an optimal Inout solution,
if some undirected edges are not oriented (edges in the set U) by Inoutdegree,
then adding additional copies of edges in U to G does not decrease CIO(G), the
augmentation cost of Inoutdegree. The lemma is proved using LP duality. For
more information on linear programs, the reader is referred to a book by Karloff [12].

Lemma 4.1. Let G = (V,E,A) be a mixed graph. Let GIO = (V,U,M) be
an optimal Inout solution computed by Inoutdegree algorithm. Let GIO be a
minimal solution that has the property that it never uses both arcs that correspond
to an undirected edge. Let U = {u1, . . . , uk} be the undirected edges of G that were
not oriented by Inoutdegree, even though the algorithm could orient these edges
without incurring additional cost. Adding additional copies of edges in U to G does
not decrease the augmentation cost of an optimal Inout solution.

Proof. A linear program for the Inout problem was presented in section 3. It
is a min-cost flow problem whose objective function value is exactly the augmen-
tation cost. Since the edges of U are not used in the optimal solution GIO, they
have a flow of 0 through them; i.e., the edges of U are unsaturated in GIO. Adding
additional copies of these edges is equivalent to increasing their capacities in the linear
program. By linear program duality, increasing the capacity of unsaturated arcs does
not affect the complementary slackness conditions, and hence an optimal solution to
the linear program remains optimal even after the capacities of the arcs of U are
increased.

Lemma 4.2. CM + CU + CX ≤ C∗.
Proof. Let G∗ be an optimal solution, whose cost is C∗. Consider the supernodes

of UG, which correspond to the directed components of M . G∗ needs to have addi-
tional T-join edges (subset of U) between these components to satisfy the even-degree

ALGORITHM FOR THE MIXED POSTMAN PROBLEM 431

condition for each component. This T-join costs at least CX . By Lemma 4.1, we
know that additional edges of U do not decrease the cost of optimal Inout solution.
Therefore the augmentation cost of the Inout problem is still CIO(G), after adding
T-join edges to G. Hence the total cost of G∗ is at least CX + CIO(G) + C(G).
Substituting CM + CU for CIO(G) + C(G), we get, CM + CU + CX ≤ C∗.

5. Modified MIXED algorithm. Figure 2 describes the modified Mixed algo-
rithm. First, we run algorithm Inoutdegree on input graph G and obtain GIO =
(V,U,M). Before running Evendegree of Mixed1 algorithm, reset the weights of
all arcs and edges used by M to 0, forcing Evendegree to duplicate edges/arcs of
M whenever possible, as opposed to duplicating edges of U . In other words, use the
following cost function when running Evendegree algorithm:

c′(e) =

{
0 if e ∈M,
c(e) otherwise.

Use the actual weights for the rest of the Mixed1 algorithm. There are no changes
made in Mixed2 algorithm.

& arcs in M to 0

Inoutdegree

Evenparity

and run Evendegree

Modified Mixed1

Largecycles

Mixed2

Input graph G = (V,E,A)

Set the cost of edges

Select the output graph
with minimum cost

Inoutdegree
outputs (V, U,M)

Fig. 2. Modified Mixed algorithm.

Remark. The cost of arcs and edges of M need not be set to zero. In practice,
the cost of each edge in U could be scaled up by a big constant. This ensures that
the total cost of edges from U in the minimum-cost T-join is minimized.

5.1. Analysis of Modified MIXED algorithm.
Lemma 5.1. Consider the minimum cost T-join of odd-degree supernodes of UG.

After adding this T-join to G, compute a T-join of odd-degree nodes within each
equivalence class. These steps together are equivalent to computing the minimum cost
T-join of odd-degree nodes of G with the new cost function c′.

432 BALAJI RAGHAVACHARI AND JEYAKESAVAN VEERASAMY

Proof. The minimum cost T-join of odd-degree supernodes of UG contains a few
edges from U and costs CX . Once we add these edges to G, each equivalence class of
G has an even number of odd-degree nodes. Since the nodes in each equivalence class
are connected by edges of M , there exists a T-join of the odd-degree nodes within
each equivalence class using only the edges and arcs of M . These two steps together
make all nodes of G even degree. Now consider the execution of Evendegree on
G with the new cost function c′: Since Evendegree is an optimal algorithm, it
computes a minimum cost T-join of odd-degree nodes of G. As observed earlier, it
induces a T-join of the odd-degree supernodes of UG and therefore costs at least
CX .

Lemma 5.2. Let CM be the cost of arcs in M and let C∗ be the cost of an optimal
postman tour of G. The cost of the tour generated by Modified Mixed1 algorithm is
at most C∗ + CM .

Proof. Consider the components induced by the arcs of M . In the original graph
G, the arcs of M correspond to arcs and oriented edges, possibly duplicated. By
setting the cost of edges and arcs of M to 0 in G, we force Evendegree not to
duplicate the edges of U as much as possible. By Lemmas 4.2 and 5.1, its output
graph will contain a few duplicated edges of U (costing CX) and a few duplicated
edges and arcs of M . Let H be the graph at this stage. Note that Evendegree
duplicates each arc of M at most once to form H. We follow Frederickson’s analysis [8]
for the rest of the proof: Let M1 contain two copies of each arc in M . Clearly, M and
M1 both satisfy Inout property. Hence, the union of U , X, and M1 forms an Inout
solution containing H, whose cost is CU + CX + 2 ∗ CM . Since Inoutdegree is an
optimal algorithm for an Inout problem, it is guaranteed to find an Inout solution
of cost at most CU +CX + 2 ∗CM . This is at most C∗ +CM by Lemma 4.2. Finally,
Evenparity does not change the cost of the solution.

Lemma 5.3 (Frederickson [8]). Algorithm Mixed2 finds a tour whose cost is at
most 2C∗ − CM .

Theorem 5.4. Algorithm Modified Mixed produces a tour whose cost is at most
3
2 C∗.

Proof. By Lemma 5.2, Modified Mixed1 outputs a solution whose cost is at most
CM + C∗, which is at most 3

2 C
∗, if CM ≤ C∗/2. On the other hand, if CM > C∗/2,

then by Lemma 5.3, Mixed2 outputs a solution whose cost is at most 2C∗ − CM ,
which is at most 3

2 C
∗.

6. Conclusion. We have presented an algorithm and analysis to achieve an
approximation ratio of 3

2 for the mixed postman problem. Improvement in the per-
formance ratio is achieved by proving an improved lower bound on the cost of an
optimal postman tour. The performance ratio is tight as shown by Frederickson’s
examples.

Acknowledgments. We thank an anonymous referee for pointing out an error
in an earlier version of our paper. We thank Eva Tardos for suggesting a simpler proof
of Lemma 4.1.

REFERENCES

[1] R. K. Ahuja, T. Magnanti, and J. Orlin, Network Flows, Prentice Hall, Englewood Cliffs,
NJ, 1993.

[2] P. Brucker, The Chinese postman problem for mixed networks, in Proceedings of the Inter-
national Workshop on Graphtheoretic Concepts in Computer Science, Lecture Notes in
Comput. Sci. 100, Springer-Verlag, New York, 1980, pp. 354–366.

ALGORITHM FOR THE MIXED POSTMAN PROBLEM 433

[3] N. Christofides, E. Benavent, V. Campos, A. Corberan, and E. Mota, An optimal method
for the mixed postman problem, in System Modelling and Optimization, Lecture Notes in
Control and Inform. Sci. 59, Springer, New York, 1984.

[4] J. Edmonds and E. L. Johnson, Matching, Euler tours and the Chinese postman, Math.
Programming, 5 (1973), pp. 88–124.

[5] H. A. Eiselt, Arc routing problems, Part I: The Chinese postman problem, Oper. Res., 43
(1995), pp. 231–242.

[6] H. A. Eiselt, Arc routing problems, Part II: The rural postman problem, Oper. Res., 43 (1995),
pp. 399–414.

[7] L. R. Ford and D. R. Fulkerson, Flows in Networks, Princeton University Press, Princeton,
NJ, 1962.

[8] G. N. Frederickson, Approximation algorithms for some postman problems, J. ACM, 26
(1979), pp. 538–554.

[9] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman and Co., New York, 1979, p. 212.

[10] M. Guan, Graphic programming using odd and even points, Chinese Math., 1 (1962), pp. 273–
277.

[11] C. Kappauf and G. Koehler, The mixed postman problem, Discrete Appl. Math., 1 (1979),
pp. 89–103.

[12] H. Karloff, Linear Programming, Birkhauser, Boston, MA, 1991.
[13] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization, John Wiley

& Sons, New York, 1988, pp. 648–651.
[14] Y. Nobert and J. C. Picard, An optimal algorithm for the mixed Chinese postman problem,

Networks, 27 (1996), pp. 95–108.
[15] C. H. Papadimitriou, On the complexity of edge traversing, J. ACM, 23 (1976), pp. 544–554.
[16] W. L. Pearn, Solvable cases of the k-person Chinese postman problem, Oper. Res. Lett., 16

(1994), pp. 241–244.
[17] W. L. Pearn and C. M. Liu, Algorithms for the Chinese postman problem on mixed networks,

Comput. & Oper. Res., 22 (1995), pp. 479–489.
[18] T. K. Ralphs, On the mixed Chinese postman problem, Oper. Res. Lett., 14 (1993), pp. 123–

127.

ON THE CONTOUR OF RANDOM TREES∗

BERNHARD GITTENBERGER†

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 4, pp. 434–458

Abstract. Two stochastic processes describing the contour of simply generated random trees
are studied: the contour process as defined by Gutjahr and Pflug [W. Gutjahr and G. Ch. Pflug,
Stochastic Process. Appl., 41 (1992), pp. 69–89] and the traverse process constructed of the node
heights during pre-order traversal of the tree. Using multivariate generating functions and singularity
analysis the weak convergence of the contour process to Brownian excursion is shown and a new proof
of the analogous result for the traverse process is obtained.

Key words. random trees, generating functions, singularity analysis, branching processes,
Brownian excursion

AMS subject classifications. 05C05, 60J80, 05A16

PII. S0895480195289928

1. Introduction. Let A be a class of plane rooted trees and define for T ∈ A
the size |T | by the number of nodes of T . Furthermore, there is assigned a weight
ω(T) to each T ∈ A. Let an denote the quantity

an =
∑
|T |=n

ω(T).

In addition, let us define the generating function (GF) corresponding to A by a(z) =∑
n≥0 anz

n. According to Meir and Moon [11] we call a family of trees simply gener-
ated if its GF satisfies a functional equation of the form

a(z) = zϕ(a(z)),(1.1)

where ϕ(t) =
∑
i≥0 ϕit

i with ϕi ≥ 0, ϕ0 > 0.
Let nk(T) denote the number of nodes v ∈ T with outdegree k (the outdegree of

v is the number of edges incident with v that lead away from the root). Then we have
for each simply generated tree T the relation

ω(T) =
∏
k≥0

ϕ
nk(T)
k .(1.2)

Consider a simply generated tree T of size n. The height hT (x) of a node x ∈ T
is defined to be the number of edges of the uniquely determined path that connects x
with the root. Let ĥT (m) denote the height of the mth leaf of T , supposing that the
leaves are enumerated from left to right. In the following we will assume that for each
n the set of all trees of size n is equipped with a probability distribution according
to the weights (1.2). Then ĥT (m) becomes a random variable which we denote by
Ĥn(m). If we define the continuation of Ĥn(m) by linear interpolation, i.e.,

Ĥn(x) = (bxc+ 1− x) Ĥn (bxc) + (x− bxc) Ĥn (bxc+ 1) ,

∗Received by the editors August 3, 1995; accepted for publication (in revised form) March 22,
1999; published electronically October 19, 1999. This research was supported by Austrian Science
Foundation FWF grant P10187-MAT.

http://www.siam.org/journals/sidma/12-4/28992.html
†Department of Geometry, TU Wien, Wiedner Hauptstrasse 8-10/113, A-1040 Wien, Austria

(Bernhard.Gittenberger@tuwien.ac.at).

434

ON THE CONTOUR OF RANDOM TREES 435

then we get a continuous stochastic process. The scaled process

X̂n(t) =
1√
n
Ĥn(tn), 0 ≤ t ≤ 1

is called the contour process.
We show that for simply generated trees this process converges weakly to Brow-

nian excursion (for the definition and basic properties see [10, p.75]).
Theorem 1.1. Let W+(t) denote Brownian excursion of duration 1. Fur-

thermore, assume that ϕ(t) has a positive or infinite radius of convergence R and
d = ggT{i|ϕi > 0} = 1. Moreover, suppose that the equation

tϕ′(t) = ϕ(t)(1.3)

has a minimal positive solution τ < R. Define

σ2 =
τ2ϕ′′(τ)

ϕ(τ)
.

Then the contour process X̂n(t) converges weakly to Brownian excursion, i.e.,

X̂n

(
ϕ0

ϕ(τ)
t

)
w−→ 2

σ
W+(t)(1.4)

in C[0, 1].
For the class of binary trees, (1.4) was established by Gutjahr and Pflug [9], but

their method does not seem to be transferable to the general case because it relies on
exact enumeration formulae which are available only for binary trees.

Remark 1. The case d > 1 can be treated similarly but is technically more
involved. The only differences concerning the results are that the limit theorems hold
only for n ≡ 1modd and that the limiting distribution in local limit theorems has to
be multiplied by d. Thus we restrict ourselves to d = 1.

Remark 2. Simply generated trees may be considered as trees associated with
Galton–Watson branching processes. In this context (1.3) means that the branching
process is critical and σ2 equals the variance of the offspring distribution. Thus,
the above theorem also yields a limiting distribution result for branching processes
conditioned on the total progeny. For a more detailed discussion of the connection
between trees and branching processes see Aldous [2].

In order to define the traverse process we have to use the tree T ′ defined to be
the tree we obtain by attaching T to a single node which serves as the root of T ′.
Now consider the following traverse procedure:

1. If the current node is v, choose the left-most successor of v that has not yet
been traversed (v′ is called successor of v if it is adjacent to v and hT (v′) >
hT (v)). If no such successor exists, return to the previous node.

2. Start at the root and apply step (1) to its successor.
Since in (1) choosing the left-most successor v′ is equivalent to choosing the edge
(v, v′), each edge is traversed twice and thus the number of steps is 2n. Let vi denote
the node we arrive at after i steps, and define hn(i) = hT (vi), i = 0, . . . , 2n. Assuming
again the probability model induced by the weights (1.2), hn(i) becomes a stochastic
process Hn(i) and we continue as above with Hn(i) by linear interpolation. The
traverse process is defined by the scaled process

Xn(t) =
1√
n
Hn(2nt), 0 ≤ t ≤ 1.

436 BERNHARD GITTENBERGER

The GFs involved in the investigation of X̂n(t) and Xn(t) are closely related and
thus we rather easily obtain the following from (1.4).

Theorem 1.2. Under the assumptions of Theorem 1.1 the traverse process Xn(t)
converges weakly to Brownian excursion, i.e.,

Xn(t)
w−→ 2

σ
W+(t)

in C[0, 1].
This limit theorem was established by Aldous [2] by means of probabilistic tech-

niques (see [1, 3]) and under the slightly weaker condition σ2 < ∞. Our approach
yields a new proof of this result.

The paper is organized as follows. In section 2 we give a brief description of
the basic methods—especially the combinatorial background—used in the following
sections. Section 3 is devoted to the proof of Theorem 1.1. Therefore, we have to
show the weak convergence of the finite-dimensional distributions and the tightness
of the process (see Billingsley [4]). In order to settle the first part of the proof we first
consider the three-dimensional distributions, where we prove an invariance property
which enables us to essentially simplify the rest of the proof. The last section provides
a brief discussion of the traverse process.

2. Basic methods. In order to derive the above-mentioned limit theorems we
use the concept of combinatorial constructions introduced by Vitter and Flajolet [12].
Let ◦ denote a node and A a simply generated family of trees. Then every element
in A has the form

{◦} × A× · · · × A.

Taking into account that we are considering weighted trees, we have to assign the
weight ϕi to the above expression if there are i factors A. Thus we get the following
symbolic recursion:

A = ϕ0 · {◦} ∪ ϕ1 · {◦} × A ∪ ϕ2 · {◦} × A×A ∪ · · · .

Using the fact that the operations ∪ and × can be translated into sum and product,
respectively, of the corresponding GFs, we obtain the functional equation (1.1).

Now let θ(T) be a characteristic of the tree T in which we are interested. Then
we mark the corresponding substructures of T which is equivalent to introducing a
new variable in the GF. Thus we get a bivariate GF

a(z, u) =
∑
m,n≥0

amnz
num.

The distribution of θ is given by

P{θ(T) = m : |T | = n} =
amn
an

,

where amn is the coefficient of znum in a(z, u), denoted by [znum]a(z, u). We will
calculate this distribution by deriving multivariate asymptotic expansions for akn with
uniform error terms. Thus we get a local limit theorem and, due to uniformity, this
implies the corresponding weak limit theorem.

ON THE CONTOUR OF RANDOM TREES 437

Example. θ(T) equals the number of leaves of T . If a marked node is represented
by • and the family of all trees with marked leaves is denoted by Y, then we get the
recursion

Y = ϕ0 · {•} ∪ {◦} × Φ(Y),

where

Φ(Y) = ϕ1 · {◦} × Y ∪ ϕ2 · {◦} × Y × Y ∪ · · · .
Due to the correspondence

◦ ↔ z,

• ↔ uz,

translating into GFs gives

y(z, u) = ϕ0z(u− 1) + zϕ(y(z, u)).(2.1)

For further demonstrations of these marking techniques we refer to [7].
To obtain asymptotic expansions we use Cauchy’s integral formula combined with

singularity analysis following the ideas of Flajolet and Odlyzko [8]. They used the
fact that the coefficients of the power series of an analytic function are essentially
determined by the behavior of the function near its dominant singularities, i.e., those
on the circle of convergence, and they proved the following theorem.

Theorem 2.1 (see [8]). Let f(z) be analytic in the domain

∆ = {z| |z| ≤ z0 + η, |arg(z − z0)| ≥ ϑ},
where z0, η > 0, and 0 < ϑ < π

2 . Furthermore, let α be a real number satisfying
α /∈ {0, 1, 2, . . .}. Then

f(z) ∼
(

1− z

z0

)α
for z → z0 in ∆ =⇒ [zn]f(z) ∼ 1

zn0 n
α+1Γ(−α)

.

Analogous formulae hold for O and o instead of ∼.
Remark. Let y(z, u) be the function defined by (2.1) and ymn = [umzn]y(z, u).

Then it can be shown that ymn
an

satisfy a central limit theorem with mean

1

an

∑
m≥0

mymn =
ϕ0

ϕ(τ)
n+O (1)(2.2)

and variance (
ϕ0

ϕ(τ)
− ϕ2

0

ϕ(τ)2
− ϕ2

0ϕ
′(τ)

ϕ(τ)3ϕ′′(τ)

)
n+O (1) ,(2.3)

where τ is the solution of (1.3) (see [5, 6]). If Ln(T) denotes the number of leaves of
a random tree T of size n, then (2.2) and (2.3) imply

lim
n→∞

Ln(T)

n
=

ϕ0

ϕ(τ)
, a.s.

Thus the restriction of X̂n(t) to the interval [0, ϕ0

ϕ(τ)] is justified.

438 BERNHARD GITTENBERGER

3. The contour process.

3.1. Basic functions and their local expansions. LetA be a family of simply
generated trees with GF defined by (1.1) and m1 < m2 < · · · < mp. Consider the

set Fk1m1k2m2...kpmpn ⊆ A of all trees T with n nodes satisfying ĥT (mi) = ki for
i = 1, . . . , p. Set

ak1m1...kpmpn =
∑

T∈Fk1m1...kpmpn

ω(T),

where ω(T) denote the weight defined by (1.2). Then the finite-dimensional distribu-
tions of Hn(x) are given by

P{Hn(m1) = k1, . . . , Hn(mp) = kp} =
ak1m1...kpmpn

an
.

Thus we need asymptotic expansions for ak1m1...kpmpn and an. When setting up
the GFs it turns out that they are composed of three basic functions: obviously,
the function y(z, u) defined by (2.1) plays the most important role. The other two
functions are composed of y(z, u):

φ1(z, u, v) = z
∑
i≥1

ϕi
∑

j1+j2=i−1

y(z, u)j1y(z, v)j2

= z
ϕ(y(z, u))− ϕ(y(z, v))

y(z, u)− y(z, v)

and

φ2(z, u, v, w) = z
∑
i≥2

ϕi
∑

j1+j2+j3=i−2

y(z, u)j1y(z, v)j2y(z, w)j3 .

Remark. These functions originate from the following setup: Consider a node to
which we attach i − 1 trees and a marked leaf b. Then leaves of the trees left from
b contribute to the number of b while the others do not. Thus, the trees left from b
correspond to the GF y(z, u) and the remaining trees to y(z, 1). Summing up over all
node degrees and keeping in mind that nodes of degree i are weighted by ϕi, we get
the GF zuφ1(z, u, 1). If we replace the marked node by more complicated structures,
we will get powers of φ1 or φ2. Of course there may occur functions φ3, φ4, . . . (it is
obvious how to define them) if we mark more than two leaves, but they prove to be
of no importance for the asymptotics in the following.

In order to proceed we need local expansions of these functions near their singu-
larities. We have the following.

Lemma 3.1 (see [6]). Let ϕ(t) have a positive or infinite radius of convergence R.
Furthermore, assume that d = ggT{i|ϕi > 0} = 1 and that the equation tϕ′(t) = ϕ(t)
has a minimal positive solution τ < R. Then for an ε > 0 there exists a uniquely
determined analytic function z = f(u) on |u − 1| < ε such that f(1) = 1

ϕ′(τ) and

y(f(u), u) satisfies

y = ϕ0z(u− 1) + zϕ(y),

1 = zϕ′(y).

ON THE CONTOUR OF RANDOM TREES 439

z = f(u) is the only singularity of y(z, u) in the domain |z| ≤ z0+ε, arg(1− z
f(u)) 6= π,

where z0 = f(1). Moreover, inside the domain {(z, u) : |z−f(u)| < ε, arg(1− z
f(u)) 6=

π} y(z, u) admits the local representation

y(z, u) = g(z, u)− h(z, u)

√
1− z

f(u)
,

where g(z, u) and h(z, u) are analytic functions satisfying

g(z0, 1) = τ and h(z0, 1) =

√
2ϕ(τ)

ϕ′′(τ)
.

For d > 1 analogous representations in the vicinity of f(u) exp
(
j 2πi
d

)
, 0 ≤ j < d

hold.
Corollary 1. Assume d = 1. Then a(z) has one and only one singularity

z = z0 on the circle of convergence. Furthermore, the local representation

a(z) = τ − τ
√

2

σ

√
1− z

z0
+O

(∣∣∣∣1− z

z0

∣∣∣∣2
)

holds near z = z0

Corollary 2. For an = [zn]a(z) we have

an =
τ

σzn0
√

2πn3

(
1 +O

(
1

n

))
.(3.1)

Remark. It is possible to exchange the roles of z and u in the theorem; that means
we also have a local representation of the form

y(z, u) = g̃(z, u)− h̃(z, u)

√
1− u

f̃(z)
,(3.2)

where g̃(z, u), h̃(z, u), and f̃(z) are analytic functions. Using this lemma, local ex-
pansions for the above-mentioned basic functions can easily be derived.

Lemma 3.2 (see [6]). Set z = z0(1 + t
n) and ui = 1 + si

mi
, i = 1, 2, 3, where

ε < mi
n
ϕ(τ)
ϕ0

< 1− ε, for arbitrary ε > 0. Furthermore, let |t| ≤ ηn and |si| ≤ ηmi for
sufficiently small η > 0. Then for n→∞ the following local expansions hold:

y(z, u1)− τ = −
√

2ϕ(τ)

ϕ′′(τ)

√
− t
n
− ϕ0

ϕ(τ)

s1

m1
+O

(|s1|
m1

+
|t|
n

)
,

φ1(z, u1, u2) = 1− σ√
2

(√
− t
n
− ϕ0

ϕ(τ)

s1

m1
+

√
− t
n
− ϕ0

ϕ(τ)

s2

m2

)

+ O
(|t|
n

+
|s1|
m1

+
|s2|
m2

)
,(3.3)

φ2(z, u1, u2, u3) =
z0ϕ
′′(τ)

2
+O

√ |t|
n

+
|s1|
m1

+
|s2|
m2

+
|s3|
m3

 .

440 BERNHARD GITTENBERGER

u

uu

u

u

u

u

uu

u

u

u u

u

uu u

V1 V1

V2V2

V1 = V2

m1 m1 m2 m3m3

m2m1m3m2

Fig. 3.1. The possible shapes of T0 for p = 3.

Since expressions like those in the previous lemma will frequently occur in the
following sections, from now on we will use the abbreviation

ci1i2...ik =

√
− t
n
− ϕ0

ϕ(τ)

(
si1
mi1

+ · · ·+ sik
mik

)
,

c =

√
− t
n
.

3.2. An invariance property. Drmota [6] used the above setup to determine
the one- and two-dimensional distributions of the contour process. The method works
in principle for higher dimensional distributions, too, but the expressions obtained in
these cases become too complicated to cope with. If we combine this method with
an idea of Gutjahr and Pflug [9] that works for binary trees, we will achieve an
essential simplification. The idea is to introduce an additional quantity li which is
defined as follows: Consider a simply generated tree T , where the leaves with numbers
m1 < m2 < · · · < mp are marked. Then the paths connecting the root with the mith
leaf and the mi+1st leaf, respectively, have at least the root in common. Let Vi denote
that of the common nodes which has maximal height and define li := hT (Vi).

Let us now consider the case p = 3. Define the GF

Bk1l1k2l2k3(z, u1, u2, u3) =
∑

n,m1,m2,m3≥0

bk1m1l1k2m2l2k3m3nz
num1

1 um2
2 um3

3 ,

where bk1m1l1k2m2l2k3m3n denotes the sum of weights of all trees with n nodes and

satisfying ĥT (mi) = ki, i = 1, 2, 3, and hT (Vj) = lj . To set up this GF we have to
distinguish three cases: l1 < l2, l1 > l2, and l1 = l2. The third one is asymptotically
negligible since it corresponds to a hyperplane in R5 in the limit case and thus it has
no influence on the density of the limiting distribution (for a detailed argumentation
see [9]).

For convenience, we introduce a tree T0 consisting of m1,m2,m3, V1, V2, and the
root of T . The edges of T0 are the paths that connect its nodes in T (see Figure 3.1).
Now consider a node x of T which lies on the edge of T0 which connects the root with
V1. As mentioned in the previous section, the leaves of all trees which are rooted in x

ON THE CONTOUR OF RANDOM TREES 441

and lying left from the path containing x contribute to the number of m1, m2, and m3

while leaves of those trees lying on the right-hand side yield no contribution. Thus, the
subgraph of T induced by x and all its descending trees not lying in T0 corresponds to
the GF φ1(z, u1u2u3, 1). If x lies on a different path, we have to observe which of the
leaves m1, m2, and m3 are to the left or right of the trees rooted in x. For instance,
if x ∈ (V1, V2), then the corresponding GF is φ1(z, u2u3, 1) (where we assumed T0 to
be the left-most tree in Figure 3.1). Thus each edge of T0 corresponds to a power of
φ1 according to its length and with suitably chosen arguments. The branching points
V1 and V2 yield factors φ2 due to the fact that we have to distinguish three classes
of trees rooted at V1 or V2: the ones to the left of all edges of T0, the ones to the
right of those edges, and the ones lying in between. This yields, e.g., for V2 the GF
φ2(z, u2u3, u3, 1). Finally, we have to take into account the leaves m1, m2, and m3,
yielding the GFs ϕ0zu1u2u3, ϕ0zu2u3, and ϕ0zu3, respectively. Therefore, we obtain
for l1 < l2

Bk1l1k2l2k3
(z, u1, u2, u3) = ϕ3

0z
3u1u

2
2u

3
3φ2(z, u1u2u3, u2u3, 1)φ2(z, u2u3, u3, 1)

×φ1(z, u1u2u3, 1)l1φ1(z, u1u2u3, u2u3)k1−l1−1

×φ1(z, u2u3, 1)l2−l1−1φ1(z, u2u3, u3)k2−l2−1

×φ1(z, u3, 1)k3−l2−1.

Analogously, we get the GF in the case l1 > l2:

Bk1l1k2l2k3
(z, u1, u2, u3) = ϕ3

0z
3u1u

2
2u

3
3φ2(z, u1u2u3, u3, 1)φ2(z, u1u2u3, u2u3, u3)

×φ1(z, u1u2u3, 1)l2φ1(z, u1u2u3, u2u3)k1−l1−1

×φ1(z, u1u2u3, u3)l1−l2−1φ1(z, u2u3, u3)k2−l1−1

×φ1(z, u3, 1)k3−l2−1.

If we consider random trees, then the heights of the leaves m1,m2,m3 as well
as the path lengths l1, l2 become random variables. Let us denote this multivariate
random variable by (K1, L1,K2, L2,K3). Its distribution is determined by

[znum1
1 um2

2 um3
3]Bk1l1k2l2k3

(z, u1, u2, u3).

This coefficient can be calculated asymptotically by means of Cauchy’s integral for-
mula. The integration path is chosen in such a way that one part lies close to the
singularity (this part yields the main term) and the remaining part is asymptoti-
cally negligible (for details see the next section). Thus, the limiting distribution is
completely determined by the local behavior of the GF.

Let ki, i = 1, 2, 3, and lj , j = 1, 2, be proportional to
√
n and mi, i = 1, 2, 3,

satisfy the condition ε < mi
n
ϕ(τ)
ϕ0

< 1 − ε for arbitrary ε > 0. Using Lemma 3.2 and

the fact that ki− 1 ∼ ki and li− 1 ∼ li, it can be shown that Bk1l1k2l2k3
(z, u1, u2, u3)

admits the local representation

ϕ3
0z

5
0ϕ
′′(τ)2

4
exp

(
− σ√

2
(l1(c123 + c) + (k1 − l1)(c123 + c23) + (l2 − l1)(c23 + c)

+(k2 − l2)(c23 + c3) + (k3 − l2)(c3 + c))

)
(3.4)

×
1 +O

(
M

(|t|
n

+
|s1|
m1

+
|s2|
m2

+
|s3|
m3

))
+O

√ |t|
n

+
|s1|
m1

+
|s2|
m2

+
|s3|
m3

442 BERNHARD GITTENBERGER

for l1 < l2 and

ϕ3
0z

5
0ϕ
′′(τ)2

4
exp

(
− σ√

2
(l2(c123 + c) + (k1 − l1)(c123 + c23) + (l1 − l2)(c123 + c3)

+(k2 − l1)(c23 + c3) + (k3 − l2)(c3 + c))

)

×
1 +O

(
M

(|t|
n

+
|s1|
m1

+
|s2|
m2

+
|s3|
m3

))
+O

√ |t|
n

+
|s1|
m1

+
|s2|
m2

+
|s3|
m3

for l1 > l2, respectively, where M = max(k1, k2, k3). The difference of the exponents
is

(l1 − l2)(c123 + c− c23 − c− c123 − c3 + c23 + c3) = 0

and thus (3.4) also holds for the case l1 > l2, meaning that the local representation
of Bk1l1k2l2k3

(z, u1, u2, u3) is invariant with respect to the shape of T0. Generalizing
the above considerations we get the following.

Lemma 3.3 (invariance property). Let Bk1l1...kp−1lp−1kp(z, u1, . . . , up) be the GF
of (K1, L1, . . . ,Kp−1, Lp−1,Kp) and Bp denote the set of all binary trees with p leaves,
where p is a fixed positive integer. Assume that T0 ∈ Bp and that the quantities
k2
i ,mi, i = 1, . . . , p, and l2j , j = 1, . . . , p − 1, are asymptotically proportional to n.

Then for ‖z − z0, u1 − 1, . . . , up − 1‖max = o (
√
n) there exists a local asymptotic

representation of Bk1l1...kp−1lp−1kp(z, u1 . . . , up) that holds for all T0 ∈ Bp.
Proof. As the lemma is intended to simplify the proofs in the following section,

we have to consider the one special shape of T0 which is most convenient to work with
and then show that the local representation is invariant with respect to the shape of
T0. Thus, we choose the one that satisfies l1 < l2 < · · · < lp (according to Figure 3.2)
in order to get rid of the usually unpleasant terms min(li, lj) and max(li, lj) occurring
in the GFs. This leads to the GF

B(z, u1, . . . , up) = ϕp0z
pu1u

2
2 · · ·upp

p−1∏
i=1

[
φ1(z, ui · · ·up, ui+1 · · ·up)ki−li−1

×φ1(z, ui · · ·up, 1)li−li−1−1+δi1φ2(z, ui · · ·up, ui+1 · · ·up)
]

×φ1(z, up, 1)kp−lp−1−1,

where we define l0 = 0 and δij is the Kronecker delta defined by δij = 1− sgn|i− j|.
Let z = z0

(
1 + t

n

)
and ui = 1 + si

mi
be chosen in such a way that the assumptions of

Lemma 3.2 hold. Then we get for ki = κi
√
n and li = λi

√
n the local representation

B(z, u1, . . . , up) = ϕp0z
p
0

(
z0ϕ
′′(τ)

2

)p−1

exp

(
− σ√

2

(
p−1∑
i=1

((ki − li)(ci···p + ci+1,...,p)

+(li − li−1)(ci···p + c)) + (kp − lp−1)(cp + c)

))

×
1 +O

(
Mp

(
|t|
n

+

p∑
i=1

|si|
mi

))
+O

√√√√ |t|
n

+

p∑
i=1

|si|
mi

 ,(3.5)

where Mp = max1≤i≤p ki.

ON THE CONTOUR OF RANDOM TREES 443t
t

t t

t
t

t t
t

m1

mp−2

mp−1 mp

Vp−1

Vp−2

V2

V1

l1

l2 − l1

lp−1 − lp−2

Fig. 3.2. The chosen shape of T0.

t
t

t t

t
t
t t

t
A1

Aq−2

Aq−1 Aq

Vλ1+···+λq−1

Vλ1+···+λq−2

Vλ1+λ2

Vλ1

lλ1

lλ1+λ2
− lλ1

lλ1+···+λq−1
− lλ1+···+λq−2

lλ1+···+λq−1+1

−lλ1+···+λq−1

Fig. 3.3. The general shape of T0.

t
t

t t

t
t
t t

t
mλ1+···+λν−1+1

mλ1+···+λν−2

mλ1+···+λν−1 mλ1+···+λν

Vλ1+···+λν

Vλ1+···+λν−1

Vλ1+···+λν−2

Vλ1+···+λν−1+2

Vλ1+···+λν−1+1

lλ1+···+λν−1+1 − lλ1+···+λν

lλ1+···+λν−1+2 − lλ1+···+λν−1+1

lλ1+···+λν−1 − lλ1+···+λν−2

kλ1+···+λν
−lλ1+···+λν−1

Fig. 3.4. Zooming into Aν .

444 BERNHARD GITTENBERGER

From this formula it is easy to see how the structure of T0 can be translated into
the proper terms of the exponent in the local expansion of the corresponding GF.
We complete our proof by induction on p. Note that the general shape of T0 has the
form of Figure 3.3, where Aν are trees with λν marked leaves such that

∑q
ν=1 λν = p.

The GF corresponding to Aν is a product of φ1- and φ2-terms, and by the induction
hypothesis the local behavior is independent of the shape of the underlying part of
T0 which we denote by T0ν . Thus, we may assume that T0ν is already “well shaped,”
i.e., as shown in Figure 3.4. By (3.5) the exponent in the expansion of the GF
corresponding to Aν ∪ (Vλ1+···+λν , Vλ1+···+λν−1+1) (where (i, j) denotes the edge in T0

which connects i and j) is given by

Λν∑
i=Λν−1+1

[(ki − li)(ci···p + ci+1,...,p)

+ (li − li−1 + δi,Λν−1+1(li−1 − lΛν)(ci···p + cΛν+1,...,p)
]

+ (kΛν − lΛν−1) (cΛν ,...,p + cΛν+1,...,p) ,

where we defined, for convenience, Λν = λ1 + · · · + λν , and furthermore we have to
set Λ0 := 0, lΛq := lΛq−1 , and cΛq+1,...,p := c. Hence we have to show the following
identity:

q∑
ν=1

 Λν−1∑
i=Λν−1+1

[(ki − li)(ci···p + ci+1,...,p)

+ (li − li−1 + δi,Λν−1+1(li−1 − lΛν))(ci···p + cΛν+1,...,p)
]

+ (kΛν − lΛν−1) (cΛν ,...,p + cΛν+1,...,p)

]
+

q−1∑
ν=1

(lΛν − lΛν−1)
(
cΛν−1+1,...,p + c

)
=

p−1∑
i=1

[(ki − li)(ci···p + ci+1,...,p) + (li − li−1)(ci···p + c)] + (kp − lp−1)(cp + c).

Subtracting
∑p−1
i=1 [(ki − li)(ci···p + ci+1,...,p) + (li − li−1)ci···p] gives

q∑
ν=1

 Λν−1∑
i=Λν−1+1

(li − li−1 + δi,Λν−1+1(li−1 − lΛν))cΛν+1,...,p +
(
lΛν−1 − lΛν

)
cΛν−1+1,...,p

+ (kΛν − lΛν−1) (cΛν ,...,p + cΛν+1,...,p)

]
+

q−1∑
ν=1

(lΛν − lΛν−1)
(
cΛν−1+1,...,p + c

)
−
q−1∑
ν=1

[(kΛν − lΛν) (cΛν ,...,p + cΛν+1,...,p) + (lΛν − lΛν−1) cΛν ,...,p]

= kp(cp + c)− lp−1cp,

and this can be easily checked.

3.3. The finite-dimensional distributions. Applying the substitution wi =
ki + ki+1 − 2li on (3.5) yields

ON THE CONTOUR OF RANDOM TREES 445

B(z, u1, . . . , up) = ϕp0z
p
0

(
z0ϕ
′′(τ)

2

)p−1

exp

(
− σ√

2

(
c1···pk1 +

p−1∑
i=1

ci+1,...,pwi + ckp

))

×
(

1 +O
(
Mp

(
|t|
n

+

p∑
i=1

|si|
mi

)))
,(3.6)

and by means of this formula we are able to prove the following.
Theorem 3.1. Let ε > 0 and wi = ki + ki+1 − 2li. Then we have, uniformly for

m1

n ≥ ε, mj+1−mj
n ≥ ε, j = 1, . . . , p−1, ϕ0

ϕ(τ) − mp
n ≤ ε, and ki = O (

√
n), i = 1, . . . , p,

wj = O (
√
n), j = 1, . . . , p− 1,

[znum1
1 · · ·umpp]B = C ′pk1w1 · · ·wp−1kp

×
[
m1(m2 −m1) · · · (mp −mp−1)

(
n− ϕ(τ)

ϕ0
mp

)]−3/2

× exp

(
−σ

2

8

ϕ0

ϕ(τ)

(
k2

1

m1
+

p∑
i=2

w2
i−1

mi −mi−1
+

k2
p

ϕ0

ϕ(τ)n−mp

))

×
(

1 +O
(

1√
n

))
, n→∞,(3.7)

where

C ′p = ϕp0z
p−n
0

(
σ√
2

)p+1(
z0ϕ
′′(τ)

2

)p−1
1

(2
√
π)p+1

(
ϕ0

ϕ(τ)

)p/2
= z−n0

τ

2p+1

(
σ√
2

)3p−1

π−(p+1)/2

(
ϕ0

ϕ(τ)

)3p/2

.

Dividing (3.7) by an yields the following local limit theorem.
Corollary. Let kj = κj

√
n+o(

√
n) ∈ N, j = 1, . . . , p, and wj = ki+ki+1−2li =

ωj
√
n+o(

√
n) ∈ N, j = 1, . . . , p−1, satisfying |κj+1−κj | ≤ ωj ≤ κj+1+κj. Moreover,

assume ϕ(τ)
ϕ0

mj = µjn + o(n), where 0 < µ1 < · · · < µp < 1, and let Wi denote the
random variable Ki +Ki+1 − 2Li. Then the density

P{K1 = k1,W1 = w1, . . . ,Kp−1 = kp−1,Wp−1 = wp−1,Kp = kp}
=
bk1m1l1···kp−1mp−1lp−1kpmpn

an

of the random variable (K1,W1, . . . ,Kp−1,Wp−1,Kp) admits the following asymptotic
expansion:

n(2p−1)/2 bk1m1l1···kp−1mp−1lp−1kpmpn

an
=

1

(2
√
π)p

(
σ√
2

)3p

κ1ω1 · · ·ωp−1κp

× [µ1(µ2 − µ1) · · · (µp − µp−1)(1− µp)]−3/2

× exp

−σ2

8

κ2
1

µ1
+

p∑
j=2

ω2
j−1

µj − µj−1
+

κ2
p

1− µp

+ o(1)(3.8)

446 BERNHARD GITTENBERGER

for n → ∞. The error term is uniform in ωi, i = 1, . . . , p − 1, and for κj ∈ [aj , bj],
bj > aj > 0 and κj+1 − κj > ε > 0, j = 1, . . . , p.

Now the finite-dimensional distribution of the contour process, i.e., the distribu-
tion of (K1, . . . ,Kp), can be calculated. Due to uniformity of the error term it suffices
to determine the marginal density in (κ1, . . . , κp) of (3.8). Doing this we obtain a
multivariate Maxwell distribution which actually coincides with that of Brownian
excursion. Thus the following theorem holds.

Theorem 3.2. Let πt1,...,tk be the projection defined by

πt1,...,tk: C[0, 1]→ Rk,

x(t) 7→ (x(t1), . . . , x(tk)).

Then the following limit theorem holds:

πt1,...,tk

(
X̂n

(
ϕ0

ϕ(τ)
t

))
d−→ πt1,...,tk

(
2

σ
W+(t)

)
.

Remark. Note that Theorem 3.1 and its corollary provide only the distributions
at the vertices of the polygon X̂n(t). Thus they imply a slightly different form of
the above limit theorem: we have to substitute X̂n(t) with the corresponding step
function process X̂n (btnc/n). However, by means of the proof of tightness (see section
3.6) we are able to prove the theorem as we stated it (see the end of section 3).

3.4. Proof of Theorem 3.1. Determination of the main term. In order
to prove Theorem 3.1 we use Cauchy’s integral formula

[znum1
1 · · ·umpp]B(z, u1, . . . , up) =

1

(2πi)p+1

∫
Γ1

· · ·
∫
Γp

∫
Γ0

B(z, u1, . . . , up)

zn+1um1+1
1 · · ·ump+1

p

dz dup · · · du1(3.9)

with the following integration contour: Let z run through the contour Γ0 = Γ01 ∪
Γ02 ∪ Γ03 ∪ Γ04 defined by

Γ01 =

{
z = z0

(
1 +

t

n

)∣∣∣∣<t ≤ 0 and |t| = 1

}
,

Γ02 =

{
z = z0

(
1 +

t

n

)∣∣∣∣=t = 1 and 0 ≤ <t ≤ log2 n

}
,

Γ03 = Γ02,

Γ04 =

{
z

∣∣∣∣|z| = z0

∣∣∣∣1 +
log2 n+ i

n

∣∣∣∣ and arg

(
1 +

log2 n+ i

n

)
≤ | arg(z)| ≤ π

}
.

Note that while z is running through Γ0 the location of the singularity also changes.
This fact has to be taken care of when choosing the integration contour for the other

ON THE CONTOUR OF RANDOM TREES 447

variables. The location of the singularity is determined asymptotically by the equa-
tions

t

n
= 0,

ϕ0

ϕ(τ)

sp
mp

+
t

n
= 0,

ϕ0

ϕ(τ)

(
sp−1

mp−1
+

sp
mp

)
+
t

n
= 0,

...
...

ϕ0

ϕ(τ)

(
s1

m1
+ · · ·+ sp−1

mp−1
+

sp
mp

)
+
t

n
= 0,

as one can easily see by looking at (3.6). Thus, as the integration contour of u1, . . . , up
we may choose Γj = Γj1 ∪ Γj2 ∪ Γj3 ∪ Γj4 defined by

Γj1 =

{
uj =

(
1 +

sj
mj

)∣∣∣∣<sj ≤ −Rj(sj+1, . . . , sp, t) and

|sj +Rj(sj+1, . . . , sp, t) + Ij(sj+1, . . . , sj , t)i| = 1

}
,

Γj2 =

{
uj =

(
1 +

sj
mj

)∣∣∣∣=sj = −Ij(sj+1, . . . , sp, t) + 1,

−Rj(sj+1, . . . , sp, t) ≤ <sj and |uj | ≤
∣∣∣∣1 +

log2mj + i

mj

∣∣∣∣
}
,

Γj3 =

{
uj =

(
1 +

sj
mj

)∣∣∣∣=sj = −Ij(sj+1, . . . , sp, t)− 1,

−Rj(sj+1, . . . , sp, t) ≤ <sj and |uj | ≤
∣∣∣∣1 +

log2mj + i

mj

∣∣∣∣
}
,

Γj4 =

{
uj

∣∣∣∣|uj | = ∣∣∣∣1 +
log2mj + i

mj

∣∣∣∣ and arg uj ∈ [−π, arg zj3] ∪ [arg zj2, π]

}
,

where

Rj(sj+1, . . . , sp, t) =

max

(
0,
ϕ(τ)

ϕ0

mp

n
<t
)

if j = p,

max

(
0,<

(
ϕ(τ)

ϕ0

tmj

n
+
sj+1mj

mj+1
+ · · ·+ spmj

mp

))
else,

Ij(sj+1, . . . , sp, t) =

max

(
n2/3,

ϕ(τ)

ϕ0

mp

n
=t
)

if j = p,

max

(
n2/3,=

(
ϕ(τ)

ϕ0

tmj

n
+
sj+1mj

mj+1
+ · · ·+ spmj

mp

))
else,

and zjk denotes the point of Γjk with maximal absolute value.

448 BERNHARD GITTENBERGER

Remark. The functions Rj and Ij guarantee that the Hankel-like contours1 Γ′j =
Γj1∪Γj2∪Γj3 follow the movement of the singularity while z, uj+1, . . . , up are varying.
It can be shown that, for these variables moving away from the Hankel contour along
Γ.4, the singularity drifts out of the circle determined by Γj4 and reaches a point x
with |x| = 1 + Cn−1/3 when one of the variables z, uj+1, . . . , up arrives at distance
n−1/3 from the Hankel contour. Thus the term n2/3 in the definition of Ij is justified.

Let us now consider the contribution of the Hankel integrals which yields the main
term, as we will show in the next section. If we apply the substitutions z = z0

(
1 + t

n

)
,

uj = 1 +
sj
mj

to (3.9) and use the asymptotic expansion (3.6), then we get

Cp
(2πi)p+1

∫
Γ′0

∫
Γ′1

· · ·
∫
Γ′p

exp

(
− σ√

2

(
c1···pk1 +

p−1∑
i=1

ci+1,...,pwi + ckp

)

− t− s1 − · · · − sp
)
dsp
mp
· · · ds1

m1

dt

n

1 +O
Mp

 1

n
+

p∑
j=1

1

mj

 ,

where

Cp = ϕp0z
p−n
0

(
z0ϕ
′′(τ)

2

)p−1

.

The shape of this integral suggests the substitution

ϕ0

ϕ(τ)m1
0 · · · 0

0
. . .

. . .
...

... ϕ0

ϕ(τ)mp
0

0 0 1
n

v1

...

vp

t

=

ϕ0

ϕ(τ)m1

ϕ0

ϕ(τ)m2
· · · ϕ0

ϕ(τ)mp
1
n

0 ϕ0

ϕ(τ)m2
· · · ϕ0

ϕ(τ)mp
1
n

...
. . .

. . .
...

...
...

. . . ϕ0

ϕ(τ)mp
1
n

0 · · · · · · 0 1
n

s1

s2

...

sp

t

which finally leads to

(3.10)

Cp
m1 · · ·mpn

p∏
j=1

∫
γj

e−αj
√
−vj−βjvj dvj

∫
γ0

e−αp+1

√−t−βp+1t dt

(
1 +O

(
1√
n

))
,

1According to Hankel’s representation of the gamma function we will refer to the integration
contour starting at e2πi∞, passing the origin clockwise and returning to +∞ as Hankel contour.
Similarly, we will use the attribute Hankel for all related concepts such as Hankel integral, etc.

ON THE CONTOUR OF RANDOM TREES 449

where

α1 =
σk1√
2m1

√
ϕ0

ϕ(τ)
, β1 = 1,

αj =
σwj−1√

2mj

√
ϕ0

ϕ(τ)
, j = 2, . . . , p, βj = 1− mj−1

mj
, j = 2, . . . , p,

αp+1 =
σkp√

2n
, βp+1, 1− mp

n

ϕ(τ)

ϕ0
,

and γj are Hankel contours meeting the constraint

<t ≤ log2 n and <vj ≤ log2mj , j = 1, . . . , p.

Lemma 3.4. Let γ be a Hankel contour truncated at K. Then we have for
α, β > 0

1

2πi

∫
γ

e−α
√−t−βt dt =

αβ−
3
2

2
√
π

exp

(
−α

2

4β

)
+O

(
1

β
e−Kβ

)
.(3.11)

Proof. Substitute t = u2 and
√
βu− iα

2
√
β

= v. Then we get

αβ−
3
2

2π
exp

(
−α

2

4β

) ∞+iα/2β∫
−∞+iα/2β

e−v
2

dv

and this immediately implies (3.11).
Applying this lemma to (3.10) yields the main term of (3.7).

3.5. The remainder integrals. In this section we have to show that those
parts of the Cauchy integral (3.9), where z or at least one of the uj lies in Γ04 or Γj4,
respectively, are asymptotically negligible. Therefore, let Ip denote the integral (3.10)
and Rp the remaining integral. Obviously, we have

Ip = O (z−n0 n−p−1
)
, n→∞.(3.12)

In order to estimate Rp, observe that for z ∈ Γ04 and uj ∈ Γj4, respectively, the
relations

|z−n−1| = O
(
z−n−1

0 e− log2 n
)

and |u−mj−1
j | = O

(
e− log2 mj

)
hold. B(z, u1, . . . , up) is composed of φ1(z, u, v) and φ2(z, u, v, w). As both functions
are analytic inside the integration domain (and thus bounded there) and, moreover,
the latter one appears only to the first power, it suffices to study the behavior of
φ1(z, u, v). Inside the domain max(|z − z0|, |u − 1|, |v − 1|) ≤ ε, ε > 0 sufficiently
small, we may use the local representation (3.3) provided that ε is sufficiently small.
Let z = 1 + t

n and consider the expression

A = 1− σ√
2

√
− t
n

450 BERNHARD GITTENBERGER

for t ∈ Γ0 and z0| tn | ≤ ε. If t ∈ Γ01, then

−t = eiψ, ψ ∈
[
−π

2
,
π

2

]
and immediately we get |A| ≤ 1. Let t ∈ Γ02 ∪ Γ03, meaning t = r ± i, where
0 ≤ r ≤ log2 n. Then√

− t
n

=
(1 + r2)1/4

√
n

exp

(
i

(
π

2
− 1

2
arctan

1

r

))
,

and that implies

|A|2 =

1− σ√

n
+O

(
r√
n

)
+O

(
1

n

)
for small r,

1− σ√
2rn

+O
(

1√
r5n

)
+O

(
log2 n

n

)
for large r.

It remains to investigate the case z ∈ Γ04. In this case we have z
z0

= aeiψ/n, where

a =

∣∣∣∣1 +
log2 n+ i

n

∣∣∣∣
and ψ ≤ εn. An easy calculation shows√

− t
n
∼
√
− log2 n

n
− iaψ

n

and using this we immediately obtain |A| ≤ 1.
Obviously, the above considerations are also valid if we use√

− ϕ0

ϕ(τ)

(
sj
mj

+ · · ·+ sp
mp

)
− t

n

or sums of terms of this form instead of
√
− t
n . Thus we have for max(|z − z0|,

|u− 1|, |v − 1|) ≤ ε the inequality

|φ1(z, u, v)| ≤ 1

which implies

Rp = O
(
z−n0 e−C log2 n

)
(3.13)

for a suitable constant C.
Now let (z, u, v) be outside the region where the local expansion of φ1(z, u, v)

is valid. Set z = z0

(
1 + t

n

)
, u = 1 + s

m , and v = 1 + r
l , l,m proportional to

n and, for example,
∣∣ r
l

∣∣ > ε. Then φ1(z, u, v) is analytic for |u| ≤ ∣∣1 + cm−1/3
∣∣ and

|z| ≤ z0

∣∣1 + c′n−1/3
∣∣. Thus it is bounded and, as the exponents ki and li are bounded

by
√
n, we have

|B(z, u1, . . . , up)| = O
(
e
√
n
)
.

ON THE CONTOUR OF RANDOM TREES 451

Conversely, we may choose the circles |u| =
∣∣1 + cm−1/3

∣∣ and |z| = z0

∣∣1 + c′n−1/3
∣∣

as integration contours for u and z. Thus we get

Rp = O
(
z−n0 exp

(√
n− n2/3

))
.(3.14)

Finally, (3.12)–(3.14) imply that the remainder integrals are exponentially small
and therefore negligible which completes the proof of Theorem 3.1.

3.6. Tightness. In order to complete the proof of Theorem 1.1 we have to prove
that the process X̂n(t) is tight. This can be done by employing Theorem 12.3 of [4]:
The first condition is trivial, as P{X̂n(0) = 0} = 1. Furthermore, it can be shown
that for polygonal functions like X̂n(t) it suffices to establish the second condition of
this theorem only for the vertices of the polygon (use the ideas of [9, p. 86]); i.e., we
have to prove that

P

{∣∣∣∣X̂n

(
i

n

)
− X̂n

(
j

n

)∣∣∣∣ ≥ ε} ≤ K

εβ

∣∣∣∣ i− jn
∣∣∣∣α ,

where K > 0, β ≥ α > 1 holds for all n ≥ 1, 0 ≤ i, j ≤ n, ε > 0. Therefore, we have
to set up the GF corresponding to the bivariate distributions of X̂n(t):

Bk1k2
(z, u1, u2) =

min(k1,k2)−1∑
l=0

Bk1lk2
(z, u1, u2)

= ϕp0z
2u1u

2
2φ2(z, u1u2, u2)

min(k1,k2)−1∑
l=0

φ1(z, u1u2, 1)l

×φ1(z, u1u2, u2)k1−1−lφ1(z, u2, 1)k2−1−l

= ϕp0z
2u1u

2
2φ2(z, u1u2, u2)φ1(z, u1u2, u2)k1−1

×φ1(z, u2, 1)k2−1 1− q(z, u1u2, u2)min(k1,k2)

1− q(z, u1u2, u2)
,

where

q(z, u, v) =
φ1(z, u, 1)

φ1(z, u, v)φ1(z, v, 1)
.

Then

P

{∣∣∣∣X̂n

(bµ1nc
n

)
− X̂n

(bµ2nc
n

)∣∣∣∣ ≥ ε} =
1

an
[znum1

1 um2
2]

∑
k,l≥1

|k−l|≥bε√nc

Bkl(z, u1, u2).

Therefore, we have to get estimates for the expression

1

1− q
∑
k,l≥0

|k−l|≥bε√nc

xkyl − 1

1− q
∑
k,l≥0

|k−l|≥bε√nc

xkylqmin(k,l)+1,

where we used the abbreviations

x = φ1(z, u1u2, u2), y = φ1(z, u2, 1), xyq = φ1(z, u1u2, 1).

452 BERNHARD GITTENBERGER

Splitting this sum yields

S1 =
∑

k≥bε√nc

∑
l<k−bε√nc

xkyl=
x1+bε√nc

(1− x)(1− xy)
,

S2 =
∑
k≥0

∑
l≥k+bε√nc

xkyl=
ybε
√
nc

(1− y)(1− xy)
,

S3 = q
∑

k≥bε√nc

∑
l<k−bε√nc

xk(qy)l=
qx1+bε√nc

(1− x)(1− xyq) ,

S4 = q
∑
k≥0

∑
l≥k+bε√nc

(xq)kyl=
qybε

√
nc

(1− y)(1− xyq) .

Summing up gives

S1 + S2 − S3 − S4

1− q =
x1+bε√nc

(1− x)(1− xy)(1− xyq) +
ybε
√
nc

(1− y)(1− xy)(1− xyq) .(3.15)

Now we are ready to estimate the coefficient [znum1
1 um2

2] of (3.15). If we substitute
u1u2 = u, u2 = v and calculate the coefficient [znumvl], m = µn, l = λn, then v keeps
track of the difference l = (i − j) which is the most important quantity in proving
tightness after all. As the terms S1−S3 and S2−S4 are of similar form, it suffices to
consider one of those, say, S1−S3. In order to get an estimate we again use Cauchy’s
integral formula:

[znumvl](S1 − S3) =
1

(2πi)3

∫
Γz

∫
Γu

∫
Γv

(3.16)

× φ1(z, u, v)kz−n−1u−m−1v−l−1 dv du dz

(1− φ1(z, u, v))(1− φ1(z, u, v)φ1(z, v, 1))(1− φ1(z, u, 1))
,

where k = bε√nc and the integration contour Γz = Γz1 ∪Γz2 ∪Γz3 ∪Γz4 is chosen as
shown in Figure 3.5. If z is sufficiently close to z0, meaning that the local representa-
tion (3.2) holds, then the integration in u and v is done along the analogous contours
(i.e., z0 has to be replaced with f̃(z), for Γu we replace t

n with s
m , and for Γv we use

r
l instead of t

n , where m = µn and l = λn). Otherwise we choose the unit circle as
the integration contour for u und v. To proceed we need the following result.

Lemma 3.5. Let fn ≥ 0 and

F (z) =
∑
n≥0

fnz
n.

Assume that F (z) is analytic in the domain

∆ = {z | |z| ≤ 1 + ε, | arg(z − 1)| ≥ α} ,

ε > 0, and satisfies for z ∈ ∆ the inequality

|F (z)| ≤
∣∣∣e−C√1−z

∣∣∣ ,

ON THE CONTOUR OF RANDOM TREES 453

Γz4

Γz1

Γz2

Γz3

z0 -

6

q

Γz1 =

{
z = z0

(
1 +

eit

n

)∣∣∣∣α ≤ |t| ≤ π} ,
Γz2 =

{
z = z0

(
1 +

t

n
eiα
)∣∣∣∣ 1 ≤ |t| ≤ log2 n

}
,

Γz3 = Γz2

Γz4 =

{
z

∣∣∣∣|z| = z0

∣∣∣∣1 +
log2 n

n
eiα
∣∣∣∣ ,

arg

(
1 +

log2 n

n
eiα
)
≤ | arg z| ≤ π

}
.

Fig. 3.5. Integration contour Γz .

where C > 0. Then there exists a constant C ′ > 0 such that

[zn]F (z)k = O
(

1

n
exp

(
−C ′ k√

n

))
(3.17)

uniformly for k ≥ 0.
Proof. For convenience assume z0 = 1. Furthermore, Ci will denote appropriate

positive constants throughout this proof. We have

[zn]F (z)k =
1

2πi

∫
Γz

F (z)k

zn+1
dz.

First let z ∈ Γz1. Obviously, the relations

<√1− z ≥ C1√
n

(3.18)

and z−n−1 = O (1) hold. The length of the integration contour is O (1
n

)
and thus∫

Γz1

F (z)k

zn+1
dz = O

(
1

n
exp

(
−C2

k√
n

))
.

Now let z ∈ Γz2 ∪ Γz3. Then z = 1 + t
ne

iα and thus

z−n−1 = O (exp
(−teiα))

holds. The estimate (3.18) is also valid. To get the desired result we extend the
integration contour to 0 ≤ t ≤ ∞. This leads to∫

Γz2∪Γz3

F (z)k

zn+1
dz ≤ C3

n

∞∫
0

exp

(
−C4

k√
n
− C5t

)
dt

=
C3

nC5
exp

(
−C4

k√
n

)
.

454 BERNHARD GITTENBERGER

Finally, let z ∈ Γz4. Obviously, (3.18) still holds and thus

|F (z)|k ≤ exp

(
−C6

k√
n

)
.

Additionally, we have

|z|−n−1 ∼ e− log2 n ≤ 1

n

and this implies ∫
Γz4

F (z)k

zn+1
dz = O

(
1

n
exp

(
−C6

k√
n

))
.

Finally, set C ′ ≤ min(C2, C4, C6) to get (3.17).
Now we are able to estimate the integral (3.17). If (z, u, v) lies in the domain

where the local expansion (3.2) holds, then we may estimate the denominator of the
integrand as follows:

|(1− φ1(z, u, v))(1− φ1(z, u, v)φ1(z, v, 1))(1− φ1(z, u, 1))|

= C̄3

(√
1− u

f̃(z)
+

√
1− v

f̃(z)

)(√
1− u

f̃(z)
+

√
1− 1

f̃(z)

)

×
(√

1− u

f̃(z)
+ 2

√
1− v

f̃(z)
+

√
1− 1

f̃(z)

)

≥ C1

n3/2

(
1√
µ

+
1√
λ

)(
1 +

1√
µ

+
2√
λ

)(
1 +

1√
µ

)
≥ C2

n3/2
,

where C̄ = σ√
2

√
z0

ϕ0

ϕ(τ) and λ, µ are as defined above. It is an easy exercise to verify

the validity of the above inequality for the whole integration domain. In order to cope
with the numerator we have to distinguish two cases: X̂n(t) for t close to t = ϕ0

ϕ(τ)

and for t away from t = ϕ0

ϕ(τ) .

3.6.1. The process X̂n(t) outside the vicinity of t = ϕ0

ϕ(τ)
. Let us further

consider the domain where (3.2) holds and substitute ū = u
f̃(z)

, v̄ = v
f̃(z)

in (3.17).

From (3.2) we obviously get

φ1(z, u, v) = O (∣∣exp
(−C (√1− ū+

√
1− v̄))∣∣)(3.19)

and application of Lemma 3.5 yields the upper bound

C1

ml
exp

(
−C2

(
k√
m

+
k√
l

))∫ |f̃(z)|−l−m
|zn+1| dz(3.20)

for the integral (3.17).
In order to proceed we expand f̃ in a Taylor series and get

1

f̃(z)
=

1

f̃(z0)
− f̃ ′(z0)

f̃(z0)2
(z − z0) +O ((z − z0)2

)
= 1 +

ϕ(τ)

ϕ0

(
z

z0
− 1

)
+O ((z − z0)2

)
.(3.21)

ON THE CONTOUR OF RANDOM TREES 455

Using z
z0

= 1 + eit

n for z ∈ Γz1 and z
z0

= 1 + t
ne

iα for z ∈ Γz2 ∪ Γz3 we obtain

f̃(z)−m−l
(
z

z0

)−n
∼

exp

((
ϕ(τ)

ϕ0
(λ+ µ)− 1

)
eit
)

= O (1) for z ∈ Γz1,

exp

((
ϕ(τ)

ϕ0
(λ+ µ)− 1

)
teiα

)
for z ∈ Γz2 ∪ Γz3.

(3.22)

Under the assumption ϕ(τ)
ϕ0

(λ+ µ) ≤ 1− η, η > 0, this implies∫
Γz1∪Γz2∪Γz3

|f̃(z)|−l−m
|zn+1| |dz| = O

 1

n
zn0

1 +

∞∫
0

exp (−ηt cosα) dt

= O

(
1

n
zn0

)
.(3.23)

It remains to consider z ∈ Γz4. As long as (z, u, v) lies inside a sufficiently
small δ-ball Uδ around the singularity we may still use (3.2). Set z

z0
= aeit/n, where

a =
∣∣∣1 + log2 n

n eiα
∣∣∣ and |t| ≤ δn. Then we have

|f̃(z)| ≥ 1− ϕ(τ)

ϕ0

log2 n

n
+
t

n

and therefore ϕ(τ)
ϕ0

(λ+ µ) ≤ 1− η yields

|f̃(z)|−m−l
(
z

z0

)−n
≤ |f̃(z)|−

ϕ0
ϕ(τ)

n+ηn

(
z

z0

)−n
≤ exp

(
−ηϕ(τ)

ϕ0
log2 n−

(
ϕ0

ϕ(τ)
− η
)
t

)
(3.24)

and therefore ∫
Γz4∩Uδ

|f̃(z)|−l−m
|zn+1| |dz| = O

(
e− log2 n

)
.(3.25)

If (z, u, v) /∈ Uδ, then the inequality

|φ1(z, u, v)| ≤ 1− ϑ
with ϑ > 0 holds. Thus the corresponding integral is exponentially small and therefore
negligible.

Collecting (3.20), (3.23), (3.25), and recalling k = bε√nc we obtain for λ + µ ≤
ϕ0

ϕ(τ) − η∣∣[znumvl](S1 − S3)
∣∣

=
1

(2π)3

∫
Γz

∫
Γu

∫
Γv

∣∣∣∣ φ1(z, u, v)kz−n−1u−m−1v−l−1 dv du dz

(1− φ1(z, u, v))(1− φ1(z, u, v)φ1(z, v, 1))(1− φ1(z, u, 1))

∣∣∣∣
≤ C z

n
0 n

3/2

nml
exp

(
−D

(
k√
m

+
k√
l

))
≤ C z

n
0 n
−3/2

ε4

(
ε√
µ

ε√
λ

)2

exp

(
−D

(
ε√
µ

+
ε√
λ

))
,(3.26)

456 BERNHARD GITTENBERGER

where C and D are suitably chosen positive constants. Applying (3.1) and x2e−x ≤
c
xk

, for arbitrary k > 0 and sufficiently large c > 0, we obtain the tightness condition

P{|X̂n(s)− X̂n(t)| ≥ ε} ≤ C 1

ε6

(
ε√|s− t|

)2

exp

(
−D ε√|s− t|

)

≤ C ′

ε12
|s− t|3/2,(3.27)

for 0 < s, t < ϕ0

ϕ(τ) − η.

3.6.2. The process X̂n(t) in the vicinity of t = ϕ0

ϕ(τ)
. To prove the tightness

inequality in the case of λ + µ ≥ ϕ0

ϕ(τ) − η it suffices to investigate the terms (3.22)

and (3.24). Integrating the right-hand sides of these formulae with respect to t gives,
as in the derivation of (3.26), the estimate

∣∣[znumvl](S1 − S3)
∣∣ ≤ C zn0 n

3/2(
n− ϕ(τ)

ϕ0
(m+ l)

)
ml

exp

(
−D

(
k√
m

+
k√
l

))

which directly yields the tightness condition (3.27) if n− ϕ(τ)
ϕ0

(m+ l) ≥ ϕ(τ)
ϕ0

l holds.

So let n− ϕ(τ)
ϕ0

(m+ l) ≤ ϕ(τ)
ϕ0

l. If we prove

P

{
X̂n

(
ϕ0

ϕ(τ)
− δ
)
≥ ε
}
≤ C

εγ
δα(3.28)

with γ ≥ α > 1, then by means of

P
{
|X̂n(µ)− X̂n(µ2)| ≥ ε

}
≤ P

{
X̂n(µ) ≥ ε

2

}
+ P

{
X̂n(µ2) ≥ ε

2

}
and

ϕ0

ϕ(τ)
− µ− λ ≤ λ and

ϕ0

ϕ(τ)
− µ2 ≤ λ,

the tightness condition can be immediately established. To prove (3.28), again set
k = bε√nc. Then we have

P
{
X̂n

(m
n

)
≥ ε
}

=
ϕ0

an
[zn−1um−1]

φ1(z, u, 1)k

1− φ1(z, u, 1)
.

Using the same integration contour as in the previous section and the substitution
u
f̃(z)

= ū we obtain, as before,

|1− φ1(z, u, 1)| ≥ C√
n

for a suitable positive constant C. Furthermore, we have(
z

z0

)n
∼
(

1

f(z)

)nϕ0/ϕ(τ)

ON THE CONTOUR OF RANDOM TREES 457

and of course (3.19). Thus, substituting x = 1
f(z) gives, finally,

[zn−1um−1]
φ1(z, u, 1)k

1− φ1(z, u, 1)
≤ C1

∫ ∫ ∣∣∣e−k√1−ūū−m
∣∣∣ ∣∣∣e−k√1−xx−

ϕ0
ϕ(τ)

n+m
∣∣∣ |dū dx|

≤ C2k
4n−3/2

ε4
(

ϕ0

ϕ(τ)n−m
)
m

exp

−C3

 k√
m

+
k√

ϕ0

ϕ(τ)n−m

 ,

where C1, C2, C3 are appropriate constants. This implies tightness and thus the proof
of Theorem 1.1 is complete.

Now we are able to complete the proof of Theorem 3.2. We have only to show
that the difference of the contour process and the step process X̂n (btc/n) converges
to zero in probability. Obviously, we have for t ∈ [i/n, (i+ 1)/n]∣∣∣∣X̂n(t)− X̂n

(
i

n

)∣∣∣∣ ≤ ∣∣∣∣X̂n

(
i+ 1

n

)
− X̂n

(
i

n

)∣∣∣∣ .
Combining this with the tightness inequality (3.27) we get

P

{∣∣∣∣X̂n(t)− X̂n

(
i

n

)∣∣∣∣ ≥ ε} ≤ C ′

ε12
n−3/2

which proves the theorem.

4. The traverse process. In order to deal with the traverse process we first
have to set up the basic GFs. The procedure is analogous to that used in the previous
section: we mark the nodes associated with the vertices of the polygonal functions of
which the process is constructed. Then the nodes of all subtrees to the left of that one
which contains a marked node contribute the term 2 to the number of the considered
node as each edge is passed twice during pre-order traversal. Thus the GF is given by

ỹ(z, u) = a(zu2) = y(zu2, 1).

From Lemma 3.1 we immediately get the local expansion

a(zu2) ∼ τ −
√

2ϕ(τ)

ϕ′′(τ)

√
− t
n
− 2s

m

for z = z0

(
1 + t

n

)
, u = 1 + s

m , and n,m→∞ where m ∼ cn, c > 0.
Remark. Note that we did not define the traverse process on the tree T but instead

on T ′ = {◦} × T in order to avoid zeros away from the boundary. This modification
only causes a factor z in the GFs and a layer shift.

Let amn denote the sum of weights over all trees where the mth node of the
traverse function coincides with the root and let

A(z, u) =
∑
m,n≥0

amnz
num

be the associated GF. Suppose that the root has degree i. Obviously, the path of the
traverse function passes the root if and only if j (0 ≤ j ≤ i) trees have already been
traversed completely, but no node of the (j+ 1)st tree has been visited. This implies

458 BERNHARD GITTENBERGER

Ã(z, u) = uz
∑
i≥0

ϕi

i∑
j=0

ỹ(z, u)j ỹ(z, u)i−j

= uz
ỹ(z, u)ϕ(ỹ(z, u))− ỹ(z, 1)ϕ(ỹ(z, 1))

ỹ(z, u)− ỹ(z, 1)
.

Define

φ̃1(z, u, v) = uvz
ϕ(ỹ(z, u))− ϕ(ỹ(z, v))

ỹ(z, u)− ỹ(z, v)

and φ̃2 analogously to φ2. It is also easy to see from the previous section that an
analogue of Lemma 3.3 applies and thus we are able to set up the GF leading to the
finite-dimensional distributions of the process:

B(z, u1, . . . , up) =

p−1∏
i=1

A
(
z(ui · · ·up)2, up

) [
φ1(z, ui · · ·up, ui+1 · · ·up)ki−li−1

× φ1(z, ui · · ·up, 1)li−li−1−1φ2(z, ui · · ·up, ui+1 · · ·up)
]

× A(z, up)φ1(z, up, 1)kp−lp−1−1.

Due to the similarity of the GFs to those associated with the contour process, tightness
can be proved analogously which proves Theorem 1.2.

Acknowledgment. The author thanks Michael Drmota for several useful com-
ments and suggestions.

REFERENCES

[1] D. J. Aldous, The continuum random tree I, Ann. Probab., 19 (1991), pp. 1–28.
[2] D. J. Aldous, The continuum random tree II: An overview, in Stochastic Analysis, M. T.

Barlow and N. H. Bingham, eds., Cambridge University Press, Cambridge, UK, 1991, pp.
23–70.

[3] D. J. Aldous, The continuum random tree III, Ann. Probab., 21 (1993), pp. 248–289.
[4] P. Billingsley, Convergence of Probability Measures, John Wiley, New York, 1968.
[5] M. Drmota, Asymptotic distributions and a multivariate Darboux method in enumeration

problems, J. Combin. Theory Ser. A, 67 (1994), pp. 169–184.
[6] M. Drmota, The height distribution of leaves in rooted trees, Discrete Math. Appl., 4 (1994),

pp. 45–58 (translated from Diskret. Mat., 6 (1994), pp. 67–82).
[7] M. Drmota and M. Soria, Marking in combinatorial constructions: Generating functions

and limiting distributions, Theoret. Comput. Sci., 144 (1995), pp. 67–99.
[8] P. Flajolet and A. Odlyzko, Singularity analysis of generating functions, SIAM J. Discrete

Math., 3 (1990), pp. 216–240.
[9] W. Gutjahr and G. Ch. Pflug, The asymptotic contour process of a binary tree is a Brownian

excursion, Stochastic Process. Appl., 41 (1992), pp. 69–89.
[10] K. Itô and H. P. McKean, Jr., Diffusion Processes and Their Sample Paths, Springer-Verlag,

New York, 1965.
[11] A. Meir and J. W. Moon, On the altitude of nodes in random trees, Canad. J. Math., 30

(1978), pp. 997–1015.
[12] J. S. Vitter and P. Flajolet, Average-case analysis of algorithms and data structures, in

Handbook of Theoretical Computer Science, Algorithms and Complexity, Vol. A, J. van
Leeuwen, ed., North–Holland, Amsterdam, 1990, pp. 431–524.

THE COMPACTNESS OF INTERVAL ROUTING∗

CYRIL GAVOILLE† AND DAVID PELEG‡

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 4, pp. 459–473

Abstract. The compactness of a graph measures the space complexity of its shortest path
routing tables. Each outgoing edge of a node x is assigned a (pairwise disjoint) set of addresses, such
that the unique outgoing edge containing the address of a node y is the first edge of a shortest path
from x to y. The complexity measure used in the context of interval routing is the minimum number
of intervals of consecutive addresses needed to represent each such set, minimized over all possible
choices of addresses and all choices of shortest paths. This paper establishes asymptotically tight
bounds of n/4 on the compactness of an n-node graph. More specifically, it is shown that every n-
node graph has compactness at most n/4 + o(n), and conversely, there exists an n-node graph whose
compactness is n/4− o(n). Both bounds improve upon known results. (A preliminary version of the
lower bound has been partially published in Proceedings of the 22nd International Symposium on
Mathematical Foundations of Computer Science, Lecture Notes in Comput. Sci. 1300, pp. 259–268,
1997.)

Key words. random graphs, shortest path, compact routing tables, interval routing

AMS subject classifications. 05C85, 68Q10, 68R10, 68Q25

PII. S0895480197328631

1. Introduction. An interval routing scheme is a way of implementing routing
schemes on arbitrary networks. It is based on representing the routing table stored
at each node in a compact manner by grouping the set of destination addresses that
use the same output port into intervals of consecutive addresses. A possible way of
representing such a scheme is to use a connected undirected labeled graph providing
the underlying topology of the network. The addresses are assigned to the nodes,
and the sets of destination addresses are assigned to each endpoint of the edges. As
originally introduced in [17], the scheme required each set of destinations to consist
of a single interval. This scheme was subsequently generalized in [18] to allow more
than one interval per edge.

Formally, consider an undirected n-node graph G = (V,E). Since G is undirected,
each edge {u, v} ∈ E between u and v can be viewed as two arcs, i.e., two ordered
pairs, (u, v) and (v, u). The graph G is said to support an interval routing scheme
(IRS) if there exists a labeling L of V , which labels every node by a unique integer
taken from {1, . . . , n}, and a labeling I of the outgoing edges, which labels every exit
endpoint of each arc of E by a subset of {1, . . . , n}, such that between any pair of nodes
x 6= y there exists a path x = u0, u1, . . . , ut = y satisfying that L(y) ∈ I(ui, ui+1) for
every i ∈ {0, . . . , t−1}. The resulting routing scheme, denoted R = (L, I), is called a
k-interval routing scheme (k-IRS) if for every arc (u, v), the collection of labels I(u, v)
assigned to it is composed of at most k intervals of consecutive integers (1 and n being
considered as consecutive).

∗Received by the editors October 10, 1997; accepted for publication (in revised form) March 22,
1999; published electronically October 19, 1999.

http://www.siam.org/journals/sidma/12-4/32863.html.
†LaBRI, Université Bordeaux I, 351, cours de la Libération, 33405 Talence Cedex, France

(gavoille@labri.u-bordeaux.fr).
‡Department of Applied Mathematics and Computer Science, The Weizmann Institute of Science,

Rehovot, 76100 Israel (peleg@wisdom.weizmann.ac.il). The research of this author was supported in
part by a grant from the Israel Science Foundation and by a grant from the Israel Ministry of Science
and Art.

459

460 CYRIL GAVOILLE AND DAVID PELEG

The standard definition of k-IRS assumes a single routing path between any two
nodes. It therefore forces any two incident arcs e 6= e′ to have disjoint labels, i.e.,
I(e)∩I(e′) = ∅. Here we assume that a given destination may belong to many labels
of different arcs incident to a same node. This freedom allows us to implement some
adaptive routing schemes and code, for example, the full shortest path information,
as does the boolean routing scheme [4]. Our upper and lower bounds apply also to the
recent extension of interval routing known as multidimensional interval routing [3].

To measure the space efficiency of a given IRS, we use the compactness measure,
defined as follows. The compactness of a graph G, denoted by IRS(G), is the smallest
integer k such that G supports a k-IRS of single shortest paths, that is, a k-IRS that
provides only one shortest path between any pair of nodes.

If the degree of every node in G is bounded by d, then a k-IRS for G is required
to store at most O(dk logn) bits of information per node (as each set I(e) can be
coded using 2k logn bits1) and O(km logn) bits in total, where m is the total number
of edges of the graph. The compactness of a graph is an important parameter for
the general study of the compact routing, whose goal is to design distributed routing
algorithms with space-efficient data structures for each router.

Figure 1.1 shows an example of a 2-IRS on a graph G. For instance, arc (7, 1)
is assigned two intervals: I(7, 1) = {1, 2, 5}. It is easy to verify that this labeling
provides a single shortest path between any pair of nodes in G; however, it is more
difficult to check whether G has compactness 1. Actually, in [9] it is shown that
IRS(G) = 2. Recently, it was proven in [1] that for general graphs, the problem of
deciding whether IRS(G) = 1 is NP-complete.

[3,6]

[3,5]

[7,2]

[1][5]

[6,7][2,3]

[2,3] [6,7]

[4,5]

[7,2]

[4,7]

5

3

4

6

7

1

2
[5,1]

[3,4]

[1,2]

[1,2][5]
[3,4][6]

Fig. 1.1. A 2-IRS for a graph G.

The compactness of many graph classes has been studied. Its value is 1 for
trees [17], outerplanar graphs [6], hypercubes and meshes [18], r-partite graphs [12],
interval graphs [16], and unit-circular graphs [5]. It is 2 for tori [18], at most 3 for
2-trees [16], and at most 2

√
n for chordal rings on n nodes [15] (see [7] for a survey of

the recent state of the art). Finally, it has been proved that compactness Θ(n) might
be required [9].

1A more accurate coding allows us to use only O(dk log (n/k)) bits per node; cf. [7].

THE COMPACTNESS OF INTERVAL ROUTING 461

The next section presents the results of the paper. In section 3 we prove that
n/4 + o(n) intervals are always sufficient, and in section 4 that n/4 − o(n) intervals
might be required. We conclude in section 5.

2. The results. Clearly, the compactness of a graph cannot exceed n/2, since
any set I(e) ⊂ {1, . . . , n} containing more than n/2 integers must contain at least
two consecutive integers, which can be merged into the same interval. On the other
hand it has been proved in [9] that for every n ≥ 1 there exists an n-node graph of
compactness at least n/12 and n/8 for every n power of 2.

In this paper we close this gap by showing that n/4 is asymptotically a tight
bound for the compactness of n-node graphs. More specifically, we have the following
theorem.

Theorem 2.1. Every n-node graph G satisfies

IRS(G) <
n

4
+

1

4

√
2n ln (3n2).

Theorem 2.2. For every sufficiently large integer n, there exists an n-node graph
G such that

IRS(G) >
n

4
− 1.72n2/3 ln1/3 n.

Moreover, G has diameter 2, maximum degree at most n/2, and fewer than

1.15n5/3 ln1/3 n edges, and every single k-IRS on G with k < IRS(G) contains some
routing path of length at least 3.

We later show that both the upper and the lower bounds hold even if the single
and/or shortest path assumptions are relaxed.

Theorem 2.1 directly improved the results of [5, Theorem 11] and [3, Theorem 2]
and also a result of [2, Theorem 9].

The lower bound is proved using Kolmogorov complexity. As a result, only the
existence of such a worst-case graph G can be proved. Moreover, the bound gives an
asymptotic bound since the Kolmogorov complexity is defined up to a constant. This
is in contrast to the technique of [9], which gave explicit recursive constructions of
worst-case graphs of compactness n/12, for every n ≥ 1.

3. The upper bound. The basic idea for the upper bound, and partially for
the lower bound, is to give a boolean matrix representation M(R) for a given k-IRS
R = (L, I) on a graph G = (V,E). Recall that for each arc e, I(e) is the set of
addresses that labels the arc e. Let ue be the characteristic sequence of the subset
I(e) in {1, . . . , n}, namely, the ith element of ue is 1 if i ∈ I(e) and 0 otherwise. It
is easy to see that there is a one-to-one correspondence between the intervals of I(e)
and the blocks of consecutive ones in ue. The number of blocks of consecutive ones
in ue can be seen as the occurrence number of 01-sequences2 in the binary vector
ue. By collecting all the ue’s sequences in order to form a boolean matrix M(R) of
dimensions n×2|E|, the problem of finding a node-labeling L of G such that each set
I(e) is composed of at most k intervals is equivalent to the problem of finding a row
permutation of M(R) such that every column has at most k blocks of consecutive
ones.

2If ue does not contain any 0, ue is composed of exactly one block of consecutive ones.

462 CYRIL GAVOILLE AND DAVID PELEG

Throughout this section, M denotes a boolean matrix of n rows and p columns.
For every column u of M and for every row permutation π, we denote by c(u, π) the
number of blocks of consecutive ones in the column u under π. For every matrix
M , define the compactness of M , denoted comp(M), as the smallest integer k such
that there exists a row permutation π of M satisfying, for every column u of M ,
c(u, π) ≤ k.

The following theorem is the key to the proof of Theorem 2.1.
Theorem 3.1. Let M be an n× p boolean matrix, p < en/2/n, let u be a column

of M , and let Au(k) = {π | c(u, π) = k} be the set of row permutations of M that
provides k blocks of consecutive ones for the column u. Then for every integer k in
the range n/4 + (1/4)

√
2n ln (pn) < k ≤ n/2,

|Au(k)| < 4n!

pn
.

Proof. Let us consider a column u of M and an integer k. Let a (resp., b) be
the number of 0’s (resp., 1’s) of u. Clearly, if a < k or b < k, the theorem holds
because in this case Au(k) = ∅. Hence suppose a, b ≥ k, with a+ b = n. There are a!
permutations of the rows {x1, . . . , xa} containing 1 and b! permutations of the rows
{y1, . . . , yb} containing 0 in u, and each such pair of permutations creates a different
and disjoint set of permutations in Au(k). Moreover, each of the a! permutations needs
to be broken into k nonempty blocks, which can be done in

(
a
k

)
ways, and similarly for

the b! permutations of the rows {y1, . . . , yb}. Each partitioned pair merges, alternating
a block of 1’s and a block of 0’s, in order to yield a permutation in Au(k). Overall,
|Au(k)| = a!

(
a
k

)
b!
(
b
k

)
, and we need to show that

a!

(
a

k

)
b!

(
b

k

)
<

4n!

pn
.(3.1)

Using formula (9.91) of [11, p. 481], derived from Stirling’s formula, we have for every
n ≥ 1, (n

e

)n√
2πn < n! < γ

(n
e

)n√
2πn ,

where γ = e1/12−1/360+1/1260 ≈ 1.08. Thus

4n!

pn
>

nne−n4
√

2πn

pn
= e−n 4

√
2π

nn−1/2

p
.(3.2)

From Stirling’s bound, for every k in the range 0 < k < a,(
a

k

)
<
(a
k

)k (a

a− k
)a−k

γ√
2π

√
a

k(a− k)
.(3.3)

This bound cannot apply for k = a. Let us first handle the extremal cases.
Claim 3.1. Inequality (3.1) holds for a = k or b = k for every integer k,

0 ≤ k ≤ n/2.
Proof. In both cases assumed in the claim, inequality (3.1) is equivalent to

k!(n− k)!

(
n− k
k

)
=

(n− k)!2

(n− 2k)!
<

4n!

pn3/2
.(3.4)

THE COMPACTNESS OF INTERVAL ROUTING 463

The ratio (n − k)!2/(n − 2k)! increases for 0 ≤ k ≤ n/2. Indeed, in this range
n− k ≥ n− 2k; hence (n− k)! ≥ (n− 2k)!, and therefore (n− k)!2 ≥ (n− 2k)!. It is
thus sufficient to prove inequality (3.4) for k = n/2, in which case it becomes(n

2

)
!2 <

4n!

pn
.(3.5)

Using Stirling’s bound, (n/2)!
2
< (n/2)ne−nγ22πn, and simplifying with the lower

bound of inequality (3.2), we get that to prove inequality (3.5) it suffices to prove(n
2

)n
< c

nn−3/2

p
or pn3/2 < c 2n, where c =

4

γ2
√

2π
≈ 1.36.

This last inequality is satisfied for every n ≥ 1, since p < en/2/n, and en/2
√
n <

c 2n is equivalent to n/2 < n(ln 2 − (1/(2n)) lnn) + ln c, which is trivial because
(1/(2n)) lnn ≤ (1/4) ln 2, and (1 − (1/4)) ln 2 ≈ 0.51 > 1/2 and moreover ln c > 0.
This completes the proof of Claim 3.1.

For the remainder of the proof, let us assume that k < a, b. Therefore, it is
possible to apply the bound of inequality (3.3), which gives

(3.6)

a!

(
a

k

)
b!

(
b

k

)
< aa

(a
k

)k (a

a− k
)a−k

bb
(
b

k

)k (
b

b− k
)b−k

ab e−n γ4

k
√

(a− k)(b− k)
.

Claim 3.2. For integers k, a, b, and n such that 0 < k < a and a+ b = n,

ab

k
√

(a− k)(b− k)
<

3
√

3

4

√
n .

Proof. Set b = n− a, and let f(a) = (a− k)(n− a− k). Claim 3.2 holds if

ab

k
√
f(a)

<
3
√

3

4

√
n .

Observing that ab ≤ (a+ b)2/4 = n2/4, it suffices to prove that

n2

4k
√
f(a)

<
3
√

3

4

√
n .

Let us lower bound the term k
√
f(a). Noting that f(a) is symmetric around the

point n/2, let us assume without loss of generality that a ≤ n/2. In this range
f ′(a) = n− 2a ≥ 0. Therefore, in the desired range f(a) attains its minimum, where
a is minimum, and thus k

√
f(a) > k

√
f(k) = k

√
n− 2k. Let f2(k) = k

√
n− 2k.

f2
′(k) =

√
n− 2k − k/√n− 2k, which is of the same sign that n− 3k. Hence in the

range 0 < k < n/2, f2(k) first decreases until its minimum at the point n/3, then
increases between n/3 and n/2. Thus, f2(k) ≥ f2(n/3) = (n/3)3/2. Therefore

n2

4k
√
f(a)

<
n2

4(n/3)3/2
=

3
√

3

4

√
n ,

which completes the proof of Claim 3.2.

464 CYRIL GAVOILLE AND DAVID PELEG

In view of Claim 3.2, inequality (3.6) becomes

a!

(
a

k

)
b!

(
b

k

)
< aa

(a
k

)k (a

a− k
)a−k

bb
(
b

k

)k (
b

b− k
)b−k

e−n γ4 3
√

3

4

√
n .

Simplifying and applying the lower bound of inequality (3.2), we obtain that to prove
inequality (3.1) it suffices to show

aa
(a
k

)k (a

a− k
)a−k

bb
(
b

k

)k (
b

b− k
)b−k

<
16
√

2π

γ4 3
√

3

nn−1

p
.

Noting that 16
√

2π/(γ4 3
√

3) ≈ 5.57, it remains to prove that

p−1nn−1k2k(a− k)a−k(b− k)b−k − a2ab2b > 0.(3.7)

Assume that k0 < k < a ≤ n/2 ≤ b, with b = n − a and with k0 = n/4 +
(1/4)

√
2n ln (pn). The case b ≤ a is dual, and at most doubles the number of permu-

tations (which is taken in account in the removing of the multiplicative constant 5.57
in inequality (3.7)).

Let f(a) = p−1nn−1k2k(a− k)a−k(n− a− k)n−a−k − a2a(n− a)2(n−a).

To establish inequality (3.7) and complete the proof, it remains only to show the
following lemma.

Lemma 3.2. f(a) > 0 in the range k0 < k < a ≤ n/2.
Proof. Write f(a) = exp(A)− exp(B), where

A = − ln p+ (n− 1) lnn+ 2k ln k + (a− k) ln (a− k) + (n− a− k) ln (n− a− k),

B = 2a ln a+ 2(n− a) ln (n− a);

then f(a) > 0 if and only if A − B > 0. Letting f2(a) = A − B, it remains to prove
that f2(a) > 0 in the range k0 < k < a ≤ n/2. The first derivative of f2 is

f2
′(a) = ln

(
a− k

n− a− k
)

+ 2 ln

(
n− a
a

)
.

Claim 3.3. f2
′(a) ≤ 0 in the range k0 < k < a ≤ n/2.

Proof. It suffices to show that in the range specified in the claim,

a− k
n− a− k

(
n− a
a

)2

≤ 1,

or

f3(a) ≡ (a− k)(n− a)2 − (n− a− k)a2 ≤ 0.

This is shown by noting that f3(a) is increasing in this range; hence its maximum is
attained at the point a = n/2, where f3(n/2) = 0. To show that f3(a) is increasing,
we need to show that f3

′(a) = 6a2 − 6an+ n2 + 2nk ≥ 0 in this range. This is shown
by noting that f3

′(a) is decreasing in this range; hence its minimum is attained at the
point a = n/2, where f3

′(n/2) = (2k − n/2)n ≥ 0 since k > k0 > n/4. To show that
f3
′(a) is decreasing, we need to show that f3

′′(a) = 12a− 6n ≤ 0 in this range, which
is trivial since a ≤ n/2. This completes the proof of Claim 3.3.

THE COMPACTNESS OF INTERVAL ROUTING 465

It follows from Claim 3.3 that f2(a) is decreasing in this range, and hence its
minimum is attained at a = n/2. Hence in this range,

f2(a) ≥ f2

(n
2

)
= p−1nn−1

(n
2
− k
)n−2k

−
(n

2

)2n

.

Consequently, it remains to prove that f2(n/2) > 0 in the desired range. Simplifying,
we need to show that k2k(n− 2k)n−2k2n+2k − pnn+1 > 0 in the range k0 < k < n/2.
Writing k = αn, we need to prove that(

α2α(1− 2α)1−2α21+2α
)n
nn > pnn+1 or

α2α(1− 2α)1−2α21+2α > (pn)1/n or that

2α logα+ (1− 2α) log (1− 2α) + 1 + 2α >
log (pn)

n

in the range k0/n < α < 1/2 (the function log represents logarithm to base 2). Let
g(α) = 2α logα + (1 − 2α) log (1− 2α) + 1 + 2α. It remains to prove the following
claim.

Claim 3.4. g(α) > log (pn)/n in the range k0/n < α < 1/2.
Proof. Note that

k0

n
=

1

4
+

1

4

√
2 ln (pn)

n
.

Therefore, if p < en/2/n, then k0/n < 1/2; thus the range for α is not empty. More-
over,

g′(α) = 2 logα− 2 log (1− 2α) + 2 ,

g′′(α) =
2

α ln 2
+

4

(1− 2α) ln 2
,

g′′′(α) = − 2

α2 ln 2
+

8

(1− 2α)2 ln 2
.

In the range 1/4 < α < 1/2, let us show that g′′′(α) > 0. This happens if

8

(1− 2α)2 ln 2
>

2

α2 ln 2
or

4α2 ln 2 > (1− 2α)2 ln 2 or

2α > 1− 2α,

which is trivial since α > 1/4. Moreover g(1/4) = g′(1/4) = 0 and g′′(1/4) = 16/ ln 2.
Thus we have the following bound for g(α):

g(α) >
g′′(1/4)

2!

(
α− 1

4

)2

=
8

ln 2

(
α− 1

4

)2

.

Thus, it suffices to take α such that

8

ln 2

(
α− 1

4

)2

>
log (pn)

n
or

α >
1

4
+

√
ln 2

8

log (pn)

n
=

1

4
+

1

4

√
2 ln (pn)

n
=

k0

n

466 CYRIL GAVOILLE AND DAVID PELEG

to complete the proof of Claim 3.4.
This completes the proof of Lemma 3.2 and subsequently of Theorem 3.1.
Corollary 3.3. Let M be an n× p boolean matrix, p < en/2/n. Then

comp(M) <
n

4
+

1

4

√
2n ln (pn).

Proof. We need to show that there exists a row permutation π of M , such that
c(u, π) < n/4 + (1/4)

√
2n ln (pn) for every column u of M . Let us set k0 = n/4 +

(1/4)
√

2n ln (pn). A permutation π is said to be “bad” if there exists a column u of
M such that c(u, π) > k0. Let Bu be the set of bad permutations for the column u,
i.e.,

Bu =
⋃

k0<k≤n/2
Au(k).

The entire set of bad permutations for M is B =
⋃
uBu over all the p columns of M .

Theorem 3.1 implies that for every u,

|Bu| < (n/2− k0)4n!

pn
<

n!

p

because n/2 − k0 < n/4. It follows that |B| < n!. Therefore, there is at least one
“good” permutation for the rows of M , i.e., a permutation providing at most bk0c
blocks of consecutive ones for each of the columns. We conclude by remarking that
bk0c < k0, since ln (pn) cannot be an integer for integer pn > 1.

Proof of Theorem 2.1. Let us consider any node labeling L of V and any routing
function R = (L, I) on G, e.g., a single shortest path routing function. Form the
n × p boolean matrix M(R) as explained earlier. By Corollary 3.3 (which is clearly
applicable as p < en/2/n), there exists a row permutation π such that c(u, π) <
n/4 + (1/4)

√
2n ln (pn) for every column u of M . Permute the labeling of the nodes

of V according to π to obtain a labeling L′ such that the resulting interval routing
scheme, R′ = (L′, I), is a q-IRS for

q <
n

4
+

1

4

√
2n ln (pn) ,(3.8)

namely, R′ has fewer than q intervals on each arc. Let us show that only p ≤ 3n arcs
have to be considered.

In the case of a single IRS, each destination is assigned to a unique set I(e)
in each node. For each node of degree three or less, we consider all its outgoing
edges. Consider a node x of degree greater than three, and let I, J,K be the three
largest cardinality sets assigned to outgoing edges of x. Assume that the nodes are
relabeled using the permutation π in such a way that all the sets I, J,K are composed
respectively of i, j, and k intervals. We remark that i + j + k < 3n/4 + o(n) by
Corollary 3.3. Hence all the other sets share at most n/4 intervals and do not need
to be considered.

We complete the proof by plugging p = 3n in inequality (3.8).
Remark 1. The parameter p of inequality (3.8) represents the total number of

arcs we are required to consider. For graphs with fewer edges one can choose p = 2|E|,
which is better than 3n only for graphs of average degree at most 3. Note that there
exist some 3-regular graphs of compactness Θ(n) [10].

THE COMPACTNESS OF INTERVAL ROUTING 467

Here we give another application of Theorem 3.1.
Corollary 3.4. Let M be an n × p boolean matrix, p < en/2/n2, and let π

be an arbitrary row permutation of M . With probability at least 1 − n−1, c(u, π) <
n/4 + (1/4)

√
2n ln (pn2) for every column u of M .

Proof. Let M be an n × p boolean matrix with p < en/2/n2. Build from M
a matrix M ′ composed of all the p columns of M and completed by (n − 1)p other
columns, each filled up with 0’s. M ′ has dimensions n× pn. Clearly, the set of “bad”
permutations for M ′ and M is the same. The total set of bad permutations for M ′ is

B =
⋃
u

Bu(k) =
⋃
u

 ⋃
k0<k≤n/2

Au(k)

 ,

where the union is taken over all the pn columns u ofM ′ and k0 = n/4+(1/4)
√

2n ln (pn2).
Theorem 3.1 implies that |B| < n!/n, noting that pn < en/2/n. We conclude that the
number of “good” permutations for M ′ (hence for M), i.e., providing at most bk0c
blocks of consecutive ones for all the columns, is at least n!−n!/n, which is a fraction
of 1 − n−1 of all the row permutations of M . The proof is completed by remarking
that bk0c < k0 for every integer pn2 > 1.

Therefore, to have a labeling with fewer than n/4 + O(
√
n logn) intervals on all

the edges of G, it suffices to fix a node labeling and a routing function on G, then
to randomly permute the n labels of nodes by choosing a random permutation π of
{1, . . . , n}.

Note that the previous algorithm applies not only to single shortest path routing
schemes, but also to any routing scheme implementable by using interval routing
schemes. Thus for every IRS on every graph we can relabel the nodes in order to have
at most n/4 +O(

√
n logn) intervals per arc. It is still unknown whether there exists

a polynomial time deterministic IRS construction algorithm that guarantees at most
n/4 + o(n) intervals per edges.

We do not know whether the upper bound is reached for certain graphs. However,
it is well known that some small graphs have compactness strictly greater than n/4.
In [9], it is shown that the example depicted on Figure 1.1, with 7 nodes and 8 edges,
has compactness 2, whereas all graphs of order at most 6 have compactness 1. Note
also that the compactness of the Petersen graph is 3, whereas its order is 10 and its
size 15.

4. The lower bound. The lower bound idea is based on a representation similar
to the one used in the upper bound, namely, a boolean matrix M representation of the
k-IRS on G. However, this time we need to show that no row permutation of M yields
fewer than k blocks of consecutive ones on all the columns. Furthermore, this must be
shown for every choice of shortest routing paths. For instance, every

√
n×√n grid has

compactness 1, using the standard node labeling and single-bend YX-routing paths.
Clearly, a different choice of shortest routing paths would increase the number of
intervals per edge. That is why we use smaller matrices, say, of dimensions |W |× |A|,
by considering only a subset of nodes, W , and a subset of arcs, A, where the shortest
paths between the tails of the arcs of A and the nodes of W are all unique.

Our worst-case graph construction is a function of a boolean matrix M , denoted
GM . For every p × q boolean matrix M , define the graph GM as follows. For every
i ∈ {1, . . . , p}, associate with the ith row of M a vertex vi. For every j ∈ {1, . . . , q},
associate with the jth column of M a pair of vertices {aj , bj} connected by an edge.
In addition, for every i ∈ {1, . . . , p} and j ∈ {1, . . . , q}, if mi,j = 0 we add to GM

468 CYRIL GAVOILLE AND DAVID PELEG

an edge connecting vi to aj , and otherwise we connect vi to bj . Note that the graph
obtained from GM by contracting the edges {aj , bj}, j ∈ {1, . . . , q} is a complete
bipartite graph Kp,q. It is easy to see that the shortest path from any aj to any vi is
unique and is determined by the entry mi,j of M .

For integers p, q, let M be the collection of p× q boolean matrices having bp/2c
1-entries per column. Let M1 be the subset of matrices of M such that all the rows
are pairwise noncomplementing and let M2 be the subset of matrices of M such
that for every pair of columns the 2 × p matrix composed of the pair of columns
contains the submatrix3

[
0 0 1 1
0 1 0 1

]
up to column permutation. We next use a direct

consequence of a result proved recently in [8]. In the following, f(n) ∼ g(n) means
that f(n) = g(n) + o(g(n)).

Lemma 4.1 (see Gavoille and Gengler [8]). Let p, q be two sufficiently large
integers. If p = o(2q/2) and q = o(2p/4), then |M1 ∩M2| ∼ |M|.

Throughout the remainder of the paper, we set M0 = M1 ∩M2. We will see
later that the graphs GM built from the matrices M ∈ M0 have diameter 2 exactly.
Furthermore, almost all matrices are in M0.

We will see that the compactness of M is a lower bound of the compactness of
GM . Here we give a lower bound of the compactness of matrices of M0.

Lemma 4.2. For every sufficiently large integer p, q such that 3 log p ≤ q ≤ 2p/5,
there exists a p× q boolean matrix M of M0 of compactness

comp(M) ≥ p

4
−
√

3p2

2q
ln p+O

(
p2

q
+ p log p

)
.

Proof. We use a counting argument which can be formalized using Kolmogorov
complexity (see [14] for an introduction). Basically, the Kolmogorov complexity of
an individual object X is the length (in bits) of the smallest program, written in a
fixed programming language, which prints X and halts. A simple counting argument
allows us to argue that no program of length less than K can print a certain X0 taken
from a set of more than 2K elements.

Let us begin by showing that the claim of the lemma holds for some matrices ofM.
For every M ∈M, we define cl(M) to be the subset of the matrices ofM obtained by
row permutation of M . We claim that there exists a matrix M0 ∈M such that all the
matrices of cl(M0) have Kolmogorov complexity at least C = log |M|−log(p!)−3 log p.
Indeed, consider a matrix M0 ∈ M for which there exists a matrix M ′0 ∈ cl(M0) of
Kolmogorov complexity C ′ < C. Then M0 may be described by an ordered pair
(i0,M

′
0), where i0 is the index of the row permutation of M ′0 into M0. Such an integer

can be coded, in a self-delimiting way, by log(p!)+2 log p+O(1) bits. (2dlog pe bits are
sufficient to describe p; thus the length of any i0 ≤ p! in a self-delimiting way.) Hence
the Kolmogorov complexity of M0 is at most C ′ + log(p!) + 2 log p+O(1) < log |M|.
By the counting argument mentioned earlier, it is impossible for all matrices M0 ∈M
to have such low complexity.

The class M is of size |M| =
(

p
bp/2c

)q
= Θ(2p/

√
p)q. By Stirling’s formula

log |M| = pq −O(q log p) and log (p!) = p log p−O(p). Hence,

C = log |M| − log (p!)− 3 log p = pq − p log p−O(p+ q log p).(4.1)

All the matrices of M have q columns, each one of Kolmogorov complexity bounded
by p+O(1). Therefore there exists a matrix M0 such that every matrix in cl(M0) has

3A is a submatrix of B if A can be obtained from B by removing some columns and rows in B.

THE COMPACTNESS OF INTERVAL ROUTING 469

a column of Kolmogorov complexity at least

C

q
− 2 log p = p− p log p

q
−O

(
p

q
+ log p

)
.(4.2)

The term 2 log p codes the length of the description of such a column in a self-
delimiting way. Define a deficiency function as an N 7→ N function such that it is
possible to retrieve n and δ(n) from n− δ(n) by a self-delimiting program of constant
size. From [14, Theorem 2.15, p. 131], every binary string of length p bits and of
Kolmogorov complexity at least p− δ(p) contains at least

p

4
−
√

(δ(p) + c)p
3

2
ln 2(4.3)

occurrences of 01-sequences for any deficiency function δ and some constant c de-
pending on the definition of the Kolmogorov complexity. Since each 01-sequence in a
binary string necessarily starts a new block of consecutive ones, we get a lower bound
on the number of blocks of consecutive ones for such strings.

By choosing for δ the function δ(p) = (p/q) log p+O(p/q+ log p) and by inequal-
ity (4.3), it follows that M0 has compactness

comp(M0) ≥ p

4
−
√

3p2

2q
ln p+O

(
p2

q
+ p log p

)
.(4.4)

Finally, let us show that the result of the lemma, shown for some matrices inM,
holds also for the compactness of some matrices of M0. From Lemma 4.1, because
p = o(2q/2) = o(p3/2), we get that |M1| ∼ |M|. Similarly, q = O(2p/5) = o(2p/4);
thus |M2| ∼ |M|. Since |M0| ≤ |M|, and |M0| ≥ |M|−(|M|−|M1|+|M|−|M2|) ≥
|M|−o(|M|), it follows that |M0| ∼ |M|. Clearly it implies that log |M0| = log |M|+
o(1), and thus inequalities (4.1), (4.2), (4.3), and (4.4) hold for M0 as well, which
completes the proof.

Remark 2. The proof of Lemma 4.2 is nonconstructive. As a result, it can prove
only the existence of such a worst-case graph GM .

We are now ready to prove Theorem 2.2.
Proof of Theorem 2.2. Let M ∈ M0 be a matrix satisfying Lemma 4.2, and

consider the graph GM , built from M . Let us show that the diameter of GM is 2. For
any two nodes x, y, denote by dist(x, y) the distance between x and y in GM . The
distance between any aj (or bj) and any vi is at most 2 (since aj and bj are adjacent).
The fact that M ∈M1 implies that rows of M are pairwise noncomplementing. Thus
for every i, i′ there exists some j such that mi,j = mi′,j , which implies dist(vi, vi′) = 2.

Since M ∈ M2, M has the following property: for any two columns j, j′ there
exists some i1, i2, i3, and i4 such that mi1,j = 1 = mi1,j′ , mi2,j = 0 = mi2,j′ , mi3,j =
1 6= mi3,j′ , and mi4,j = 0 6= mi4,j′ . Therefore in GM , dist(aj , aj′) = 2, dist(bj , bj′) =
2, dist(aj , bj′) = 2, and dist(bj , aj′) = 2. It follows that GM is of diameter 2.

Let R = (L, I) be any interval routing scheme on GM .
Claim 4.1. For every arc (aj , bj) and for every vertex vi, if mi,j = 1 and

L(vi) /∈ I(aj , bj), or if mi,j = 0 and L(vi) ∈ I(aj , bj), then R builds a path of length
at least 3.

Proof. Any “wrong” decision of R in routing from aj to vi (meaning, any decision
to start the route from aj to vi on any outgoing arc of aj other than the arc (aj , bj))
results in a route that goes through some vertex vi′ 6= vi before it reaches vi. The

470 CYRIL GAVOILLE AND DAVID PELEG

claim now follows from the fact that there is no path shorter than two hops between
any two vertices vi 6= vi′ .

Let k = comp(M) be the compactness of M .
Claim 4.2. IRS(GM) ≥ k.
Proof. The claim is proved by showing that if there is an IRS R that uses no

more than k− 1 intervals per arc, then R builds some path of length at least 3. Since
GM is of diameter 2, this implies that R is not a shortest paths scheme.

Given Claim 4.1, it suffices to prove that if there is an IRS R that uses no more
than k − 1 intervals per arc, then R must make the wrong decision for some vi and
(aj , bj).

Let j0 be a column of M composed of at least k blocks of consecutive ones.
Such a column exists because the compactness of M is k. Let us consider the tuple
u = (u1, . . . , up) defined by setting ui = 1 if L(vi) ∈ I(aj0 , bj0) and ui = 0 otherwise,
for every i ∈ {1, . . . , p}. Since I(aj0 , bj0) is composed of at most k − 1 intervals, u
is composed of at most k − 1 blocks of consecutive ones. Thus the column j0 and
the tuple u differ in at least one place. Let i0 be an index such that mi0,j0 6= ui0 . If
ui0 = 1, then L(vi0) ∈ I(aj0 , bj0) and mi0,j0 = 0. If ui0 = 0, then L(vi0) /∈ I(aj0 , bj0)
and mi0,j0 = 1. Claim 4.2 now follows by applying Claim 4.1.

The order of GM is n = p + 2q. Let us choose q = bcn2/3 ln1/3 nc, where c =
(3/2)1/3 ≈ 1.14. The maximum degree of GM is max{q, dp/2e + 1} < p/2 + 2 <
n/2. (In particular, nodes aj are connected to bj and to the vi’s corresponding to
all the 0 entries of the jth column of M .) The total number of edges in GM is

|E| = pq+ q < nq < 1.15n5/3 ln1/3 n. Replacing p = n− 2q and applying Lemma 4.2,
the compactness of M , k, satisfies

k ≥ n

4
− q

2
−
√

3(n− 2q)2

2q
ln (n− 2q) +O

(
n2

q
+ n logn

)
.

Noting that O(n2/q + n logn) = O(n4/3) and that

3(n− 2q)2

2q
ln (n− 2q) <

3n2

2q
lnn,

we get

k ≥ n

4
− c

2
n2/3 ln1/3 n−

√
3n2 lnn

2cn2/3 ln1/3 n
+O(n4/3)

≥ n

4
− c

2
n2/3 ln1/3 n−

√
3

2c
n4/3 ln2/3 n−O

(
n2/3

)
≥ n

4
−
(
c

2
+

√
3

2c

)
n2/3 ln1/3 n−O

(
n2/3

)
≥ n

4
−
(

3

2

)4/3

n2/3 ln1/3 n−O
(
n2/3

)
>
n

4
− 1.72n2/3 ln1/3 n .

Therefore, we have shown that if R uses at most k− 1 intervals per arc, R builds
a route of length at least 3. It remains to show that this result holds also if R uses
at most IRS(GM)− 1 intervals per arc.

THE COMPACTNESS OF INTERVAL ROUTING 471

Claim 4.3. For every 2-connected graph G of girth g, if k < IRS(G), then the
longest path of every (nonshortest path) single k-IRS is at least bg/2c+ 1.

Proof. Let G be a graph as in the claim and let R be a single k-IRS for G.
Since IRS(G) > k, there must exist two nodes x, y at distance d such that the routing
specified by R from x to y is not along a shortest path. The routing path uses an
alternative on a cycle between x and y. The length of this alternative path, l, satisfies
l+d ≥ g, which implies that l ≥ g/2, because d ≤ g/2. However, l = g/2 is impossible;
otherwise the message would use a shortest path; hence l > g/2 ≥ bg/2c, and thus
l ≥ bg/2c+ 1.

Clearly, the graph GM is 2-connected and has no triangles; thus its girth is at
least 4, and therefore any single k-IRS of GM has a routing path of length at least 3,
completing the proof of Claim 4.3.

Remark 3. Theorem 2.2 is tight for the length of the longest path since it is
proven in [13] that d√n lnne+ 1 intervals per arc are sufficient to guarantee routes of
length at most d3D/2e, where D is the diameter of the graph. Hence for the graphs
considered here, which are of diameter 2, this yields paths of length at most 3. Using
this IRS, G cannot have a routing path of length 4.

To the best of our knowledge, the “best” worst-case construction which does not
use randomization remains that of [9], which yields graphs G with IRS(G) ≥ n/8, for
every n power of 2.

Corollary 4.3. For every sufficiently large integer n and for every integer
D ≥ 2, D = o(n), there exists an n-node graph G of diameter D such that

IRS(G) >
n

4
− o(n).

Proof. Take the worst-case n-node graph G of Theorem 2.2. G has diameter 2;
therefore it has a node x of eccentricity 2. Construct a new graph G′ obtained from G
by adding a path of length D−2 to x. G′ has diameter D exactly and n′ = n+D−2
nodes. The proof of Theorem 2.2 applies on G′ as well. It turns out that G′ has
compactness at least n/4 − O(n2/3 log1/3 n), that is, n′/4 − o(n′), replacing n with
n′ −D + 2 ≥ n′ − o(n).

We conclude this section by showing that the lower bound can be applied to k-IRS
that are not of shortest paths and not single routing schemes.

A routing scheme R on G is of stretch factor s if for all nodes x, y, x 6= y; the
routing path length from x to y is at most s times longer than the distance in G
between x and y. In particular, a shortest path k-IRS is a routing scheme of stretch
factor 1.

For every integer α ≥ 1, a routing scheme R on G is α-adaptive if for all nodes
x, y, x 6= y, there exist min{α, δ} edge-disjoint routing paths between x and y, where
δ is the total number of “possible” edge-disjoint routing paths between x and y in
G having different first edges. A single shortest path k-IRS is a 1-adaptive routing
scheme of stretch factor 1. A full-adaptive k-IRS on G is a ∆-adaptive routing scheme
on G, where ∆ is the maximum degree of G.

Since for GM the shortest paths between the nodes aj and vi are unique and since
any wrong decision will route along paths of length at least 3/2 times the distance,
we have the following trivial lower bound.

Corollary 4.4. For every sufficiently large integer n, for every s, 1 ≤ s < 3/2,
and for every integer α ≥ 1, there exists an n-node graph G such that no α-adaptive

472 CYRIL GAVOILLE AND DAVID PELEG

k-IRS of stretch factor s on G exists if

k ≤ n

4
− 1.72n2/3 ln1/3 n.

5. Conclusion.
• Since the lower bound is based on the Kolmogorov complexity of the labels of

the edges, the resulting bound can be applied to every kind of edge-labeling
based routing scheme. Moreover, the bounds can apply to adaptive (or mul-
tipath) routing schemes.
• It would be interesting to find tighter upper bounds for small values of n, and

also to express these bounds as a function of other parameters and properties
of the graphs under study, such as their maximum degree, planarity, genus,
tree-width, and so on.

Acknowledgment. We would like to thank Alexander Kostochka.

REFERENCES

[1] T. Eilam, S. Moran, and S. Zaks, The complexity of the characterization of networks sup-
porting shortest-path interval routing, in 4th International Colloquium on Structural In-
formation & Communication Complexity (SIROCCO), D. Krizanc and P. Widmayer, eds.,
Carleton Scientific, Ottawa, Canada, 1997, pp. 99–111.

[2] M. Flammini, Deadlock-free interval routing schemes, in 14th Annual Symposium on Theo-
retical Aspects of Computer Science (STACS), R. Reischuk and M. Morvan, eds., Lecture
Notes in Comput. Sci., Springer, Berlin, 1997, pp. 351–362.

[3] M. Flammini, G. Gambosi, U. Nanni, and R. B. Tan, Multidimensional interval routing
schemes, Theoret. Comput. Sci., 205 (1998), pp. 115–133.

[4] M. Flammini and G. Gambosi, On devising Boolean routing schemes, Theoret. Comput. Sci.,
186 (1997), pp. 171–198.

[5] P. Fraigniaud and C. Gavoille, Interval routing schemes, Algorithmica, 21 (1998), pp. 155–
182.

[6] G. N. Frederickson and R. Janardan, Designing networks with compact routing tables,
Algorithmica, 3 (1988), pp. 171–190.

[7] C. Gavoille, A survey on interval routing scheme, Theoret. Comput. Sci., 245 (1999).
[8] C. Gavoille and M. Gengler, Space-efficiency of routing schemes of stretch factor three,

in 4th International Colloquium on Structural Information & Communication Complexity
(SIROCCO), D. Krizanc and P. Widmayer, eds., Carleton Scientific, Ottawa, Canada,
1997, pp. 162–175.

[9] C. Gavoille and E. Guévremont, Worst case bounds for shortest path interval routing, J.
Algorithms, 27 (1998), pp. 1–25.

[10] C. Gavoille and S. Pérennès, Lower bounds for interval routing on 3-regular networks, in
3rd International Colloquium on Structural Information & Communication Complexity
(SIROCCO), N. Santoro and P. Spirakis, Carleton University Press, Ottawa, Canada,
1996, pp. 88–103.

[11] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics: A Foundation for
Computer Science, 2nd ed., Addison-Wesley, Reading, MA, 1994.

[12] E. Kranakis, D. Krizanc, S. S. Ravi, On multi-label linear interval routing schemes, in 19th
International Workshop on Graph-Theoretic Concepts in Computer Science—Distributed
Algorithms (WG), Lecture Notes in Comput. Sci., Springer-Verlag, Berlin, 1994, pp. 338–
349.

[13] R. Kráľovič, P. Ružička, and D. Štefankovič, The complexity of shortest path and dilation
bounded interval routing, in 3rd International Euro-Par Conference, C. Lengaur, M. Griebl,
and S. Gorlatch, eds., Lecture Notes in Comput. Sci., Springer, Berlin, 1997, pp. 258–265.

[14] M. Li and P. M. B. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications,
Springer-Verlag, New York, 1993.

[15] L. Narayanan and J. Opatrny, Compact routing on chordal rings of degree four, in
4th International Colloquium on Structural Information & Communication Complexity
(SIROCCO), D. Krizanc and P. Widmayer, eds., Carleton Scientific, Ottawa, Canada,
1997, pp. 125–137.

THE COMPACTNESS OF INTERVAL ROUTING 473

[16] L. Narayanan and S. Shende, Characterizations of networks supporting shortest-path interval
labeling schemes, in 3rd International Colloquium on Structural Information & Commu-
nication Complexity (SIROCCO), N. Santoro and P. Spirakis, eds., Carleton University
Press, Ottawa, Canada, 1996, pp. 73–87.

[17] N. Santoro and R. Khatib, Labelling and implicit routing in networks, Comput. J., 28 (1985),
pp. 5–8.

[18] J. van Leeuwen and R. B. Tan, Interval routing, Comput. J., 30 (1987), pp. 298–307.

DETERMINANT: OLD ALGORITHMS, NEW INSIGHTS∗

MEENA MAHAJAN† AND V. VINAY‡

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 4, pp. 474–490

Abstract. In this paper we approach the problem of computing the characteristic polynomial
of a matrix from the combinatorial viewpoint. We present several combinatorial characterizations of
the coefficients of the characteristic polynomial in terms of walks and closed walks of different kinds
in the underlying graph. We develop algorithms based on these characterizations and show that they
tally with well-known algorithms arrived at independently from considerations in linear algebra.

Key words. determinant, algorithms, combinatorics, graphs, matrices

AMS subject classifications. 05A15, 68R05, 05C50, 68Q25

PII. S0895480198338827

1. Introduction. Computing the determinant, or the characteristic polynomial,
of a matrix is a problem which has been studied several years ago from the numerical
analysis viewpoint. In the mid 1940’s, a series of algorithms which employed sequential
iterative methods to compute the polynomial were proposed, the most prominent one
due to Samuelson, Krylov, and Leverier [19]; see, for instance, the presentation in [10].
Then, in the 1980’s, a series of parallel algorithms for the determinant were proposed
by Csanky, Chistov, and Berkowitz [6, 5, 1]. This culminated in the result, shown
independently by several complexity theorists including Vinay, Damm, Toda, and
Valiant [26, 7, 24, 25], that computing the determinant of an integer matrix is complete
for the complexity class GapL and hence computationally equivalent in a precise
complexity-theoretic sense to iterated matrix multiplication or matrix powering.

In an attempt to unravel the ideas that went into designing efficient parallel al-
gorithms for the determinant, Valiant studied Samuelson’s algorithm and interpreted
the computation combinatorially [25]. He presented a combinatorial theorem con-
cerning closed walks (clows) in graphs, the correctness of which followed from that
of Samuelson’s algorithm. This was the first attempt to view determinant computa-
tions as graph-theoretic rather than linear algebraic manipulations. Inspired by this,
and by the purely combinatorial and extremely elegant proof of the Cayley–Hamilton
theorem due to Rutherford [18] (and independently discovered by Straubing [21]; see
[2, 27] for nice expositions and see [3] for related material), Mahajan and Vinay [15]
described a combinatorial algorithm for computing the characteristic polynomial. The
proof of correctness of this algorithm is also purely combinatorial and does not rely
on any linear algebra or polynomial arithmetic.

In this paper, we follow up on the work presented in [25, 21, 15] and present
a unifying combinatorial framework in which to interpret and analyse a host of al-
gorithms for computing the determinant and the characteristic polynomial. We first

∗Received by the editors May 18, 1998; accepted for publication (in revised form) May 20, 1999;
published electronically October 19, 1999. A preliminary version of this paper appeared in the
Proceedings of the Sixth Scandinavian Workshop on Algorithm Theory SWAT’98, Lecture Notes in
Comput. Sci. 1432, Springer-Verlag, pp. 276–287.

http://www.siam.org/journals/sidma/12-4/33882.html
†Institute of Mathematical Sciences, Chennai 600 113, India (meena@imsc.ernet.in). Part of this

work was done when this author was visiting the Department of Computer Science and Automation,
IISc, Bangalore, India.
‡Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560

012, India (vinay@csa.iisc.ernet.in).

474

DETERMINANT: OLD ALGORITHMS, NEW INSIGHTS 475

describe what the coefficients of the characteristic polynomial of a matrix M represent
as combinatorial entities in the graph GM whose adjacency matrix is M . We then
consider various algorithms for evaluating the coefficients, and in each case we relate
the intermediate steps of the computation to manipulation of similar combinatorial
entities, giving combinatorial proofs of correctness of these algorithms.

In particular, in the graph-theoretic setting, computing the determinant amounts
to evaluating the signed weighted sum of cycle covers. This sum involves far too
many terms to allow evaluation of each, and we show how the algorithms of [19, 5, 6]
essentially expand this sum to include more terms, i.e., generalizations of cycle covers,
which eventually cancel out but which allow easy evaluation. The algorithm in [15]
uses clow sequences explicitly; Samuelson’s method [19] implicitly uses prefix clow
sequences; Chistov’s method [5] implicitly uses tables of tour sequences; and Csanky’s
algorithm [6] hinges around Leverier’s lemma (see, for instance, [10]), which can be
interpreted using loops and partial cycle covers. In each of these cases, we explicitly
demonstrate the underlying combinatorial structures, and give proofs of correctness
which are entirely combinatorial in nature.

In a sense, this paper parallels the work done by a host of combinatorialists in
proving the correctness of matrix identities using the graph-theoretic setting. Foata [8]
used tours and cycle covers in graphs to prove the MacMohan master theorem; Ruther-
ford and Straubing [18, 21] reproved the Cayley–Hamilton theorem using counting
over walks and cycle covers; Garsia [11], Orlin [17], and Tempereley [23] indepen-
dently found combinatorial proofs of the matrix-tree theorem and Chaiken [4] gener-
alized the proof to the all-minor matrix-tree theorem; Foata [9] and then Zeilberger
[27] gave new combinatorial proofs of the Jacobi identity; Gessel [12] used transitive
tournaments in graphs to prove Vandermonde’s determinant identity. More recently,
Minoux [16] showed an extension of the matrix-tree theorem to semirings, again using
counting arguments over arborescences in graphs. For beautiful surveys of some of
these results, see Zeilberger’s paper [27] and chapter 4 of Stanton and White’s book on
constructive combinatorics [22]. Zeilberger ends with a host of “exercises” in proving
many more matrix identities combinatorially.

Thus, using combinatorial interpretations and arguments to prove matrix identi-
ties has been around for a while. To our knowledge, however, a similar application
of combinatorial ideas to interpret, or prove correctness of, or even develop new algo-
rithms computing matrix functions, has been attempted only twice before: by Valiant
[25] in 1992 and by the present authors in our earlier paper in 1997 [15]. We build on
our earlier work and pursue a new thread of ideas here.

This paper is thus a collection of new interpretations and proofs of known results.
The paper is by and large self-contained.

2. Matrices, determinants, and graphs. Let A be a square matrix of di-
mension n. For convenience, we state our results for matrices over integers, but they
apply to matrices over any commutative ring.

We associate matrices of dimension n with complete directed graphs on n vertices,
with weights on the edges. Let GA denote the complete directed graph associated with
the matrix A. If the vertices of GA are numbered {1, 2, . . . , n}, then the weight of the
edge 〈i, j〉 is aij . We use the notation [n] to denote the set {1, 2, . . . , n}.

The determinant of the matrix A, det(A), is defined as the signed sum of all
weighted permutations of Sn as follows:

det(A) =
∑
σ∈Sn

sgn(σ)
∏
i

aiσ(i),

476 MEENA MAHAJAN AND V. VINAY

where sgn(σ) = (−1)k, k being the number (modulo 2) of inversions in σ, i.e., the
cardinality of the set {〈i, j〉 | i < j, σ(i) > σ(j)} modulo 2.

Each σ ∈ Sn has a cycle decomposition, and it corresponds to a set of cycles in
GA. For instance, with n = 5, the permutation (1

4
2
2

3
3

4
5

5
1) has a cycle decomposition

(145)(2)(3) which corresponds to 3 cycles in GA. Such cycles of GA have an important
property: they are all simple (nonintersecting), disjoint cycles; when put together,
they touch each vertex exactly once. Such sets of cycles are called cycle covers. Note
that cycle covers of GA and permutations of Sn are in bijection with each other.

We define weights of cycle covers to correspond to weights of permutations. The
weight of a cycle is the product of the weights of all edges in the cycle. The weight of
a cycle cover is the product of the weights of all the cycles in it. Thus, viewing the
cycle cover C as a set of edges, w(C) =

∏
e∈C w(e). Since the weights of the edges are

dictated by the matrix A, we can write w(C) =
∏
〈i,j〉∈C aij .

We can also define the sign of a cycle cover consistent with the sign of the corre-
sponding permutation. A cycle cover is even (resp., odd) if it contains an even number
(resp., odd) of even length cycles. Equivalently, the cycle cover is even (resp., odd) if
the number of cycles plus the number of edges is even (resp., odd). Define the sign of
a cycle cover C to be +1 if C is even, and −1 if C is odd. Cauchy showed that with
this definition, the sign of a permutation (based on inversions) and the sign of the
associated cycle cover is the same. For our use, this definition of sign based on cycle
covers will be more convenient.

Let C(GA) denote the set of all cycle covers in the graph GA. Then we have

det(A) =
∑

C∈C(GA)

sgn(C)w(C) =
∑

C∈C(GA)

sgn(C)
∏
〈i,j〉∈C

aij .

Consider the characteristic polynomial of A,

χA(λ) = det(λIn −A) = c0λ
n + c1λ

n−1 + · · ·+ cn−1λ+ cn.

To interpret these coefficients, consider the graph GA(λ) whose edges are labeled
according to the matrix λIn − A. The coefficient cl collects part of the contribution
to det(λIn − A) from cycle covers having at least (n − l) self-loops. (A self-loop at
vertex k now carries weight λ−akk.) This is because a cycle cover with i self-loops has
weight which is a polynomial of degree i in λ. For instance, with n = 4, consider the
cycle cover 〈1, 4〉, 〈2, 2〉, 〈3, 3〉, 〈4, 1〉 in GA(λ). This has weight (−a14)(λ − a22)(λ −
a33)(−a41), contributing a14a22a33a41 to c4, −a14a41(a22 + a33) to c3, a14a41 to c2,
and 0 to c1.

Following notation from [21], we consider partial permutations, corresponding to
partial cycle covers. A partial permutation σ is a permutation on a subset S ⊆ [n].
The set S is called the domain of σ, denoted dom(σ). The completion of σ, denoted
σ̂, is the permutation in Sn obtained by letting all elements outside dom(σ) be fixed
points. This permutation σ̂ corresponds to a cycle cover C in GA, and σ corresponds
to a subset of the cycles in C. We call such a subset a partial cycle cover PC, and
we call C the completion of PC. A partial cycle cover is defined to have the same
parity and sign as its completion. It is easy to see that the completion need not be
explicitly accounted for in the parity; a partial cycle cover PC is even (resp., odd) iff
the number of cycles in it, plus the number of edges in it, is even (resp., odd).

Getting back to the characteristic polynomial, observe that to collect the contri-
butions to cl, we must look at all partial cycle covers with l edges. The n− l vertices

DETERMINANT: OLD ALGORITHMS, NEW INSIGHTS 477

left uncovered by such a partial cycle cover PC are the self-loops, from whose weight
the λ term has been picked up. Of the l vertices covered, self-loops, if any, contribute
the −akk term from their weight, not the λ term. And other edges, say 〈i, j〉 for
i 6= j, contribute weights −aij . Thus the weights for PC evidently come from the
graph G−A. If we interpret weights over the graph GA, a factor of (−1)l must be
accounted for independently.

Formally, we have the following definition.
Definition 2.1. A cycle is an ordered sequence of m edges C = 〈e1, e2, . . . , em〉,

where ei = 〈ui, ui+1〉 for i ∈ [m − 1] and em = 〈um, u1〉 and u1 ≤ ui for i ∈ [m] and
all the ui’s are distinct. u1 is called the head of the cycle, denoted h(C). The length
of the cycle is |C| = m, and the weight of the cycle is w(C) =

∏m
i=1 w(ei). The vertex

set of the cycle is V (C) = {u1, . . . , um}.
An l-cycle cover C is an ordered sequence of cycles C = 〈C1, . . . , Ck〉 such that

V (Ci) ∩ V (Cj) = φ for i 6= j, h(C1) < · · · < h(Ck) and |C1|+ · · ·+ |Ck| = l.

The weight of the l-cycle cover is wt(C) =
∏k
j=1 w(Cj), and the sign is sgn(C) =

(−1)l+k.
As a matter of convention, we call n-cycle covers simply cycle covers.
Proposition 2.2. The coefficients of χA(λ) are given by

cl = (−1)l
∑

C is an l-cycle cover in GA

sgn(C)wt(C).

3. Summing over permutations efficiently. As noted in Proposition 2.2,
evaluating the determinant (or for that matter, any coefficient of the characteristic
polynomial) amounts to evaluating the signed weighted sum over cycle covers (partial
cycle covers of appropriate length). We consider four efficient algorithms for comput-
ing this sum. Each expands this sum to include more terms which mutually cancel
out. The differences between the algorithms is essentially in the extent to which the
sum is expanded.

3.1. From cycle covers to clow sequences. Generalize the notion of a cycle
and a cycle cover as follows:

A clow is a cycle in GA (not necessarily simple) with the property that the mini-
mum vertex in the cycle – called the head – is visited only once. An l-clow sequence is
a sequence of clows where the heads of the clows are in strictly increasing order and
the total number of edges (counting each edge as many times as it is used) is l.

Formally, we have the following definition.
Definition 3.1. A clow is an ordered sequence of edges C = 〈e1, e2, . . . , em〉

such that ei = 〈ui, ui+1〉 for i ∈ [m − 1] and em = 〈um, u1〉 and u1 6= uj for j ∈
{2, . . . ,m} and u1 = min{u1, . . . , um}. The vertex u1 is called the head of the clow
and denoted h(C). The length of the clow is |C| = m, and the weight of the clow is
w(C) =

∏m
i=1 w(ei).

An l-clow sequence C is an ordered sequence of clows C = 〈C1, . . . , Ck〉 such that
h(C1) < · · · < h(Ck) and |C1|+ · · ·+ |Ck| = l.

The weight of the l-clow sequence C is wt(C) =
∏k
j=1 w(Cj), and the sign of C is

sgn(C) = (−1)l+k.
Note that the set of l-clow sequences properly includes the set of l-cycle covers

on a graph. And the sign and weight of a cycle cover are consistent with its sign and
weight when viewed as a clow sequence.

478 MEENA MAHAJAN AND V. VINAY

CASE 1 CASE 2

head

v

v

head

v

Fig. 3.1. Pairing clow sequences of opposing signs.

Theorem 3.2 (see [15, Theorem 1]).

cl = (−1)l
∑

C is an l-clow sequence

sgn(C)wt(C).

Proof. We construct an involution ϕ on the set of l-clow sequences. The involution
has the property that ϕ2 is the identity, ϕ maps an l-cycle cover to itself, and otherwise
C and ϕ(C) have the same weight but opposing signs. This shows that the contribution
of l-clow sequences that are not l-cycle covers is zero. Consequently, only l-cycle covers
contribute to the summation, yielding exactly cl.

Let C = 〈C1, . . . , Ck〉 be an l-clow sequence. Choose the smallest i such that Ci+1

to Ck is a p-cycle cover for some p. If i = 0, the involution maps C to itself. Otherwise,
having chosen i, traverse Ci starting from h(Ci) until one of two things happen.

1. We hit a vertex that touches one of Ci+1 to Ck.
2. We hit a vertex that completes a cycle within Ci.

Let us call the vertex v. Given the way we chose i, such a v must exist. Vertex v
cannot satisfy both of the above conditions.

Case 1. Suppose v touches Cj . Map C to a clow sequence

C′ = 〈C1, . . . , Ci−1, C
′
i, Ci+1, . . . , Cj−1, Cj+1, . . . Ck〉.

The modified clow, C ′i is obtained from Ci by inserting the cycle Cj into it at the first
occurence of v.

Case 2. Suppose v completes a simple cycle C in Ci. Cycle C must be disjoint
from all the later cycles. We now modify the sequence C by deleting C from Ci and
introducing C as a new clow in an appropriate position, depending on the minimum
labeled vertex in C, which we make the head of C.

Figure 3.1 illustrates the mapping.

In both of the above cases, the new sequence constructed maps back to the original
sequence in the opposite case. Furthermore, the number of clows in the two sequences

DETERMINANT: OLD ALGORITHMS, NEW INSIGHTS 479

differ by one, and hence the signs are opposing, whereas the weight is unchanged. This
is the desired involution.

Furthermore, the above mapping does not change the head of the first clow in the
sequence. So if the goal is to compute the determinant which sums up the n-cycle
covers, then the head of the first cycle must be the vertex 1. So it suffices to consider
clow sequences where the first clow has head 1.

Algorithm using clow sequences. Both sequential and parallel algorithms based
on the clow sequences characterization are described in [15]. We briefly describe the
implementation idea below, for the case cn.

The goal is to sum up the contribution of all clow sequences. The clow sequences
can be partitioned into n groups based on the number of clows. Let Ck be the sum
of the weights of all clow sequences with exactly k clows, and let Dk = (−1)n+kCk.
Then cn =

∑n
k=1Dk.

To compute Ck, we use a divide-and-conquer approach on the number of clows:
any clow sequence contributing to Ck can be suitably split into two partial clow
sequences, with the left sequence having dk/2e clows. The heads of all clows in the
left part must be less than the head of the first clow in the rightmost part. And the
lengths of the left and the right partial clow sequences must add up to n. Let variable
g[p, l, u, v] sum up the weights of all partial clow sequences with p clows, l edges, head
of first clow u, and heads of all clows at most v. (We need not consider variables
where l < p or u > v.) Then Ck = g[k, n, 1, n], and such variables can be evaluated
by the formula

g[p, l, u, v] =

∑

q ≤ r ≤ q + (l− p)
u < w ≤ v

g[q, r, u, w − 1] · g[p− q, l − r, w, v] if p > 1,

g[l, u] if p = 1,

where q = dp/2e. The variable g[l, u] sums up the weights of all clows of length l with
head u, and is also evaluated in a divide-and-conquer fashion. A clow with head u is
either a self-loop if l = 1, or it must first visit some vertex v > u, find a path of length
l− 2 to some vertex w > u through vertices all greater than u, and then return to u.
So

g[l, u] =

auu if l = 1,∑

v>u auv · avu if l = 2,∑
v,w>u auv · c[l − 2, u, v, w] · awu otherwise.

The variable c[l, u, v, w] sums the weights of all length l paths from v to w going
through vertices greater than u. These variables can be evaluated as follows:

c[1, u, v, w] = avw
c[l, u, v, w] =

∑
x>u c[p, u, v, x] · c[l − p, u, x, w] if l > 1, where p = dl/2e.

3.2. Clow sequences with the prefix property: Getting to Samuelson’s
method. The generalization from cycle covers to clow sequences has a certain ex-
travagance. The reason for going to clow sequences is that evaluating their weighted
sum is easy, and this sum equals the sum over cycle covers. However, there are sev-
eral clow sequences which we can drop from consideration without sacrificing ease of
computation. One such set arises from the following consideration:

In a cycle cover, all vertices are covered exactly once. Suppose we enumerate the
vertices in the order in which they are visited in the cycle cover (following the order

480 MEENA MAHAJAN AND V. VINAY

imposed by the cycle heads). If vertex h becomes the head of a cycle, then all vertices
in this and subsequent cycles are larger than h. So all the lower numbered vertices
must have been already visited. So at least h − 1 vertices, and hence h − 1 edges,
must have been covered.

We can require our clow sequences also to satisfy this property. We formalize
the prefix property: a clow sequence C = 〈C1, . . . , Ck〉 has the prefix property if for
1 ≤ r ≤ k, the total lengths of the clows C1, . . . , Cr−1 is at least h(Cr)− 1. A similar
prefix property can be formalized for partial cycle covers. Formally, we have the
following definition.

Definition 3.3. An l-clow sequence C = 〈C1, . . . , Ck〉 is said to have the prefix
property if it satisfies the following condition:

∀r ∈ [k],

r−1∑
t=1

|Ct| ≥ h(Cr)− 1− (n− l).

The interesting fact is that the involution constructed in the previous subsection
for clow sequences works even over this restricted set!

Theorem 3.4 (see [25, Theorem 2]).

cl = (−1)l
∑

C is an l-clow sequence

with the prefix property

sgn(C)wt(C).

A new proof of the above theorem. In [25], Valiant observes that prefix clow se-
quences are the terms computed by Samuelson’s method for evaluating χλ(A). Hence
the correctness of the theorem follows from the correctness of Samuelson’s method.
And the correctness of Samuelson’s method is traditionally shown using linear algebra.

Here is a simple alternative combinatorial proof of this theorem. Observe that
the involution defined in the proof of Theorem 3.2 maps clow sequences with prefix
property to clow sequences with prefix property. Why? Let C be an l-clow sequence
with the prefix property satisfying case 1 in the proof. Since the length of clow
Ci only increases in the process, the prefix property continues to hold. Now let C
be an l-clow sequence with the prefix property satisfying case 2. The involution
constructs a new l-clow sequence C′ by detaching cycle C from clow Ci and inserting
it later in the sequence, say between Cj−1 and Cj . This does not change h(Ci).
Let C′ = D = 〈D1, . . . , Dk+1〉; here Dt = Ct for t ∈ [i − 1] or for t = i + 1 to
j − 1, Di = Ci\C, Dj = C and Dt+1 = Ct for t = j to k. We must show that
D has the prefix property. For r ∈ [i], and for r = j + 1 to k + 1, the condition∑r−1
t=1 |Dt| ≥ h(Dr) − 1 − (n − l) holds because C has the prefix property. Now let

i + 1 ≤ r ≤ j. Since Ci was chosen from C for modification, and since i + 1 ≤ r,
we know that Dr, . . . , Dk+1 form a partial cycle cover, i.e., they form simple disjoint
cycles. And the heads of these cycles are arranged in increasing order. So the vertices
covered in Dr, . . . , Dk+1 must all be at least as large as h(Dr) and all distinct. But
there are only n− h(Dr) + 1 such vertices. Hence∑k+1

t=r |Dt| ≤ n− h(Dr) + 1

l −∑r−1
t=1 |Dt| ≤ n− h(Dr) + 1∑r−1

t=1 |Dt| ≥ h(Dr)− 1− (n− l)

DETERMINANT: OLD ALGORITHMS, NEW INSIGHTS 481

and D satisfies the prefix property.
Thus in summing over all l-clow sequences with the prefix property, the only

l-clow sequences that do not cancel out are the l-cycle covers, giving the claimed
result.

Algorithm using prefix clow sequences. To compute cl using this characterization,
we must sum up the contribution of all l-clow sequences with the prefix property. One
way is to modify the dynamic programming approach used in the previous subsection
for clow sequences. This can be done easily. Let us instead do things differently; the
reason will become clear later.

Adopt the convention that there can be clows of length 0. Then each l-clow
sequence C has exactly one clow Ci with head i, for i = 1 to n. So we write C =
〈C1, . . . , Cn〉.

Define the signed weight of a clow C as sw(C) = −w(C) if C has nonzero length,
and sw(C) = 1 otherwise. And define the signed weight of an l-clow sequence as
sw(C) =

∏n
i=1 sw(Ci). Then sgn(C)w(C) = (−1)lsw(C). So from the preceding

theorem,

cl =
∑

C is an l-clow sequence

with the prefix property

sw(C).

We say that a sequence of nonnegative integers l1, . . . , ln satisfies the property
prefix(l) if

1.
∑n
t=1 lt = l, and

2. For r ∈ [n],
∑r−1
t=1 lt ≥ r − 1− (n− l). Alternatively

∑n
t=r lt ≤ n− r + 1.

Such sequences are “allowed” as lengths of clows in the clow sequences we construct;
no other sequences are allowed.

We group the clow sequences with prefix property based on the lengths of the
individual clows. In a clow sequence with prefix property C, if the length of clow Ci
(the possibly empty clow with head i) is li, then any clow with head i and length li
can replace Ci in C and still give a clow sequence satisfying the prefix property. Thus,
if z(i, p) denotes the total signed weight of all clows that have vertex i as head and
length p, then

cl =
∑

l1,...,ln:prefix(l)

n∏
i=1

z(i, li).

To compute cl efficiently, we place the values z(i, p) appropriately in a series of matri-
ces B1, . . . , Bn. The matrix Bk has entries z(k, p). Since we only consider sequences
satisfying prefix(l), it suffices to consider z(k, p) for p ≤ n − k + 1. Matrix Bk is of
dimension (n−k+ 2)× (n−k+ 1) and has z(k, p) on the pth lower diagonal as shown
below.

Bk =

z(k, 0) 0 0 · · · 0 0
z(k, 1) z(k, 0) 0 · · · 0 0
z(k, 2) z(k, 1) z(k, 0) · · · 0 0

...
...

...
... 0

z(k, n− k) z(k, n− k − 1) z(k, n− k − 2) · · · z(k, 1) z(k, 0)
z(k, n− k + 1) z(k, n− k) z(k, n− k − 1) · · · z(k, 2) z(k, 1)

482 MEENA MAHAJAN AND V. VINAY

Now from the equation for cl, it is clear that

cl =
∑

l + 1 = j0 ≥ j1 ≥ j2 ≥ · · · ≥ jn = 1 :
j0 − j1, j1 − j2, . . . , jn−1 − jn : prefix(l)

(
n∏
i=1

Bi[ji−1, ji] =

) (
n∏
i=1

Bi

)
[l + 1, 1],

or more succinctly,

[c0 c1 c2 c3 · · · · · · cn]T =
n∏
k=1

Bk.

It remains now to compute z(i, p), the entries in the B matrices. We know that
z(i, 0) = 1 and z(i, 1) = −aii. For p ≥ 2, a clow of length p with head i must first
visit a vertex u > i, then perform a walk of length p − 2 via vertices greater than i
to some vertex v > i, and then return to i. To construct the path, we exploit the
fact that the (j, k)th entry in a matrix Ap gives the sum of the weights of all paths in
GA of length exactly p from j to k. So we must consider the induced subgraph with
vertices i + 1, . . . , n. This has an adjacency matrix Ai+1 obtained by removing the
first i rows and the first i columns of A. So A1 = A. Consider the submatrices of Ai
as shown below.

Ai =

aii
(

Ri
) Si

 Ai+1

Then the clows contributing to z(i, p) must use an edge in Ri, perform a walk

corresponding to Ap−2
i+1 , and then return to i via an edge in Si. In other words,

z(i, p) = −Ri Ap−2
i+1 Si.

So the matrices Bk look like this:

Bk =

1 0 0 · · · 0 0
−akk 1 0 · · · 0 0
−RkSk −akk 1 · · · 0 0

...
...

...
... 0

...
...

...
... 0

−RkAn−k−2
k+1 Sk −RkAn−k−3

k+1 Sk −RkAn−k−4
k+1 Sk · · · −akk 1

−RkAn−k−1
k+1 Sk −RkAn−k−2

k+1 Sk −RkAn−k−3
k+1 S1 · · · −RkSk −akk

This method of computing χA(λ) is precisely Samuelson’s method [19, 10, 1,

25]. Samuelson arrived at this formulation using Laplace’s theorem on the matrix
λI − A, whereas we have arrived at it via clow sequences with the prefix property.
This interpretation of the Samuelson–Berkowitz algorithm is due to Valiant [25]; the
combinatorial proof of correctness (proof of Theorem 3.4) is new. (It is mentioned,
without details, in [15].)

DETERMINANT: OLD ALGORITHMS, NEW INSIGHTS 483

3.3. From clows to tour sequences tables: Getting to Chistov’s al-
gorithm. We now move in the other direction—generalize further beyond clow se-
quences. First, we relax the condition that the head of a clow may be visited only
once. This gives us more generalized closed walks which we call tours. To fix a canon-
ical representation, we do require the edges of the tour to be listed beginning from
an occurrence of the head. Since there could be multiple such occurrences, we get
different tours with the same multiset of edges. For instance, the tour corresponding
to the vertex sequence 253246 is different from the tour corresponding to the vertex
sequence 246253. Second, we deal with not just sequences but ordered lists, or tables,
of sequences. Within a sequence, the tours are ordered by their heads (and all heads
are distinct). However, there is no restriction on how the sequences must be ordered
in the table. In fact, for the same multiset of sequences, different orderings of the
sequences will give different tables that we treat as distinct. Third, the parity of a
tour sequence table depends on the number of sequences in it, not the number of tours
in it. A clow sequence is thus a tour sequence table where (i) each sequence contains
a single tour which is a clow and (ii) within the table the sequences are ordered by
their tour heads. Formally, we have the following definition.

Definition 3.5. A tour is an ordered sequence of edges C = 〈e1, e2, . . . , ep〉 such
that ei = 〈ui, ui+1〉 for i ∈ [p− 1] and ep = 〈up, u1〉 and ui = min{u1, . . . , um}. The
vertex u1 is called the head of the tour and denoted h(C). The length of the tour is
|T | = p, and the weight of the tour is wt(T) =

∏m
i=1 w(ei).

A j-tour sequence T is an ordered sequence of tours T = 〈T1, . . . , Tk〉 such that
h(T1) < · · · < h(Tk) and |T1| + · · · + |Tk| = j. The weight of the tour sequence is

wt(T) =
∏k
j=1 wt(Tj), and the length is |T | = j.

An l-tour sequence table TST is an ordered sequence of tour sequences F =
〈T1, . . . , Tr〉 such that |T1| + · · · + |Tr| = l. The weight of the TST is wt(F) =∏r
j=1 wt(Tj), and the sign is (−1)l+r.

The following theorem shows that even TSTs can be used to compute the char-
acteristic polynomial.

Theorem 3.6.

cl = (−1)l
∑

F is an l-TST

sgn(F)wt(F).

Proof. We present an involution on the set of l-TSTs with all l-clow sequences
being fixed points, and all other l-TSTs being mapped to TSTs of the same weight
but opposing sign. Since l-clow sequences which are not cycle covers also yield a net
contribution of zero (see Theorem 3.2), the sum over all l-TSTs is precisely cl.

Given an l-TST F = 〈T1, . . . , Tr〉, let H be the set of all vertices which occur as
heads of some tour in the table. For S ⊆ H, we say that S has the clow sequence
property if the following holds: There is an i ≤ r such that:

1. The tour sequences Ti+1, . . . , Tr are all single-tour sequences (say tour se-
quence Tj is the tour Tj).

2. No tour in any of the tour sequences T1, . . . , Ti has a head vertex in S.
3. Each vertex in S is the head of a tour Tj for some i + 1 ≤ j ≤ r., i.e.,

{h(Tj) | j = i+ 1, . . . , r} = S.
4. The tour sequence table 〈Ti+1, . . . , Tr〉 actually forms a clow sequence, i.e.,

the tours Tj for i+ 1 ≤ j ≤ r are clows, and h(Ti+1) < · · · < h(Tr).
In other words, all tours in F whose heads are in S are actually clows which occur
in a contiguous block of single-tour sequences, arranged in strictly increasing order of
heads, and this block is not followed by any other tour sequences in F .

484 MEENA MAHAJAN AND V. VINAY

Note that the empty set vacuously has the clow sequence property.

Example. In the TST 〈 〈1, 2, 5〉, 〈3〉, 〈4〉, 〈6〉 〉, where only tour heads have been
represented and where all tours are clows, {3, 4, 6} has this property but {3, 4}, {3, 6},
{5, 6} do not.

Now, in H, find the smallest vertex v such that H>v = {h ∈ H | h > v} has the
clow sequence property but H≥v = {h ∈ H | h ≥ v} does not.

If no such v exists, then H satisfies the clow sequence property, and hence F is
an l-clow sequence. In this case, map F to itself.

If such a v exists, then locate the first tour sequence Ti = 〈T1, . . . , Tk〉 where v
appears (as a head). Then v is the head of the last tour Tk, because all tours with
larger heads occur in a contiguous block of single-tour sequences at the end. The tour
Tk can be uniquely decomposed as TC, where T is a tour and C a clow, both with
head v.

Case 1. T 6= φ. Map this l-TST to an l-TST where Ti is replaced, at the same
position, by the following two tour sequences: 〈C〉, 〈T1, . . . , Tk−1, T 〉. This preserves
weight but inverts the sign. In the modified l-TST, the newly introduced sequence
containing only C will be chosen for modification as in Case 3.

Case 2. T = φ, and k > 1. Map this l-TST to an l-TST where Ti is replaced, at
the same position, by the following two tour sequences: 〈C〉, 〈T1, . . . , Tk−1〉. This too
preserves weight but inverts the sign. In the modified l-TST, the newly introduced
sequence containing only C will be chosen for modification as in Case 3.

Case 3(a). T = φ and k = 1. Then a tour sequence Ti+1 must exist, since
otherwise H≥v would satisfy the clow sequence property. Now, if Ti+1 has a tour with
head greater than v, then, since H>v satisfies the clow sequence property, the TST
Ti+1, . . . , Tr must be a clow sequence. But recall that T has the first occurrence of v
as a head and is itself a clow, so then Ti, . . . , Tr must also be a clow sequence, and
H≥v also satisfies the clow sequence property, contradicting our choice of v. Thus
Ti+1 must have all tours with heads at most v. Let Ti+1 = 〈P1, . . . , Ps〉. Now there
are two subcases depending on the head of the last tour Ps.

Case 3(b). h(Ps) = v. Form the tour P ′s = PsC. Map this l-TST to a new
l-TST where the tour sequences Ti and Ti+1 are replaced, at the same position, by a
single tour sequence 〈P1, . . . , Ps−1, P

′
s〉. The weight is preserved and the sign inverted,

and in the modified l-TST, the tour P ′s in this new tour sequence will be chosen for
modification as in Case 1.

Case 3(c). h(Ps) 6= v. Map this l-TST to a new l-TST where the tour sequences Ti
and Ti+1 are replaced, at the same position, by a single tour sequence 〈P1, . . . , Ps, C〉.
The weight is preserved and the sign inverted, and in the modified l-TST, the tour C
in this new tour sequence will be chosen for modification as in Case 2.

Thus l-TSTs which are not l-clow sequences yield a net contribution
of zero.

The involution may be simpler to follow if we modify the notation as follows:
decompose each tour uniquely into one or more clows with the same head and represent
these clows in the same order in which they occur in the tour. Now a TST is a table of
sequences of clows where, within a sequence, clows are ordered in nondecreasing order
of head. It is easy to see that we are still talking of the same set of objects, but only
representing them differently. Now, the involution picks the vertex v as above, picks
the first tour sequence where v occurs as a head, picks the last clow in this sequence,
and either moves this clow to a new sequence if it is not alone in its sequence, as in
Cases 1 and 2, or appends it to the following sequence, as in Case 3.

DETERMINANT: OLD ALGORITHMS, NEW INSIGHTS 485

Example. For a TST F represented using clows, let the clow heads be as shown
below:

〈 〈1, 2, 2, 5, 5〉, 〈3〉, 〈4〉, 〈6〉 〉
Vertex 5 is chosen as v, the first tour sequence is chosen, and as dictated by Case 1,
this TST is mapped to a new TST F ′ with the tours rearranged as shown below:

〈 〈5〉〈1, 2, 2, 5〉, 〈3〉, 〈4〉, 〈6〉 〉
In F ′ again vertex 5 is chosen, and the first tour sequence is merged with the second
as dictated by Case 3(a), to get back F .

If the first tour sequence of F were 〈1, 2, 2, 5〉 instead, then by Case 2, F would
be mapped to

〈 〈5〉〈1, 2, 2〉, 〈3〉, 〈4〉, 〈6〉 〉,
from which F would be recovered by Case 3(b).)

Algorithm using tour sequence tables. We show how grouping the l-TSTs in a
carefully chosen fashion gives a formulation which is easy to compute.

Define el = (−1)lcl; then

el =
∑

F is an l-TST

sgn(F)wt(F).

To compute cl and hence el using this characterization, we need to compute the
contributions of all l-TSTs. This is more easily achieved if we partition these con-
tributions into l groups depending on how many edges are used up in the first tour
sequence of the table. Group j contains l-TSTs of the form F = 〈T1, . . . , Tr〉 where
|T1| = j. Then F ′ = 〈T2, . . . , Tr〉 forms an (l − j)-TST, and sgn(F) = −sgn(F ′) and
wt(F) = wt(T1)wt(F ′). So the net contribution to el from this group, say el(j), can
be factorized as

el(j) =
∑

T : j-tour sequence

F ′: (l− j)-TST

−sgn(F ′)wt(F ′)wt(T)

= −
(∑

T : j-tour sequence wt(T)
)(∑

F ′: (l− j)-TST sgn(F ′)wt(F ′)
)
,

= −djel−j
where dj is the sum of the weights of all j-tour sequences.

Now we need to compute dj .
It is easy to see that Al[1, 1] gives the sum of the weights of all tours of length

l with head 1. To find a similar sum over tours with head k, we must consider the
induced subgraph with vertices k, k + 1, . . . , n. This has an adjacency matrix Ak,
obtained by removing the first k− 1 rows and the first k− 1 columns of A. (We have
already exploited these properties in section 3.2.) Let y(l, k) denote the sum of the
weights of all l-tours with head k. Then y(l, k) = Alk[1, 1].

The weight of a j-tour sequence T can be split into n factors: the kth factor is 1
if T has no tour with head k, and is the weight of this (unique) tour otherwise. Thus

dj =
∑

0≤li≤j: l1+···+ln=j

∏n
i=1 y(li, i)

=
∑

0≤li≤j: l1+···+ln=j

∏n
i=1A

li
i [1, 1].

486 MEENA MAHAJAN AND V. VINAY

Let us define a power series D(x) =
∑∞
j=0 djx

j . Then, using the above expression
for dj , we can write

D(x) =

(∞∑
l=0

xlAl1[1, 1]

)(∞∑
l=0

xlAl2[1, 1]

)
. . .

(∞∑
l=0

xlAln[1, 1]

)
.

Since we are interested in dj only for j ≤ n, we can ignore monomials of degree
greater than n. This allows us to evaluate the first n + 1 coefficients of D(x) using
matrix powering and polynomial arithmetic. And now el can be computed inductively
using the following expression:

el =
l∑

j=1

el(j) =
l∑

j=1

−djel−j .

But this closely matches Chistov’s algorithm [5]! The only difference is that
Chistov started off with various algebraic entities, manipulated them using polynomial
arithmetic, and derived the above formulation, whereas we started off with TSTs
which are combinatorial entities, grouped them suitably, and arrived at the same
formulation. And at the end, Chistov uses polynomial arithmetic to combine the
computation of D(x) and el. For completeness, we sketch below how Chistov arrived
at this formulation.

Chistov’s algorithm adopts the following technique (see, for example, [13]): Let
Ci be the submatrix obtained by deleting the first n− i rows and first n− i columns
of A. (In our earlier notation, Ci is the matrix An−i+1. We use Ci here to keep
subscripts shorter.) Let ∆i(x) be the determinant of Ei = Ii − xCi, where Ii is the
i× i identity matrix. Then χA(λ) = λn∆n(1/λ). First, express 1/∆n(x) as a formal
power series as follows: Let ∆0(x) ≡ 1, then

1

∆n(x)
=

∆n−1(x)

∆n(x)
· ∆n−2(x)

∆n−1(x)
· · · ∆0(x)

∆1(x)
.

But ∆i−1(x) and ∆i(x) are easily related using matrix inverses:

∆i−1(x)

∆i(x)
=

det(Ei−1)

det(Ei)
= (E−1

i)[1, 1].

Furthermore, it is easy to verify that E−1
i = (Ii − xCi)−1 =

∑∞
j=0 x

jCji . Thus,

1

∆n(x)
=

 ∞∑
j=0

xj(Cjn)[1, 1]

 ∞∑
j=0

xj(Cjn−1)[1, 1]

 . . .

 ∞∑
j=0

xj(Cj1)[1, 1]

 .

Let fj be the coefficient of xj in 1/∆n(x).
Now, since ∆n(x)× 1/∆n(x) ≡ 1, all coefficients other than that of the constant

term must be 0. This gives us equations relating the coefficients of ∆n(x), and hence
of χA(λ), to those of 1/∆n(x). Let 1/∆n(x) = 1 − xH(x), where H(x) = −(f1 +
f2x+ f3x

2 + · · ·). Then

∆n(x) =
∑
i≥0

xi [H(x)]
i

= c0x
n + c1x

n−1 + · · ·+ cn−1x+ cn.

DETERMINANT: OLD ALGORITHMS, NEW INSIGHTS 487

So cn−m, the coefficient of xm in ∆n(x), is given by

cn−m =
∑
i≥0 coefficient of xm in xi [H(x)]

i

=
∑m
i=0 coefficient of xm−i in [H(x)]

i
.

Since only the coefficients up to xn of any power of H(x) are used, the entire compu-
tation (of 1/∆n(x) and ∆n(x)) may be done mod xn+1, giving an NC algorithm.

Note that the expression for 1/∆n(x) obtained above is precisely the power series
D(x) we defined to compute the contributions of j-tour sequences.

3.4. Relating tours and cycle covers: Getting to Csanky’s algorithm.
We now consider the most unstructured generalization of a cycle: we relax the con-
dition that a tour must begin from an occurrence of the minimum vertex. All we are
interested in is a closed path, and we call such paths loops. Formally, we have the
following definition.

Definition 3.7. A loop at vertex v is a walk from v to v; i.e., a loop L is an
ordered sequence of edges L = 〈e1, e2, . . . , ep〉 such that ei = 〈ui, ui+1〉 for i ∈ [p− 1]
and up+1 = u1. The loop has length p and weight

∏p
i=1 w(ei).

Having relaxed the structure of a loop, we now severely limit the way in which
loops can be combined in sequences. A loop may be combined only with a partial
cycle cover. Similar in spirit to Theorems 3.2, 3.4, and 3.6, we now show cancellations
among such combinations.

Theorem 3.8. For k ∈ {1, . . . , n},

kck +
k∑
j=1

ck−j

 ∑
L is a loop of length j in GA

w(L)

 = 0.

It is easy to see that Aj [i, i] sums the weights of all paths of length j from i to i in
GA. Such paths are loops; thus,

∑n
i=1A

j [i, i] sums the weights of all loops of length
j in GA. But

∑n
i=1A

j [i, i] = sj , the trace of the matrix Aj . Thus the above theorem
is merely Leverier’s lemma, usually stated as follows.

Lemma 3.9 (Leverier’s lemma [10, 13]). The coefficients of the characteristic
polynomial of a matrix A satisfy the following equalities:

1 0 0 · · · 0 0
s1 2 0 · · · 0 0
s2 s1 3 · · · 0 0
...

...
...

... 0
sn−2 sn−3 sn−4 · · · n− 1 0
sn−1 sn−2 sn−3 · · · s1 n

c1
c2
c3
...
...
cn

= −

s1

s2

s3

...

...
sn

,

where sj is the trace of the matrix Aj.
A combinatorial proof of the above lemma. Consider the kth claimed equality,

kck +
k∑
j=1

sjck−j = 0,

where c0 = 1. The terms contributing to
∑k
j=1 sjck−j consist of loops of length j

and partial cycle covers of length k − j. The loops carry only a weight but no sign,

488 MEENA MAHAJAN AND V. VINAY

whereas the partial cycle covers are weighted and signed. We show how to achieve
cancellations within this set.

Let S be a loop of length j, and let C be a (k − j)-cycle cover.

Case 1. S forms a simple cycle, disjoint from all the cycles in C. In this case, S
can be merged into C to form a k-cycle cover C′, with weight wt(S)wt(C) and sign
−sgn(C). This will cancel against one copy of C′ coming from the kck part. What
about the k − 1 remaining copies? Note that if C′ = 〈C1, . . . , Cl〉, then each Ci can
be pulled out to give a partition into a loop S and a cycle cover C, cancelling against
the corresponding term from slick−li . Furthermore, each Ci can be written as a loop

in li different ways, depending on the starting point. So C′ gives rise to
∑l
i=1 |li| = k

pairs of the form (loop, partial cycle cover); hence the term kck is accounted for.

Case 2. S and C cannot be merged into a k-cycle cover. Start traversing the loop
S until one of the following things happen:

1. S hits a vertex v in C.
2. S revisits a vertex v.

Only one of the two can happen first. Suppose S touches cycle C of C. Let |C| = l.
Consider the new pair S′, C′, where cycle C is removed from C and inserted in S at
the first possible position v. This pair contributes the same weight with opposite sign
to the term sj+lck−j−l, and these two terms cancel out. Now suppose S completes
a simple cycle C of length l within itself without touching C. Consider the new pair
S′, C′, where cycle C is removed from S and inserted in C at the appropriate position.
This pair contributes the same weight with opposite sign to the term sj−lck−j+l,
where |C| = l, and these two terms cancel out.

Algorithm using loops. Any algorithm for computing χA(λ) that uses Leverier’s
lemma implicitly exploits cancellations among loops and partial cycle covers in com-
puting a sum which evaluates to precisely l-cycle covers. A straightforward sequential
algorithm is to first compute for each j, the sum sj , of the weights of all loops of
length j in GA using either matrix powering or dynamic programming, and then to
compute c1, c2, . . . , cn in order using the recurrence. Csanky’s implementation [6]
directly uses matrix inversion to compute the cj ’s in parallel from the values of si’s.

Note that l-loops are closed paths of length l with no restriction on the ordering
of the edges. As sequences of edges, they thus subsume tours, clows, and cycles. In
this sense, Csanky’s algorithm is more extravagant than the others described above.
On the other hand, it is the most frugal in allowing combinations; a loop may only
be combined with a partial cycle cover and not with other loops.

4. Discussion. Starting with the definition of the coefficients of the charac-
teristic polynomial as the signed weighted sum of all partial cycle covers, we have
considered several ways of expanding the summation while keeping the net contribu-
tion the same. In a sense, the expansion corresponding to clow sequences with the
prefix property, as generated by Samuelson’s method, is the most conservative. All
the other expansions we have considered include these sequences and more. (A clow
is a tour is a loop, but not vice versa.) There are smaller expansions that still cancel
out nicely (for instance, consider clow sequences where Ci ∩ Cj 6= φ for at most one
pair i, j). However, these smaller expansions do not seem to yield efficient computa-
tional methods. Can this observation be formally proved, i.e., can one show that any
efficient method for computing cl must include at least the l-clow sequences with the
prefix property?

One of the oldest methods for computing the determinant is Gaussian elimination.
Strassen ([20] or see the textbook presentation in [14]) shows how to obtain a division-

DETERMINANT: OLD ALGORITHMS, NEW INSIGHTS 489

free code corresponding to Gaussian elimination. Can this method also be interpreted
combinatorially?

If we assume that addition, subtraction, multiplication, and division are unit-
cost operations, then Gaussian elimination remains one of the most efficent methods
for computing the determinant. Can this efficiency be explained combinatorially?
Strassen’s interpretation uses formal power series expansions and shows how Gaussian
elimination uses the entire power series rather than a truncated polynomial. So high
degree monomials are generated, corresponding to sequences of clows or tours or loops
of arbitrary length, not just restricted to n. Is this where the computational advantage
lies — do higher degrees help?

Acknowledgments. We thank Ashok Subramanian for showing how our com-
binatorial interpretations and construction in the clow sequences approach extend to
Chistov’s algorithm as well. We thank an anonymous referee for bringing the refer-
ences [2, 3, 18] to our notice and for providing several comments that have improved
the readability of this paper.

REFERENCES

[1] S. J. Berkowitz, On computing the determinant in small parallel time using a small number
of processors, Inform. Process. Lett., 18 (1984), pp. 147–150,

[2] R. A. Brualdi, The many facets of combinatorial matrix theory, in Matrix Theory and
Applications, C. R. Johnson, ed., AMS, Providence, RI, 1990, pp. 1–35.

[3] R. A. Brualdi and H. Ryser, Combinatorial Matrix Theory, Cambridge University Press,
Cambridge, UK, 1991.

[4] S. Chaiken, A combinatorial proof of the all minors matrix theorem, SIAM J. Alg. Discrete
Methods, 3 (1982), pp. 319–329.

[5] A. L. Chistov, Fast parallel calculation of the rank of matrices over a field of arbitrary
characteristic, in Proc. Int. Conf. Foundations of Computation Theory, Lecture Notes in
Comput. Sci. 199, Springer-Verlag, New York, Berlin, 1985, pp. 63–69.

[6] L. Csanky, Fast parallel inversion algorithm, SIAM J. Comput., 5 (1976), pp. 618–623.
[7] C. Damm, DET=L(#L), preprint 8 Fachbereich Informatik der Humboldt–Universität zu

Berlin, Informatik, 1991.
[8] D. Foata, Etude algébrique de certains problèmes d’analyse combinatoire et du calcul des

probabilités, Publ. Inst. Statist. Univ. Paris, 14 (1965), pp. 81–241.
[9] D. Foata, A combinatorial proof of Jacobi’s identity, Ann. Discrete Math., 6 (1980), pp.

125–135.
[10] D. Fadeev and V. Fadeeva Computational Methods in Linear Algebra, Freeman, San Fran-

cisco, 1963.
[11] A. Garsia and Ö. Eǧecioǧlu, Combinatorial Foundations of Computer Science, unpublished

collection.
[12] I. Gessel, Tournaments and Vandermonde’s determinant, J. Graph Theory, 3 (1979), pp.

305–307.
[13] D. Kozen, The Design and Analysis of Algorithms, Springer-Verlag, New York, 1992.
[14] T. F. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hy-

percubes, Morgan Kaufmann Publishers Inc., San Mateo, 1992.
[15] M. Mahajan and V. Vinay, Determinant: combinatorics, algorithms, complexity, Chicago

J. Theoret. Comput. Sci., 1997, pp. 5.
[16] M. Minoux, Bideterminants, arborescences and extension of the matrix-tree theorem to

semirings, Discrete Math., 171 (1997), pp. 191–200.
[17] J. B. Orlin, Line-digraphs, arborescences, and theorems of Tutte and Knuth, J. Combin.

Theory Ser. B, 25 (1978) pp. 187–198.
[18] D. E. Rutherford, The Cayley-Hamilton theorem for semirings, Proc. Roy. Soc. Edinburgh

Sect. A, 66 (1964), pp. 211–215.
[19] P. A. Samuelson, A method of determining explicitly the coefficients of the characteristic

polynomial, Ann. Math. Stat., 13 (1942) pp. 424–429.
[20] V. Strassen, Vermeidung von divisionen, J. Reine Angew. Math., 264 (1973), pp. 182–202.

490 MEENA MAHAJAN AND V. VINAY

[21] H. Straubing, A combinatorial proof of the Cayley-Hamilton theorem, Discrete Math., 43
(1983), pp. 273–279.

[22] D. Stanton and D. White, Constructive Combinatorics, Springer-Verlag, New York, Berlin,
1986.

[23] H. N. V. Tempereley, Graph Theory and Applications, Ellis Horwood, Chichester, 1981.
[24] S. Toda, Counting Problems Computationally Equivalent to the Determinant, manuscript,

1991
[25] L. G. Valiant, Why is Boolean complexity theory difficult?, in Boolean Function Complexity,

M. S. Paterson, ed., London Math. Soc. Lecture Notes Ser. 169, Cambridge University
Press, Cambridge, UK, 1992, pp. 84–94.

[26] V. Vinay, Counting auxiliary pushdown automata and semi-unbounded arithmetic circuits, in
Proceedings of the 6th Annual Conference on Structure in Complexity Theory, Chicago,
IL, 1991, pp. 270–284.

[27] D. Zeilberger, A combinatorial approach to matrix algebra, Discrete Math., 56 (1985), pp.
61–72.

STAR EXTREMAL CIRCULANT GRAPHS∗

KO-WEI LIH† , DAPHNE DER-FEN LIU‡ , AND XUDING ZHU§

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 4, pp. 491–499

Abstract. A graph is called star extremal if its fractional chromatic number is equal to its
circular chromatic number (also known as the star chromatic number). We prove that members of a
certain family of circulant graphs are star extremal. The result generalizes some known theorems of
Sidorenko [Discrete Math., 91 (1991), pp. 215–217] and Gao and Zhu [Discrete Math., 152 (1996),
pp. 147–156]. We show relations between circulant graphs and distance graphs and discuss their star
extremality. Furthermore, we give counterexamples to two conjectures of Collins [SIAM J. Discrete
Math., 11 (1998), pp. 330–339] on asymptotic independence ratios of circulant graphs.

Key words. circular chromatic number, fractional chromatic number, circulant graph, distance
graph, star extremal graph, independence ratio

AMS subject classification. 05C15

PII. S0895480198342838

1. Introduction. Given a positive integer n and a set S ⊆ {1, 2, 3, . . . , bn/2c},
let G(n, S) denote the graph with vertex set V (G) = {0, 1, 2, . . . , n− 1} and edge set
E(G) = {uv : |u − v|n ∈ S}, where |x|n := min{|x|, n − |x|} is the circular distance
modulo n. Then G(n, S) is called the circulant graph of order n with the generating
set S.

Circulant graphs have been investigated in different fields. Such graphs are “star
polygons” to geometers [7]. The well known Ádám’s conjecture [1] states: G(n, S)
and G(n, S′) are isomorphic if and only if S′ = kS = {ks : s ∈ S} for some unity k
in the ring Zn. Alspach and Parsons [2] proved that this conjecture does not hold in
general. However, it is true for some special classes of circulant graphs. Parsons [15]
characterized the set Ak of connected circulant graphs G(n, S) such that the neighbors
N(x) for each vertex x induce a k-cycle in G(n, S). Then Ádám’s conjecture was
established for circulant graphs in Ak.

In this article, we explore the star extremality of circulant graphs. A graph is
called star extremal if its fractional chromatic number and circular chromatic number,
defined below, are equal.

A fractional coloring of a graph G is a mapping c from I(G), the set of all
independent sets of G, to the interval [0, 1] of real numbers such that

∑ {c(I) : x ∈
I and I ∈ I(G)} ≥ 1 for any vertex x in G. The fractional chromatic number χf (G)

∗Received by the editors August 3, 1998; accepted for publication (in revised form) May 28,
1999; published electronically October 19, 1999. An extended abstract of this paper appear in
Combinatorics, Computation and Logic, Proceedings of DMTCS ’99 and CATS ’99, Auckland, New
Zealand, January 18-21, 1999, Australian Computer Science Communications, Vol. 21, No. 3, C. S.
Calude and M. J. Dinneen, eds., Springer-Verlag, Singapore, 1999, pp. 301–309.

http://www.siam.org/journals/sidma/12-4/34283.html
†Institute of Mathematics, Academia Sinica, Nankang, Taipei, Taiwan 11529 (makwlih@

sinica.edu.tw). The research of this author was supported in part by National Science Council
of the R.O.C. grant NSC87-2115-M-001-004.
‡Department of Mathematics and Computer Science, California State University, Los Angeles,

CA 90032 (dliu@calstatela.edu). The research of this author was supported in part by National
Science Foundation grant DMS-9805945.
§Department of Applied Mathematics, National Sun Yat-sen University, Kaoshiung, Taiwan 80424

(zhu@math.nsysu.edu.tw). The research of this author was supported in part by National Science
Council of R.O.C. grant NSC88-2115-M-110-001.

491

492 KO-WEI LIH, DAPHNE DER-FEN LIU, AND XUDING ZHU

of G is the infimum of the weight, w(c) =
∑ {c(I) : I ∈ I(G)}, of a fractional coloring

c of G. For a different but equivalent definition of the fractional chromatic number,
we refer the reader to [17].

Let k and d be positive integers such that k ≥ 2d. A (k, d)-coloring of a graph
G = (V,E) is a mapping c from V to {0, 1, . . . , k− 1} such that |c(x)− c(y)|k ≥ d for
any edge xy in G. The circular chromatic number χc(G) of G is the infimum of k/d
for which there exists a (k, d)-coloring of G. The circular chromatic number is also
known as the star chromatic number in the literature [20, 21].

For any graph G, it is well known [22] that

(∗) max
{
ω(G), |V (G)|

α(G)

}
≤ χf (G) ≤ χc(G) ≤ χ(G); dχc(G)e = χ(G),

where ω(G) is the clique number (i.e., the maximum number of vertices of a complete
subgraph in G); α(G) is the independence number (i.e., the maximum number of
vertices of an independent set in G). Hence, a graph G is star extremal if the equality
holds in the second inequality in (∗).

The notion of star extremality for graphs arose from the study of the chromatic
number and the circular chromatic number of the lexicographic product of graphs.
The lexicographic product G[H] of G and H is the graph with vertex set V (G)×V (H)
and in which (v1, w1)(v2, w2) is an edge if and only if v1v2 ∈ E(G) or v1 = v2 and
w1w2 ∈ E(H). (Informally, we substitute a copy of H for each vertex of G.) It
was proved in [10] that, if G is star extremal, then χc(G[H]) = χc(G)χ(H) for any
graph H. Therefore for any star extremal graph G, the circular chromatic number,
and hence the chromatic number, of the lexicographic product G[H] is determined
by χc(G) and χ(H). Klavžar [12] also used star extremal graphs to investigate the
chromatic numbers of lexicographic products of graphs.

The star extremality for circulant graphs was first discussed by Gao and Zhu [10].
They proved that if all the vertices of G(n, S) have degree ≤ 3, then G(n, S) is star
extremal. On the other hand, there exist star extremal circulant graphs (see section
3 below or [10]). In general, it seems a difficult problem to determine whether or not
an arbitrary circulant graph is star extremal.

As circulant graphs are vertex-transitive, we know that

(∗∗) χf (n, S) = n/α(n, S),

where χf (n, S) and α(n, S) denote, respectively, the fractional chromatic number and
the independence number for G(n, S). Therefore, the determination of the indepen-
dence number of a circulant graph is equivalent to the determination of its fractional
chromatic number. Recently, Codenotti, Gerace, and Vigna [5] have proved that it
is NP -complete to compute the independence number for general circulant graphs.
However, for some circulant graphs, including the ones discussed in this article, the
independence number can be computed in polynomial time.

In section 2, we focus on the family of circulant graphs whose generating set S
consists of consecutive integers. Given integers k < k′ ≤ n/2, let Sk,k′ denote the set
{k, (k + 1), . . . , k′}. We will determine the exact value of α(n, Sk,k′) for any n ≥ 2k′

and k′ ≥ (5/4)k. This result is used to prove that the circulant graphs G(n, Sk,k′) are
star extremal for all n ≥ 2k′ and k′ ≥ (5/4)k.

For some special values of k, k′, and n, the circulant graphs G(n, Sk,k′) have
appeared in several articles. It was proved in [10] that G(n, S1,k′) (i.e., k = 1) is star
extremal for all n ≥ 2k′. When k′ = 2k − 1 and n ≥ 4k − 1, the circulant graph

STAR EXTREMAL CIRCULANT GRAPHS 493

G(n, Sk,2k−1) is a triangle-free regular graph with degree 2k. Sidorenko [18] proved
that α(n, Sk,2k−1) = 2k for 6k − 2 ≤ n ≤ 8k − 3 and applied this result to answer
a question of Erdös [16], namely, the existence of triangle-free regular graphs on
n(6= 3, 7, 9) vertices with its independence number equal to the degree. Gao and Zhu
[10] then applied Sidorenko’s result to show that the circulant graphs G(n, Sk,2k−1)
are star extremal for 6k − 2 ≤ n ≤ 8k − 3.

Let Z denote the set of all integers. For a given finite set S of positive integers,
the distance graph, denoted by G(Z, S), has Z as its vertex set, and uv forms an edge
if |u−v| ∈ S. Thus, the distance graph G(Z, S) can be viewed as the limit of circulant
graphs G(n, S) as n approaches infinity. In section 3, we explore the relation of star
extremality between circulant graphs and distance graphs for general sets S.

The independence ratio of a graph G is defined to be α(G)/|V (G)|. In section 4,
we show that for a given S, the fractional chromatic number of the distance graph
G(Z, S) is equal to the reciprocal of the asymptotic independence ratio of circulant
graphs G(n, S) as n approaches infinity. Applying this fact, we present counter-
examples to two conjectures of Collins [6] on the asymptotic independence ratio of
circulant graphs.

2. Circulant graphs with interval generating sets. We shall discuss the
star extremality of circulant graphs, whose generating sets are of the form Sk,k′ =
{k, (k+ 1), . . . , k′}, where k < k′ ≤ n/2. For the case that k′ ≥ (5/4)k, we determine
the exact values of α(n, Sk,k′) for all n. Using this result, we show that such circulant
graphs are star extremal.

One of the tools we shall use is the following multiplier method, which was first
used in [10] and has been applied to solve problems concerning coloring of circulant
graphs as well as distance graphs [3, 8, 19]. Given a circulant graph G(n, S) and a
positive integer t, let

λt(n, S) := min{|ti|n : i ∈ S},

and let

λ(n, S) := max{λt(n, S) : t = 1, 2, 3, . . .},

where the multiplications ti are carried out modulo n and |x|n is the circular distance
modulo n. For any positive integer t, the mapping c on {0, 1, 2, . . . , n − 1} defined
by c(i) = ti is an (n, λt(n, S))-coloring for G(n, S) (multiplications are carried out
modulo n.) Hence, χc(n, S) ≤ n/λ(n, S). Combining this with (∗) and (∗∗), we
obtain the following result.

Lemma 2.1 (see [10]). Let G(n, S) be a circulant graph. Then λ(n, S) ≤ α(n, S).
Moreover, if λ(n, S) = α(n, S), then χf (n, S) = χc(n, S) = n/α(n, S), i.e., G(n, S) is
star extremal.

The value of λ(n, S) can be calculated in polynomial time. To be precise, we have
the following lemma.

Lemma 2.2. Let G(n, S) be a circulant graph. Then λ(n, S) = λt(n, S) = |ts|n =
|t(−s)|n for some t, 1 ≤ t ≤ dn/2e, and s ∈ S.

Proof. By definition, λt(n, S) = λn−t(n, S) = λt′(n, S) for any t ≡ t′ (mod n),
and |ts|n = |t(−s)|n.

Sidorenko [18] proved that α(n, Sk,2k−1) = 2k if 6k − 2 ≤ n ≤ 8k − 3. Later on,
Gao and Zhu [10] proved that λ(n, Sk,2k−1) = 2k under the same condition on n. By
combining these two results with Lemma 2.1, the following was obtained in [10].

494 KO-WEI LIH, DAPHNE DER-FEN LIU, AND XUDING ZHU

Theorem 2.3. If k′ = 2k − 1, then the circulant graphs G(n, Sk,k′) are star
extremal for all n, where 6k − 2 ≤ n ≤ 8k − 3.

Other special subfamilies of the circulant graphs G(n, Sk,k′) that have been stud-
ied include the following two.

Theorem 2.4 (see [10]). If k′ ≤ n/2, then G(n, S1,k′) is star extremal and
χf (n, S1,k′) = χc(n, S1,k′) = n/b n

k′+1c.
Theorem 2.5 (see [10]). Suppose k′ = k + l ≤ n/2. If n− 2k′ < min{k, l}, then

G(n, Sk,k′) is star extremal and χf (n, Sk,k′) = χc(n, Sk,k′) = n/k.
The proofs of Theorems 2.4 and 2.5 are obtained, respectively, by showing α(n, S1,k′)

= λ(n, S1,k′) = b n
k′+1c and α(n, Sk,k′) = λ(n, Sk,k′) = k under the assumptions on k

and k′.
We note here that the circulant graphs G(n, S1,k′) in Theorem 2.4 are indeed

powers of the cycle Cn on n vertices. Given n and r, the rth power of Cn, denoted
by Crn, has the same vertex set as Cn, and u, v are adjacent if their distance on the
cycle Cn is not greater than r. Therefore G(n, S1,k′) = Ck

′
n by definition.

In their study of the circular chromatic number of planar graphs Gao, Wang, and
Zhou [9] defined a family of planar graphs Qn, called triangular prisms, which have
vertex set V = {u0, u1, u2, . . . , un−1}∪{v0, v1, v2, . . . , vn−1} and edge set E consisting
of two n-cycles (u0, u1, . . . , un−1) and (v0, v1, . . . , vn−1) and 2n edges (ui, vi), (ui+1, vi)
for every 0 ≤ i ≤ n − 1 (u0 = un). In [9], the argument for computing the values of
χf (Qn) is long. The proof can be shortened considerably by applying known results
in circulant graphs. The family of planar graphs Qn are precisely the second powers
of even cycles. Indeed, (v0, u1, v1, u2, v2, . . . , un−1, vn−1, u0) is a cycle of length 2n,
and Qn ∼= C2

2n. Hence, by Theorem 2.4, χf (Qn) = χc(Qn) = 2n/b 2n
k+1c.

Now we consider the general family of circulant graphs G(n, Sk,k′). We view the
vertices of G(n, Sk,k′) as circularly ordered in the clockwise direction and denote by
[a, b] the set of integers {a, a + 1, a + 2, . . . , b}, where the addition is taken under
modulo n. For example, [2, 5] = {2, 3, 4, 5} and [5, 2] = {5, 6, . . . , n− 1, 0, 1, 2}.

Lemma 2.6. Suppose I is an independent set of G(n, Sk,k′). Then for any j the
cardinality of I ∩ [j, j + k + k′ − 1] is at most k.

Proof. By symmetry, it suffices to show that for any independent set I, the
cardinality of I ∩ [0, k + k′ − 1] is at most k. Suppose i ∈ [0, k + k′ − 1] is the least
element of I. Then i + k, i + k + 1, . . . , i+ k′ /∈ I. Let A = [i + 1, i + k − 1] ∩ I and
B = [i+k′+1, k′+k−1]∩I. If x ∈ A, then x+k′ /∈ B. This implies |A|+ |B| ≤ k−1.
Therefore |I ∩ [0, k + k′ − 1]| ≤ k.

Lemma 2.7. Suppose G = G(n, Sk,k′) with n = q(k+ k′) + r, 0 ≤ r ≤ k+ k′ − 1.
Then

λ(G) ≥
{
λq(G) = qk if 0 ≤ r ≤ k′;
λq+1(G) = qk + r − k′ if k′ + 1 ≤ r ≤ k′ + k − 1.

Proof. It suffices to show that λq(G) = qk when 0 ≤ r ≤ k′ and λq+1(G) =
qk + r − k′ when k′ + 1 ≤ r ≤ k′ + k − 1.

If 0 ≤ r ≤ k′, then

λq(G) = min{qk, q(k + 1), q(k + 2), . . . , qk′,
n− qk, n− q(k + 1), n− q(k + 2), . . . , n− qk′ }.

Because qk ≤ q(k + 1) ≤ · · · ≤ qk′ and n− qk ≥ n− q(k + 1) ≥ n− q(k + 2) ≥ · · · ≥
n− qk′, it is enough to show n− qk′ ≥ qk. This is true since n− qk′ = qk + r ≥ qk.

STAR EXTREMAL CIRCULANT GRAPHS 495

If k′ + 1 ≤ r ≤ k′ + k − 1, then

λq+1(G) = min{(q + 1)k, (q + 1)(k + 1), (q + 1)(k + 2), . . . , (q + 1)k′,
n− (q + 1)k, n− (q + 1)(k + 1), . . . , n− (q + 1)k′ }.

Because (q+ 1)k ≤ (q+ 1)(k+ 1) ≤ (q+ 1)(k+ 2) ≤ · · · ≤ (q+ 1)k′ and n− (q+ 1)k ≥
n−(q+1)(k+1) ≥ n−(q+1)(k+2) ≥ · · · ≥ n−(q+1)k′ = qk+r−k′, it is enough to
show qk+r−k′ ≤ (q+1)k−1. This is true since qk+r−k′ ≤ qk+(k+k′−1)−k′ =
(q + 1)k − 1.

Theorem 2.8. Suppose G = G(n, Sk,k′) and k′ ≥ (5/4)k. Let n = q(k + k′) + r,
where 0 ≤ r ≤ k + k′ − 1. Then

α(G) = λ(G) =

{
qk if 0 ≤ r ≤ k′;
qk + r − k′ if k′ + 1 ≤ r ≤ k′ + k − 1.

Equivalently, α(G) = λ(G) = qk + max{0, r − k′}.
Proof. Let n = q(k + k′) + r, 0 ≤ r ≤ k + k′ − 1. By Lemmas 2.1 and 2.7, it

suffices to show that α(G) ≤ qk + max{0, r − k′}. If q = 0, the result follows from
Lemma 2.6. Thus we may assume q ≥ 1.

Assume to the contrary that α(G) > qk + max{0, r − k′}. Let I be a maximum
independent set of G. Regard I as a disjoint union of I-intervals, where an I-interval
is a maximal interval [a, b] consisting of vertices in I. Then the length (namely,
the number of vertices) of any I-interval is between 1 and k. By Lemma 2.6 and the
assumption that q ≥ 1, there are at least two I-intervals. Assume that the independent
set I chosen has the minimum number of I-intervals among all maximum independent
sets of G.

Two I-intervals [a, b] and [c, d] are called consecutive if [b+ 1, c− 1]∩ I = ∅. Note
that the consecutive “relation” is not symmetric, i.e., [a, b] and [c, d] being consecutive
does not imply that [c, d] and [a, b] are consecutive. (Indeed, [c, d] and [a, b] are not
consecutive if [a, b] and [c, d] are consecutive and I contains more than two I-intervals.)
For two consecutive I-intervals [a, b] and [c, d], the cardinality of the set [b+ 1, c− 1]
is called the gap between them.

First we show that if [a, b] and [c, d] are two consecutive I-intervals, then b+k′+1 ≤
c + k − 1 (or equivalently, b − k + 1 ≤ c − k′ − 1). Here we assume, without loss
of generality, that 0 ≤ a ≤ b < c ≤ d ≤ n − 1. Suppose to the contrary that
b+k′+ 1 ≥ c+k. For any b+ 1 ≤ x ≤ c−1, if y is adjacent to x then straightforward
calculations show that y is adjacent to either b or c. Hence none of the neighbors of x
is in I. This implies that the set I ′ = I ∪ [b+ 1, c− 1] is independent with |I ′| > |I|,
which contradicts our choice of I.

Next we show that the gap between any two consecutive I-intervals is at most
k− 2. Suppose to the contrary that there exist consecutive I-intervals [a, b] and [c, d]
such that |[b + 1, c − 1]| ≥ k − 1. Since [a, b] ⊆ I, it follows from the definition of
Sk,k′ that [a + k, b + k′] ∩ I = ∅. Hence [b + 1, b + k′] ∩ I = ∅. We partition the
interval [b+ k′ + 1, b] (= [0, n− 1]− [b+ 1, b+ k′]) into subintervals of length k + k′,
except the last subinterval which may have size less than k + k′ (when r ≥ k′ + 1).
If 0 ≤ r ≤ k′, then the number of such subintervals is equal to q. By Lemma 2.6,
|I| ≤ qk, which is contrary to our assumption. If k′ + 1 ≤ r ≤ k + k′ − 1, then the
number of such subintervals is equal to q + 1, and the last interval has size r − k′.
Again, it follows from Lemma 2.6 that |I| ≤ qk + r − k′, which is contrary to our
assumption. Therefore, the gap between any two consecutive I-intervals is at most
k − 2.

496 KO-WEI LIH, DAPHNE DER-FEN LIU, AND XUDING ZHU

Now we show that the gap between any two consecutive I-intervals is greater than
2(k′−k). Assume to the contrary that [a, b] and [c, d] are consecutive I-intervals with
gap t, t ≤ 2(k′ − k). Let

I ′ = (I ∪ [b+ 1, c− 1])− ([b+ k′ + 1, c+ k − 1] ∪ [b− k + 1, c− k′ − 1]).

It is clear that I ′ is an independent set of G with |I ′| ≥ |I|+ t− 2(t− (k′ − k)) ≥ |I|.
Hence, I ′ is a maximum independent set with less intervals than I, which is contrary
to our assumption.

We conclude that the gap between any two consecutive I-intervals is between
2(k′−k)+1 and k−2. In particular, this implies that 2(k′−k)+1 ≤ k−2; otherwise,
we have already arrived at a contradiction. Now, by the assumption that k′ ≥ (5/4)k,
the gap between any two consecutive I-intervals is between k

2 + 1 and k − 2. This
implies that any set of k consecutive vertices in G intersects exactly two I-intervals.

For any consecutive I-intervals [a, b] and [c, d], we claim that |[a, b]| + |[c, d]| ≤
k
2 − 1. First we note that |[a, d]| ≤ k. Otherwise, we would have d ≥ a + k. This
implies c ≥ b + k′ + 1 since [a + k, b + k′] ∩ I = ∅. Then the gap between [a, b]
and [c, d] would be greater than k − 2, which is a contradiction. It follows that
|[a, b]|+ |[c, d]| ≤ k − 2(k′ − k)− 1 ≤ k

2 − 1 since k′ ≥ (5/4)k.
Now choose two consecutive I-intervals [a, b] and [c, d] such that |[a, b]| + |[c, d]|

is the largest among all pairs of consecutive I-intervals. Let [u, v] be the I-interval
preceding [a, b] (i.e., [u, v] and [a, b] are consecutive I-intervals) and let [x, y] be the I-
interval following [c, d]. Since |I| > qk ≥ k and since the union of any two consecutive
I-intervals contains at most k

2 − 1 vertices, we know that there are at least five I-
intervals. So the intervals [a, b], [c, d], [u, v], and [x, y] are distinct.

We now show that [x, y] (respectively, [u, v]) is the only I-interval included in
[b+ k′ + 1, c+ k − 1] (respectively, in [b− k + 1, c− k′ − 1]). Because [a, b], [c, d] ⊆ I,
we have ([a+ k, b+ k′]∪ [c+ k, d+ k′])∩ I = ∅. In addition, by the arguments above,
[a, b], [c, d] and [c, d], [x, y] are the only two I-intervals included in [a, a+ k − 1] and
[c, c+ k − 1], respectively. Hence [x, y] ⊆ [b+ k′ + 1, c+ k − 1], and [x, y] is the only
I-interval included in [b + k′ + 1, c + k − 1]. Similarly, we can show that [u, v] is the
only I-interval included in [b− k + 1, c− k′ − 1].

According to the choice of [a, b] and [c, d], we have |[u, v]| ≤ |[c, d]| and |[x, y]| ≤
|[a, b]|. Therefore |[u, v]|+ |[x, y]| ≤ |[a, b]|+ |[c, d]| ≤ k

2 − 1. Let

I ′ = (I ∪ [b+ 1, c− 1])− ([u, v] ∪ [x, y]).

By the discussion in the previous paragraph, it is clear that I ′ is an independent set
with

|I ′| ≥ |I|+ k

2
+ 1−

(
k

2
− 1

)
> |I|,

which contradicts our maximality assumption about I.
Corollary 2.9. If k′ ≥ (5/4)k, then G(n, Sk,k′) is star extremal.
Theorem 2.10. Suppose G = G(n, Sk,k′) with n = q(k+k′)+r, 0 ≤ r ≤ k+k′−1,

and

q >
1

k − k′ −
k′

k + k′
− kk′

(k − k′)(k + k′)
.

Then G is star extremal. Moreover, the values of α(G) and λ(G) are the same as in
Theorem 2.8.

STAR EXTREMAL CIRCULANT GRAPHS 497

Proof. Let I be a maximum independent set of G. The I-intervals are similarly
defined as in the proof of Theorem 2.8. Assume that the chosen set I has the minimum
number of I-intervals among all maximum independent sets of G. Then the gap
between any two consecutive I-intervals, as shown in the proof of Theorem 2.8, is
between 2(k′ − k) + 1 and k − 2.

In the following, we show that for any i, |I ∩ [i, i+ k+ k′− 1]| ≤ 2k− k′. Let a be
the least element of I∩ [i, i+k+k′−1] and let [a, b] be the first nonempty intersection
of an I-interval with [i, i + k + k′ − 1]. Note that when a = i, [a, b] may be a part
of an I-interval. Similarly, let [c, d] be the last nonempty intersection of an I-interval
with [a, a + k]. By the proof of Theorem 2.8, [a, b] and [c, d] are the two I-intervals
included in [a, a+ k − 1], so [a, b] 6= [c, d].

In addition, it is true that I ∩ [c− (k′ − k), c− 1] = ∅ since the gap between any
two consecutive I-intervals is at least 2(k′− k) > k′− k. Because I ∩ ([c+ k, d+ k′]∪
[a+ k, a+ k′]) = ∅, the following is clear:

I ∩ [i, i+ k + k′ − 1] ⊂ I ∩ [a, a+ k + k′ − 1] = [c, d] ∪ (I ∩ (A ∪B)),

where A = [a, c−(k′−k)−1]∪[d+1, a+k−1] and B = [a+k′, c+k−1]∪[d+k′+1, a+k+
k′−1]. For each vertex x ∈ A, we have x+k′ ∈ B. So if x ∈ I∩A, then x+k′ ∈ B−I,
and vice versa. This one-to-one correspondence implies that |I∩(A∪B)| ≤ |A| = |B|.
Therefore, |I ∩ [i, i+ k + k′ − 1]| ≤ |A|+ |[c, d]| = k − (k′ − k) = 2k − k′.

For each 0 ≤ i ≤ n− 1, let ni = |I ∩ [i, i+ k + k′ − 1]|. Then

(k + k′)|I| =
n−1∑
i=0

ni ≤ n(2k − k′).

Now if 0 ≤ r ≤ k′, then by Lemmas 2.1 and 2.7, it suffices to show that α(G) = |I| ≤
qk. Assume to the contrary that |I| ≥ qk + 1. Since n ≤ q(k + k′) + k′, we have

(k + k′)(qk + 1) ≤ (q(k + k′) + k′)(2k − k′).

A contradiction emerges after simplifying this inequality.
If k′ < r ≤ k+k′−1, it suffices to show that |I| ≤ qk+r−k′. If |I| ≥ qk+r−k′+1,

then

(k + k′)(qk + r − k′ + 1) ≤ (q(k + k′) + r)(2k − k′).

This inequality leads to a contradiction, too.

3. Circulant graphs and distance graphs. Circulant graphs and distance
graphs are closely related. Given a finite set S of positive integers, the distance graph
G(Z, S) can be viewed as the limit of the sequence of circulant graphs G(n, S) as n
approaches infinity. Therefore, for a given S, if G(n, S) is star extremal for all n,
then G(Z, S) is star extremal. However, the reverse of this implication is not always
true. Take S = {1, 3, 4, 5}. It is known [3] that G(Z, S) is star extremal, while it was
proved [10] that χf (10, S) = 5 < χc(10, S) = 6. Thus G(10, S) is not star extremal.

In this section, we prove that, for a given S, if the distance graph G(Z, S) is star
extremal, then there exist infinitely many n such that the circulant graphs G(n, S)
are star extremal.

The fractional chromatic number χf (Z, S) for a distance graph G(Z, S) has very
close connections with T -coloring [13] and an earlier number theory problem about the

498 KO-WEI LIH, DAPHNE DER-FEN LIU, AND XUDING ZHU

density of sequences with missing differences. For references about these connections,
we refer the reader to [4, 11, 14]. Among the results in [4], it is proved that χf (Z, S)
always exists and is a rational number for any finite S.

A homomorphism (or edge-preserving map) from a graph G to another graph H
is a mapping f : V (G) → V (H) such that f(u)f(v) ∈ E(H) if uv ∈ E(G). If such
a homomorphism exists, we say that G admits a homomorphism to H and denote
this by G → H. If G → H, then we have χf (G) ≤ χf (H) and χc(G) ≤ χc(H) by
composition of functions.

Lemma 3.1. For a given S, G(Z, S)→ G(n, S) for all n ≥ 2 maxS, where maxS
denotes the largest member of the set S.

Proof. Define a mapping f : Z → [0, n − 1] by f(x) = x mod n. It is easy to
verify that f is a homomorphism from G(Z, S) to G(n, S).

Corollary 3.2. For a given S, χc(Z, S) ≤ χc(n, S) and χf (Z, S) ≤ χf (n, S)
for all n ≥ 2 maxS.

Theorem 3.3. If G(Z, S) is star extremal for a given S, then there exists a
positive integer m such that G(km, S) is star extremal for any positive integer k.

Proof. By a result in [4], we may assume χc(Z, S) = χf (Z, S) = p/q for some
rational number p/q. Let d = maxS. According to Corollary 3.2, it is enough to
show that, for some m ≥ 2d, there exists a (p, q)-coloring for any G(km, S) because
we would then have

p/q = χf (Z, S) ≤ χf (mk, S) ≤ χc(mk, S) ≤ p/q.
Since χc(Z, S) = p/q, by a result in [10], there exists a (p, q)-coloring f : Z →

[0, p− 1] of G(Z, S). Partition nonnegative integers into blocks such that each block
consists of pd consecutive vertices. Consider the restriction of f to these blocks. By the
pigeonhole principle, there exist two blocks with the same color sequence. Let x and
y be the leading vertices of these two blocks such that x < y. Then f(x+ i) = f(y+ i)
for 0 ≤ i ≤ pd − 1. Let m = y − x. Define the mapping f ′(j) = f(x + j) for
0 ≤ j ≤ m− 1. It is clear that f ′ is a (p, q)-coloring for G(m,S).

For k ≥ 2, define a mapping f ′′ : [0, km − 1] → [0, p − 1] by f ′′(v) = f ′(v mod
m). It is clear that f ′′ is a (p, q)-coloring for G(km, S).

4. Independence ratio. In this section, we discuss relations between the inde-
pendence ratio and the fractional chromatic number of circulant graphs and distance
graphs. Based on these relations, we give counterexamples to two conjectures of
Collins [6].

Let S = {a1, a2, . . . , al} be a set of positive integers with a1 < a2 < · · · < al. In
her study of the asymptotic independence ratio of the circulant graphsG(n, S), Collins
introduced the S-graph, denoted by G(S), which has vertex set V = {0, 1, 2, . . . , a1 +
al − 1} and edge set E = {uv : |u − v| ∈ S}. Note that G(S) is not necessarily a
circulant graph.

Given n and S, let µ(n, S) := α(n, S)/n and µ(S) := α(G(S))/(a1+al) denote the
independence ratio of the circulant graph G(n, S) and the S-graph G(S), respectively.
The asymptotic independence ratio L(S) of a given set S is defined in [6] by

L(S) := lim
n→∞µ(n, S).

According to (∗∗), we have µ(n, S) = 1/χf (n, S). Combining this with the fact that
χf (Z, S) = limn→∞ χf (n, S), the following result is obtained.

Theorem 4.1. L(S) = 1/χf (Z, S) for any given S.

STAR EXTREMAL CIRCULANT GRAPHS 499

A set S = {a1, a2, . . . , al}, a1 < a2 < · · · < al, l ≥ 2, is called reversible if
a1 + al = a2 + al−1 = · · · = ab l2 c + ad l2 e. Collins [6] proved that L(S) = µ(S) if S is

reversible, and she proposed the following conjecture.
Conjecture 1 (see [6]). Suppose S = {a1, a2, . . . , al}, a1 < a2 < · · · < al, l ≥ 2,

is a reversible set. Then α(n, S) = bnµ(S)c for any integer n satisfying n > a1 +2al.
We now give a counterexample to Conjecture 1. The interval set Sk,k′ studied in

section 2 is reversible. However, by Lemma 2.6 and Theorem 2.8, we have µ(Sk,k′) =
k/(k + k′) and α(n, Sk,k′) 6= bnµ(Sk,k′)c when k′ ≥ (5/4)k, n = q(k + k′) + r, and
r ≥ k′ + 1.

For a nonreversible set S, Collins [6] gave two methods for constructing reversible
sets from S. Let S = {a1, a2, . . . , al} and let x = al−1 + al and y = a1 + al. Define
Ŝ = S ∪ (x− S) (here x− S is the set {x− i | i ∈ S}) and S̃ = S ∪ (y − S). Collins
[6] showed that L(S) ≥ max{µ(Ŝ), µ(S̃)} and proposed the following.

Conjecture 2 (see [6]). L(S) = max{µ(Ŝ), µ(S̃)}.
For a counterexample to this conjecture, take S = {1, 2, 3, 6}. It is known [13]

and easy to see that ω(Z, S) = χ(Z, S) = 4, so χf (Z, S) = χc(Z, S) = 4. Hence

L(S) = 1/4. However, Ŝ = {1, 2, 3, 6, 7, 8}, S̃ = {1, 2, 3, 4, 5, 6}, µ(Ŝ) = 2/9, and
µ(S̃) = 1/7.

REFERENCES

[1] A. Ádám, Research Problem 2-10, J. Combin. Theory, 2 (1967), p. 393.
[2] B. Alspach and T. Parsons, Isomorphism of circulant graphs and digraphs, Discrete Math.,

25 (1979), pp. 97–108.
[3] G. J. Chang, L. Huang, and X. Zhu, Circular chromatic numbers and fractional chromatic

numbers of distance graphs, European J. Combin., 19 (1998), pp. 423–431.
[4] G. J. Chang, D. D.-F. Liu, and X. Zhu, Distance graphs and T -coloring, J. Combin. Theory

Ser. B, 75 (1999), pp. 259–269.
[5] B. Codenotti, I. Gerace, and S. Vigna, Hardness results and spectral techniques for com-

binatorial problems on circulant graphs, IEEE Trans. Comput., 48 (1999), pp. 345–351.
[6] K. L. Collins, Circulants and sequences, SIAM J. Discrete Math., 11 (1998), pp. 330–339.
[7] H. S. M. Coxeter, Twelve Geometric Essays, Southern Illinois Univ. Press, Carbon-

dale/Edwardsville, IL, 1968.
[8] W. Deuber and X. Zhu, The chromatic number of distance graphs, Discrete Math., 165/166

(1997), pp. 195–204.
[9] G. Gao, Y. Wang, and H. Zhou, Star chromatic numbers of some planar graphs, J. Graph

Theory, 27 (1998), pp. 33–42.
[10] G. Gao and X. Zhu, star extremal graphs and the lexicographic product, Discrete Math., 152

(1996), pp. 147–156.
[11] J. R. Griggs and D. D.-F. Liu, The channel assignment problem for mutually adjacent sites,

J. Combin. Theory Ser. A, 68 (1994), pp. 169–183.
[12] S. Klavžar, On the fractional chromatic number and the lexicographic product of graphs,

Discrete Math., 185 (1998), pp. 259–263.
[13] D. D.-F. Liu, T -colorings of graphs, Discrete Math., 101 (1992), pp. 203–212.
[14] D. D.-F. Liu, T -coloring and chromatic number of distance graphs, Ars Combin., to appear.
[15] T. Parsons, Circulant graph imbeddings, J. Combin. Theory Ser. B, 29 (1980), pp. 310–320.
[16] D. J. Kleitman, Problem session, in Applications of Discrete Mathematics, Proceedings of the

Third Conference on Discrete Mathematics, Clemson University, Clemson, SC, May 14–16,
1986, R. D. Ringeisen and F. S. Roberts, eds., SIAM, Philadelphia, PA, 1988, pp. 221–222.

[17] E. R. Scheinerman and D. H. Ullman, Fractional Graph Theory, John Wiley, New York,
1997.

[18] A. F. Sidorenko, Triangle-free regular graphs, Discrete Math., 91 (1991), pp. 215–217.
[19] H. Yeh and X. Zhu, Coloring Some Circulant Graphs, manuscript, 1999.
[20] A. Vince, Star chromatic number, J. Graph Theory, 12 (1988), pp. 551–559.
[21] X. Zhu, Star chromatic numbers and products of graphs, J. Graph Theory, 16 (1992), pp. 557–

569.
[22] X. Zhu, Circular Chromatic Number, a Survey, manuscript, 1997.

GRAPH PARTITIONING AND CONTINUOUS
QUADRATIC PROGRAMMING∗

WILLIAM W. HAGER† AND YAROSLAV KRYLYUK†

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 4, pp. 500–523

Abstract. A continuous quadratic programming formulation is given for min-cut graph parti-
tioning problems. In these problems, we partition the vertices of a graph into a collection of disjoint
sets satisfying specified size constraints, while minimizing the sum of weights of edges connecting
vertices in different sets. An optimal solution is related to an eigenvector (Fiedler vector) correspond-
ing to the second smallest eigenvalue of the graph’s Laplacian. Necessary and sufficient conditions
characterizing local minima of the quadratic program are given. The effect of diagonal perturbations
on the number of local minimizers is investigated using a test problem from the literature.

Key words. graph partitioning, min-cut, max-cut, quadratic programming, optimality condi-
tions, graph Laplacian, edge separators, Fiedler vector

AMS subject classifications. 90C35, 90C27, 90C20

PII. S0895480199335829

1. Introduction. This paper analyzes a continuous quadratic programming for-
mulation for min-cut graph partitioning problems where we partition the vertices of
a graph into disjoint sets satisfying specified size constraints, while minimizing the
sum of the weights of edges connecting vertices in different sets. As a special case,
the discrete quadratic programming formulation of Goemans and Williamson [22] for
the max-cut problem is equivalent to a continuous quadratic program in which their
discrete variables taking values −1 or +1 are replaced by continuous variables with
values between −1 and +1. Graph partitioning problems arise in circuit board and
microchip design, in other layout problems (see [33]), and in sparse matrix pivot-
ing strategies. In parallel computing, graph partitioning problems arise when tasks
are partitioned among processors in order to minimize the communication between
processors and balance the processor load. For example, an application of graph
partitioning to parallel molecular dynamics simulations is given in [44].

Another graph problem with a quadratic programming formulation is the maxi-
mum clique problem. In [36] Motzkin and Strauss show that the size of the largest
clique in a graph can be obtained by solving a quadratic programming problem, while
Gibbons et al. establish in [20] many interesting properties of this formulation.

A general approach for converting a discrete optimization problem to a continuous
problem involves a diagonal perturbation. For example, subtracting a sufficiently large
multiple of the identity from the quadratic cost matrix in the quadratic assignment
problem yields a concave minimization problem whose local minimizers are extreme
points of the feasible set, and whose global minimizers are solutions of the original
discrete optimization problem (see the book [38, p. 26] by Pardalos and Rosen and
the article [4] by Bazaraa and Sherali). One problem with this concave formulation of
a discrete minimization problem is that the continuous problem can have many local
minimizers. When a continuous optimization algorithm is applied, any of these local
minima can trap the iterates. Our approach is related in the sense that we modify

∗Received by the editors January 1, 1999; accepted for publication (in revised form) May 28, 1999;
published electronically October 19, 1999. This research was supported by the National Science
Foundation.

http://www.siam.org/journals/sidma/12-4/33582.html
†Department of Mathematics, University of Florida, Gainesville, FL 32611 (hager@math.ufl.edu).

500

GRAPH PARTITIONING 501

the diagonal of the cost function. However, we are able to capture the solution of the
discrete problem without modifying the cost function to the extent that it becomes
concave. By restricting the size of the modification, the number of local minimizers
that are candidates for a global minimizer is reduced substantially.

Various approaches to the graph partitioning problem appear in the literature.
The seminal paper in this area is that of Kernighan and Lin [31] which presents
the problem, application areas, and an exchange algorithm for obtaining approximate
solutions. Four classes of algorithms have emerged for the graph partitioning problem:

(a) spectral methods, such as those in [29] and [40], where an eigenvector cor-
responding to the second smallest eigenvalue (Fiedler vector) of the graph’s
Laplacian is used to approximate the best partition;

(b) geometric methods, such as those in [21], [28], and [35], where geometric
information for the graph is used to find a good partition;

(c) multilevel algorithms, such as those in [13], [14], [30], and [32], that first
coarsen the graph, partition the smaller graph, then uncoarsen to obtain a
partition for the original graph;

(d) optimization-based methods, such as those in [5], [6], [7], [18], and [45], where
approximations to the best partitions are obtained by solving optimization
problems.

See [3] for a survey of results in this area prior to 1995.
Here we focus on optimization-based formulations. Much of the earlier work

in this area involves relaxations in which constraints are dropped in an optimization
problem to obtain a tractable problem whose optimal solution is a lower bound for the
optimal partition (see, for example, [6], [17], [41]). We also mention the work of Barnes
[5] in which a spectral decomposition of the adjacency matrix is used with the solution
of a related transportation problem (linear cost function and linear constraints) to
approximate the best partition. In [7] a diagonal perturbation of the adjacency matrix
is used to make it positive definite, and a Cholesky factorization of this perturbed
matrix leads to a transportation problem whose solution again approximates the best
partition. In contrast, our quadratic program is an exact formulation of the original
problem in the sense that it has a minimizer corresponding to the best partition. Since
the graph partitioning problem is NP-hard, this exact formulation is, in general, a
difficult problem to solve.

In [18] Falkner, Rendl, and Wolkowicz present a quadratic optimization problem
with both a quadratic constraint and linear equality and inequality constraints that
is equivalent to the graph partitioning problem, and they solve (approximately) prob-
lems from the literature using the bundle-trust code of Schramm and Zowe. Their
constraints are of the form

0 ≤ xi ≤ 1,
n∑
i=1

xi = m,
n∑
i=1

x2
i = m,

which force the solution vector to have 0/1 components. In [45] Wolkowicz and Zhao
consider another variation of the quadratic constraint, requiring that x2

i = xi, to
enforce the 0/1 constraint. A semidefinite programming relaxation of the original
problem is solved using a primal-dual interior point method. Our quadratic program-
ming formulation does not have a quadratic constraint; the constraints are simply
linear equalities and inequalities. We show that the quadratic program has a solution
with 0/1 components, and that there is a connection between the Fiedler vector used
by Pothen, Simon, and Liou in [40] to compute edge and vertex separators of small

502 WILLIAM W. HAGER AND YAROSLAV KRYLYUK

size and a solution to our quadratic programming problem. Our proof of the existence
of a 0/1 solution is based on the following principle exposed by Tardella in [43]: If a
function is minimized over a polyhedron, and if for each face of the polyhedron there
exists a direction in the face along which the function is concave (or quasi concave),
then there exists a vertex minimizer.

We briefly outline the paper: Section 2 presents the quadratic programming for-
mulation of the two-set graph partitioning problem. In section 3 we give necessary
and sufficient optimality conditions for a local minimizer of the quadratic program.
These conditions relate the graph structure and the first-order optimality conditions
at the given point. In section 4 we examine the effect of diagonal perturbations on the
number of local minimizers using a test problem of Donath and Hoffman [17]. The
connection between our quadratic program and the second eigenvector of the graph’s
Laplacian is studied in section 5. In section 6 we conclude with various generalizations
of our results to partitions involving more than two sets, to nonsymmetric matrices,
and to more general constraints.

2. Two-set partitions. Let G be a graph with n vertices V :

V = {1, 2, . . . , n},
and let aij be a weight associated with the edge (i, j). For each i and j, we assume
that aii = 0, aij = aji, and if there is no edge between i and j, then aij = 0. The sign
of the weights is not restricted. Given a positive integer m < n, we wish to partition
the vertices into two disjoint sets, one with m vertices and the other with n − m
vertices, while minimizing the sum of the weights associated with edges connecting
vertices in different sets. This optimal partition is called a min-cut. We show that
for an appropriate choice of the diagonal matrix D, the min-cut can be obtained by
solving the following quadratic programming problem:

minimize (1− x)T(A + D)x

subject to 0 ≤ x ≤ 1, 1Tx = m.
(1)

More precisely, for an appropriate choice of D, (1) has a solution y for which each
component is either 0 or 1. The two sets V1 and V2 in an optimal partition are given
by

V1 = {i : yi = 1} and V2 = {i : yi = 0}.(2)

The following theorem shows how to choose D.
Theorem 2.1. If D is chosen so that

dii + djj ≥ 2aij(3)

for each i and j, then (1) has a 0/1 solution y and the partition given by (2) is a
min-cut. Moreover, if for each i and j,

dii + djj > 2aij ,(4)

then every local minimizer of (1) is a 0/1 vector.
Proof. Given a solution y to (1), we now construct a piecewise linear path, taking

us from y to a solution z of (1) whose components are either 0 or 1. Let F(y) be the
inactive (or free) components of the vector y:

F(y) = {i : 0 < yi < 1}.(5)

GRAPH PARTITIONING 503

Let f be the cost function of (1):

f(x) = (1− x)T(A + D)x.(6)

Either F(y) is empty, and z = y, or F(y) has two or more elements since the con-
straint 1Tx = m of (1), where m is an integer, cannot be satisfied when x has a single
noninteger component. If F(y) has two or more elements, we show that there exists
another minimizing point ȳ with F(ȳ) strictly contained in F(y), and f(x) = f(y)
for all x on the line segment connecting y and ȳ. Utilizing this property in an induc-
tive fashion, we conclude that there exists a piecewise linear path taking us from any
given minimizer y to another minimizer z with F(z) = ∅ (that is, all the components
of z are either 0 or 1), and f(x) = f(y) for all x on this path.

If F(y) has two or more elements, then choose two elements i and j ∈ F(y), and
let v be the vector all of whose entries are zero except that vi = 1 and vj = −1. For ε
sufficiently small, x = y + εv is feasible in (1). Expanding f in a Taylor series around
x = y, we have

f(y + εv) = f(y)− ε2vT(A + D)v.(7)

The O(ε) term in this expansion disappears since f(y + εv) achieves a minimum at
ε = 0, and the first derivative with respect to ε vanishes at ε = 0. In addition, from
the inequality

f(y + εv) ≥ f(y) for all ε near 0,

we conclude that the quadratic term in (7) is nonnegative, or equivalently,

vT(A + D)v = diiv
2
i + djjv

2
j + 2aijvivj = dii + djj − 2aij ≤ 0.(8)

Since dii+djj−2aij ≥ 0 by (3), it follows that dii+djj−2aij = 0 and f(y+εv) = f(y)
for each choice of ε. Let ε̄ be the largest value of ε for which x = y + εv is feasible
in (1). Defining ȳ = y + ε̄v, F(ȳ) is strictly contained in F(y) and ȳ achieves the
minimum in (1) since f(y + εv) = f(y) for all ε. In summary, for any given solution
y to (1), we can find another solution ȳ with F(ȳ) strictly contained in F(y) and
f(x) = f(y) for all x on the line segment connecting y and ȳ. This shows that there
exists a 0/1 solution y of (1).

Now, if y is a 0/1 vector, then f(y) is equal to the sum of the weights of the
edges connecting the sets V1 and V2 in (2). Conversely, given a partition of V into
disjoint sets V1 and V2 and defining zi = 1 for each i ∈ V1 and zi = 0 for each i ∈ V2,
f(z) is the sum of the weights of the edges connecting V1 and V2. Combining these
two observations, we conclude that the partition associated with y is a min-cut.

Finally, suppose that (4) holds, y is a local minimizer for (1), and y is not a 0/1
vector. As noted above, F(y) has two or more elements, and the expansion (7) holds
where the quadratic term satisfies (8), contradicting (4). We conclude that F(y) is
empty and y is a 0/1 vector.

Note that condition (3) is equivalent to requiring that f in (6) is concave in the
direction v, where v is the vector all of whose entries are zero except that vi = 1
and vj = −1. Hence, concavity is not assumed over the entire space Rn, only along
directions corresponding to the edges of the constraint polyhedron. The technique
we use in the proof of Theorem 2.1 to convert a noninteger minimizer to an integer
minimizer by moving in the direction of the vector v is also employed by Ageev and

504 WILLIAM W. HAGER AND YAROSLAV KRYLYUK

Sviridenko in [1]. Although the first part of Theorem 2.1 asserts the existence of a 0/1
solution to (1), there are instances where (1) has solutions that are not 0/1 vectors.
For example, if the off-diagonal elements of A are all equal to 1 and D = I, then any
feasible point is optimal.

We now consider a slightly more general form of the graph partitioning problem
where we still minimize the sum of weights of edges connecting the two sets. However,
the size of a set is specified by upper and lower bounds rather than by a fixed number
m. Our quadratic programming formulation of this min-cut problem is the following:

minimize (1− x)T(A + D)x

subject to 0 ≤ x ≤ 1, l ≤ 1Tx ≤ u,
(9)

where l and u are given integers satisfying 0 ≤ l < u ≤ n. The corresponding gener-
alization of Theorem 2.1 involves an additional constraint on the diagonal elements
of D.

Corollary 2.2. If D is chosen so that

dii + djj ≥ 2aij and dii ≥ 0(10)

for each i and j, then (9) has a 0/1 solution y and the partition given by (2) is a
min-cut. Moreover, if for each i and j,

dii + djj > 2aij and dii > 0,(11)

then every local minimizer of (9) is a 0/1 vector.
Proof. Let y be a solution of (9) and define m = 1Ty. If m is not an integer,

then l < m < u since m lies between the integers l and u. For i ∈ F(y), the free
set defined in (5), let e be the vector all of whose entries are zero except that ei = 1.
The function f(y + εe), where f is defined in (6), has a local minimum at ε = 0 since
y is the global minimizer of (9) and y + εe is feasible for small perturbations in ε.
Expanding in a Taylor series around ε = 0 gives

f(y + εe) = f(y)− diiε2.(12)

Since dii ≥ 0 by (10), it follows that dii = 0 or else the local optimality of y in (9) is
violated. Hence,

f(y + εe) = f(y)(13)

for each choice of ε.
For each i ∈ F(y), we increase yi until either yi reaches the upper bound 1 or

1Ty reach the upper bound u. These adjustments in yi do not change the value of f
due to (13), and after these adjustments, 1Ty must be an integer. Therefore, without
loss of generality, we can assume that m = 1Ty is an integer. Since y is a solution of
(9) and the feasible set of (1) is contained in the feasible set of (9), we conclude that
y is a solution of (1) as well as (9). By Theorem 2.1, (1) has a 0/1 solution which
must be a solution of (9).

Now suppose that (11) holds. If 1Ty is not an integer, then we must have l <
1Ty < u. By (11) dii > 0 for each i. If i ∈ F(y), then according to (12) the local
optimality of y is violated. Hence, we conclude that 1Ty is an integer that we denote
by m, and y is a local minimizer for (1) as well as for (9). By Theorem 2.1, y is a
0/1 vector.

GRAPH PARTITIONING 505

Remark 2.1. The proofs of Theorem 2.1 and Corollary 2.2 involve quadratic
expansions of the cost function. The linear terms in these expansions all vanish due
to the optimality of y. Hence, both of these results are valid if linear terms are added
to the cost functions in (1) and (9) since linear terms do not effect the quadratic terms
in the expansions.

Now let us consider various applications of Theorem 2.1. If aij = 1 for each edge
of the graph G, then A is simply the graph’s adjacency matrix. And if y is a 0/1
vector, then f(y) is equal to the number of edges connecting the sets V1 and V2 in
(2) for the partition associated with y. Notice that when A is the adjacency matrix
of the graph, conditions (3) and (10) are satisfied by taking D = I.

Let W be an n×n symmetric matrix whose elements are nonnegative with wii = 0
for each i and consider the choice A = −W. Since A ≤ 0, it follows that the
conditions (3) and (10) are satisfied by taking D = 0. Hence, for this choice of A and
for D = 0, the quadratic programs (1) or (9) have 0/1 solutions. Since minimizing
f is equivalent to maximizing −f , the minimization problem (9) is equivalent to the
following max-cut problem:

maximize (1− x)TWx

subject to 0 ≤ x ≤ 1, l ≤ 1Tx ≤ u.
(14)

If l = 0 and u = n, then there are no constraints on the size of the sets in the partition.
In [22] the following discrete formulation is given for the weighted max-cut problem
without constraints on the set size:

maximize
1

2

∑
i<j

wij(1− zizj)

subject to zi ∈ {−1, 1}, 1 ≤ i ≤ n.
(15)

The cost function of this discrete quadratic program is equal to 1
4 (1TW1 − zTWz),

and with the substitution z = 2x− 1, we obtain the equivalent problem

maximize (1− x)TWx

subject to xi ∈ {0, 1}, 1 ≤ i ≤ n.
(16)

Taking l = 0 and u = n, Corollary 2.2 implies that (14) has the same maximum
as (16). Moreover, there exists a 0/1 solution y of (14) for which the associated
partition (2) maximizes the sum of the weights of the edges connecting V1 and V2.
As a consequence, if the constraint zi ∈ {−1, 1} in (15) is changed to −1 ≤ z ≤ 1,
then the resulting continuous quadratic program has the same maximum value as
the discrete program (15). This property for bound-constrained minimization was
observed by Rosenberg [42] in the following context: If a polynomial is linear with
respect to each of its variables, then its minimum over a box is attained at one of the
vertices. Since wii = 0, the function zTWz is linear in each variable and Rosenberg’s
result can be applied.

Graph partitioning problems have application to ordering strategies for sparse
matrix factorization. In the minimum degree algorithm, we permute two rows and
the same two columns of a symmetric positive definite matrix P in order to obtain as
many zeros as possible in the first column. The column and the row that are moved
to the first row and column correspond to the positive component of a 0/1 solution

506 WILLIAM W. HAGER AND YAROSLAV KRYLYUK

of (9) associated with l = u = 1, where aij = 1 if pij 6= 0 and aij = 0 otherwise.
Likewise, taking l = u = n/2, assuming n is even, we obtain a partitioning akin to
nested dissection in which all those columns and rows associated with indices in V1

are permuted to the front of the matrix. Viewed in this graph partitioning context,
another ordering emerges. For example, we could take l = 1 and u a number slightly
larger than 1 to obtain an ordering similar to minimum degree. Or we could take
l < n/2 and u > n/2 to obtain an ordering similar to nested dissection that allows
some freedom in the size of the sets in the partition.

3. Necessary and sufficient optimality conditions. In this section, we for-
mulate necessary and sufficient optimality conditions for the quadratic programs of
section 2. For a general quadratic program, deciding whether a given point is a local
minimizer is NP-hard (see [37], [39]). On the other hand, for the quadratic program
associated with the graph partitioning problem, we show in this section that local
optimality can be decided quickly. Given any x that is feasible in (1), let us define
the sets

U(x) = {i : xi = 1} and L(x) = {i : xi = 0}.

Given a scalar λ, we define the vector

µ(x, λ) = (A + D)1− 2(A + D)x + λ1.

We also introduce subsets U0 and L0 defined by

U0(x, λ) = {i ∈ U(x) : µi(x, λ) = 0} and L0(x, λ) = {i ∈ L(x) : µi(x, λ) = 0}.

The first-order optimality (Karush–Kuhn–Tucker) conditions associated with a local
minimizer x of (9) can be written in the following way: For some scalar λ,

0 ≤ x ≤ 1, 1Tx = m, and x ∈ N (µ(x, λ)),(17)

where N (µ) = N1(µ)×N2(µ)× · · · × Nn(µ) is a set-valued map, and

Ni(µ) =

 R if µi = 0,
{1} if µi < 0,
{0} if µi > 0.

Here R denotes the set of real numbers. The first two conditions in (17) are the
constraints in (1), while the last condition is complementary slackness and stationarity
of the Lagrangian.

Theorem 3.1. Suppose that (3) holds and m is a real number with 0 < m < n.
A necessary and sufficient condition for y to be a local minimizer in (1) is that all of
the following hold:

(P1) For some λ, the first-order conditions are satisfied at x = y.
(P2) For each i and j ∈ F(y), where F is the free index set defined in (5), we have

dii + djj = 2aij.
(P3) Consider the three sets U0(y, λ), L0(y, λ), and F(y). For each i and j in two

different sets, we have dii + djj = 2aij.
The motivation for (P2) and (P3) follows. Those indices in U0(y, λ), L0(y, λ),

and F(y) correspond to those components of the multiplier µ(y, λ) that vanish. If the
cost function f(x) in (6) is expanded in a Taylor series around y, then the linear terms

GRAPH PARTITIONING 507

in the expansion corresponding to zero multiplier components are all zero. If v is a
vector all of whose components are zero except that vi = 1 and vj = −1, where i and j
are indices corresponding to multiplier components that vanish, then vT(A+D)v ≥ 0
by (3). Conditions (P2) and (P3) are devised so that vT(A + D)v = 0 whenever v is
a feasible direction at y (if vT(A + D)v > 0, then y is no longer a local minimizer).

Proof. If y is a local minimizer in (1), then the first-order conditions (17) hold
automatically, while in the proof of Theorem 2.1, we saw that dii+djj = 2aij for each
i and j ∈ F(y) — see the discussion around (8). For the remainder of the proof, we
let µ and the various sets L, U , F , L0, and U0 stand for µ(y, λ), L(y), U(y), F(y),
L0(y, λ), and U0(y, λ), respectively. We also define complementary sets

L′ = L \ L0 and U ′ = U \ U0.

L′ is the set of indices for which yi = 0 and µi > 0, while U ′ is the set of indices for
which yi = 1 and µi < 0.

To establish (P3), we expand the cost function in a Taylor series around y. Let
L be the Lagrangian defined by

L(x) = f(x) + λ(1Tx−m)−
∑
i∈L

µixi −
∑
i∈U

µi(xi − 1),

where f is the cost function in (6). By the complementary slackness condition in (17)
and by the definition of µ, we have L(y) = f(y) and ∇L(y) = 0. Expanding the
Lagrangian around y, we have

L(y + z) = L(y) +∇L(y)z +
1

2
zT∇2L(y)z = f(y)− zT(A + D)z.

It follows that

f(y + z) = L(y + z)− λ(1T(y + z)−m) +
∑
i∈L

µi(yi + zi) +
∑
i∈U

µi(yi + zi − 1)

= f(y)− zT(A + D)z− λ1Tz +
∑
i∈L

µizi +
∑
i∈U

µizi.(18)

Suppose that i ∈ U0 and j ∈ F and let v be the vector all of whose entries are zero
except that vi = −1 and vj = 1. The vector x = y + εv satisfies the constraints of
(1) for ε sufficiently small, and by the definition of U0, µi = 0. By (18), we have

f(y + εv) = f(y)− ε2(dii + djj − 2aij).

Since y is a local optimizer in (1), we must have dii + djj ≤ 2aij ; while by (3),
dii + djj ≥ 2aij . Hence, dii + djj = 2aij . A similar argument can be used for all
the other possible ways of choosing i and j from different sets U0, L0, and F . This
completes the proof of (P3).

Now consider the converse. That is, we assume that (P1)–(P3) all hold and we
wish to show that y is a local minimizer in (1). Suppose that x satisfies the constraints
of (1) and define z = x− y, so that x = y + z. Let Z denote the set defined by

Z = F ∪ L0 ∪ U0 = {i : µi = 0},(19)

and let Z ′ be the complement:

Z ′ = L′ ∪ U ′ = {i : µi 6= 0}.(20)

508 WILLIAM W. HAGER AND YAROSLAV KRYLYUK

F
L0

U0

Z ′

F L0 U0 Z ′
= = = ?
= ? = ?
= = ? ?
? ? ? ?

Fig. 3.1. Structure of A + D.

In the case that Z ′ is nonempty, we define the parameter

σ = min {|µi| : i ∈ Z ′},
which is positive by the definition of Z ′. For the remainder of the proof, we assume
that Z ′ is nonempty, and at the end of the proof, we point out the adjustments
that are needed to handle the case where Z ′ is empty. Since x = y + z satisfies the
constraints in (1), we have zi ≥ 0 and zj ≤ 0 for all i ∈ L and j ∈ U . Since µi ≥ 0
and µj ≤ 0 for all i ∈ L and j ∈ U , it follows that∑

i∈L
µizi +

∑
j∈U

µjzj =
∑
i∈Z′

µizi ≥ σ
∑
i∈Z′
|zi|.(21)

If ‖ · ‖ and ‖ · ‖Z′ denote the vector 1-norms defined by

‖z‖ =
n∑
i=1

|zi| and ‖z‖Z′ =
∑
i∈Z′
|zi|,

then the relation (21) can be expressed∑
i∈L

µizi +
∑
j∈U

µjzj ≥ σ‖z‖Z′ .(22)

Now let us consider the quadratic term in (18). The structure of A is depicted
in Figure 3.1. In this figure, an equal sign means that for the elements in that part
of the matrix, we have dii + djj = 2aij , while a question mark means that we do
not know anything about the elements in that region. The equal sign in the (F ,F)
position corresponds to (P2) while the remaining six equal signs correspond to (P3).

We now make a careful study of the quadratic term in (18) which can be expressed

−zT(A + D)z = −
∑
i,j∈Z

aijzizj −
∑

(i,j)6∈Z×Z
aijzizj −

n∑
i=1

diiz
2
i .

For those (i, j) that lie in the part of the matrix in Figure 3.1 corresponding to the
equal signs, the relation aij = (dii + djj)/2 holds. With this substitution, a little
algebra reveals that

−zT(A + D)z = −d
(∑
i∈Z

zi

)
+

1

2

∑
i,j∈L0

(dii + djj − 2aij)zizj

+
1

2

∑
i,j∈U0

(dii + djj − 2aij)zizj −
∑

(i,j)6∈Z×Z
aijzizj −

∑
i∈Z′

diiz
2
i ,(23)

GRAPH PARTITIONING 509

where d is defined by

d =
∑
i∈Z

diizi.(24)

Since x is feasible in (9), we have zi ≥ 0 for all i ∈ L0 and zi ≤ 0 for all i ∈ U0. Since
dii + djj ≥ 2aij by (3), we deduce that∑

i,j∈L0

(dii + djj − 2aij)zizj +
∑
i,j∈U0

(dii + djj − 2aij)zizj ≥ 0.(25)

Hence, we have

−zT(A + D)z ≥ −d
(∑
i∈Z

zi

)
−

∑
(i,j)6∈Z×Z

aijzizj −
∑
i∈Z′

diiz
2
i .(26)

Combining the lower bounds (22) and (26), we conclude from (18) that

f(y + z) ≥ f(y) + σ‖z‖Z′ − d
(∑
i∈Z

zi

)
−

∑
(i,j)6∈Z×Z

aijzizj −
∑
i∈Z′

diiz
2
i .(27)

Since both x = y and x = y + z satisfy the constraint 1Tx = m, it follows that
1Tz = 0, from which we obtain the relation∑

i∈Z
zi = −

∑
i∈Z′

zi.

Taking absolute values gives ∣∣∣∣∑
i∈Z

zi

∣∣∣∣ ≤ ‖z‖Z′ .
Also, observe that

|zizj | ≤ ‖z‖‖z‖Z′ when (i, j) 6∈ Z × Z

since either i ∈ Z ′ or j ∈ Z ′. Combining these observations with (27) yields

f(y + z) ≥ f(y) + ‖z‖Z′ (σ − c‖z‖) ,(28)

where c is a constant that can be bounded in terms of the elements of A and D.
Hence, when ‖z‖ is sufficiently small, f(y + z) ≥ f(y), which implies that y is a local
minimizer of f .

To conclude, we consider the case where Z ′ is empty. In this case, all the com-
ponents of µ vanish by (19). Hence, the last two terms in the Taylor expansion (18)
vanish, while the 1Tz term vanishes since both x = y and x = y + z satisfy the
constraint 1Tx = m. For the quadratic term in (18), the first term in the identity
(23) vanishes since 1Tz = 0, the next two terms are nonnegative by (25), and the
last two terms are not present since the complement of Z is empty. Combining these
observations, f(y + z) ≥ f(y) whenever x = y + z is feasible in (1). Hence, y is a
global minimizer for (1). This completes the proof.

510 WILLIAM W. HAGER AND YAROSLAV KRYLYUK

Remark 3.1. For quadratic programming problems and a point y satisfying the
first-order conditions (17), a necessary and sufficient condition for y to be a local
minimizer is the copositivity of the quadratic cost matrix over a certain cone (see [12]
and [15]). In our context, this copositivity condition is equivalent to the inequality

vT(A + D)v ≤ 0

whenever v lies in the set

Γ = {v ∈ Rn : 1Tv = 0, vi ≤ 0 if yi = 1, vi ≥ 0 if yi = 0,vT(A + D)(1− 2y) = 0}.

Utilizing the expansion (18), it can be shown that

Γ = {v ∈ Rn : 1Tv = 0, vi ≤ 0 if i ∈ U0, vi = 0 if i ∈ U \ U0 or i ∈ L \ L0,

vi ≥ 0 if i ∈ L0}.

With further analysis, analogous to that given in the proof of Theorem 3.1, the copos-
itivity condition is equivalent to (P2) and (P3). Other references concerning coposi-
tivity and its application to optimality in quadratic programming include [8], [9], [10],
[11], [16], [26], and [27].

Remark 3.2. Continuous optimization algorithms typically converge to a point y
that satisfies the first-order conditions (17). Theorem 3.1 provides two conditions (P2)
and (P3) that can be checked to determine whether y is a local minimizer. Moreover,
if y is not a local minimizer, then careful study of the proof of Theorem 3.1 reveals
a direction of descent for the quadratic cost function. In particular, suppose that
dii + djj > 2aij for indices i and j described in either (P2) or (P3). Let v be a vector
whose entries are all zero except for entries i and j which are chosen so that vi = −vj
and |vi| = 1. From (18) it follows that

f(y + εv) = f(y)− (dii + djj − 2aij)ε
2(29)

since all the terms linear in z = εv vanish. In any of the following cases, we take
vi = −1 and vj = 1: (a) i, j ∈ F(y) or (b) i ∈ U0(y, λ) and j ∈ F(y) or (c)
i ∈ U0(y, λ) and j ∈ L0(y, λ). In the case that i ∈ L0(y, λ) and j ∈ F(y), we take
vi = 1 and vj = −1. Choosing v in this way, x = y + εv is feasible in (1) for ε > 0
sufficiently small and by (29) the value of the cost function is strictly smaller.

We now examine the case when a local minimizer is strict. If V ⊂ V is a collection
of vertices from the graph, let Vi denote the set of edges formed by i and the elements
of V:

Vi = {(i, j) : j ∈ V}.

Given a collection of edges E , let |E| denote the sum of the weights of the edges:

|E| =
∑

(i,j)∈E
aij .

Corollary 3.2. A feasible point y for (1) is a strict local minimizer if and only
if F(y) = ∅ and

min
i∈L(y)

|Li(y)| − |Ui(y)| > max
j∈U(y)

|Lj(y)| − |Uj(y)|.(30)

GRAPH PARTITIONING 511

Proof. Suppose that y is a strict local minimizer for (1). That is, f(x) > f(y)
when x is near y and x is feasible in (1). If F(y) is nonempty, then as seen in the
proof of Theorem 2.1, F(y) has at least two elements. By (P2) of Theorem 3.1,
dii + djj = 2aij for each i and j ∈ F(y). Letting v be a vector whose elements are
all zero except that vi = 1 and vj = −1, the expansion (7) implies that

f(y + εv) = f(y)(31)

for all choices of ε. Since this violates the assumption that y is a strict local minimizer,
we conclude that F(y) is empty. By the first-order conditions (17), we have

(A1− 2Ay)i + λ ≥ 0 ≥ (A1− 2Ay)j + λ(32)

for all i ∈ L(y) and j ∈ U(y). Since F(y) is empty, (A1)i = |Li(y)| + |Ui(y)| and
(Ay)i = |Ui(y)|. Hence, we have

(A1− 2Ay)i = |Li(y)| − |Ui(y)|,(33)

and (32) yields

|Li(y)| − |Ui(y)| ≥ |Lj(y)| − |Uj(y)|
for each i ∈ L(y) and j ∈ U(y). If equality holds, for some i ∈ L(y) and j ∈ U(y),
then equality must hold in (32) as well:

(A1− 2Ay)i + λ = 0 = (A1− 2Ay)j + λ.

This implies that i ∈ L0(y) and j ∈ U0(y). By (P3) of Theorem 3.1, dii + djj = 2aij .
Choosing v as we did earlier, x = y + εv is feasible in (1) for ε > 0 sufficiently small,
and (31) holds, which violates strict local optimality.

Conversely, suppose that F(y) = ∅ and (30) holds. In this case, we can choose λ
such that

|Li(y)| − |Ui(y)|+ λ > 0 > |Lj(y)| − |Uj(y)|+ λ

for each i ∈ L(y) and j ∈ U(y). Utilizing (33) gives

(A1− 2Ay)i + λ > 0 > (A1− 2Ay)j + λ,

for each i ∈ L(y) and j ∈ U(y). For this choice of λ, the first-order conditions (17)
hold and both L0(y, λ) and U0(y, λ) are empty. Hence, the set Z ′ in (20) is simply

Z ′ = {1, 2, . . . , n}.
In this case, the lower bound (28) implies that y is a strict local minimizer.

We now consider the quadratic program (9) with inequality constraints. In this
case, the first-order KKT conditions are the following: For some λ,

0 ≤ x ≤ 1, l ≤ 1Tx ≤ u, 1Tx ∈M(λ), and x ∈ N (µ(x, λ)),(34)

where M(λ) is the set-valued map defined by

M(λ) =

 R if λ = 0,
{l} if λ < 0,
{u} if λ > 0.

Corollary 3.3. Suppose that (10) holds. A necessary and sufficient condition
for y to be a local minimizer in (9) is that (P1)–(P3) hold along with the following
additional condition:

512 WILLIAM W. HAGER AND YAROSLAV KRYLYUK

(P4) In the case that λ = 0 in the first-order condition (34), dii = 0 for each
i ∈ F(y)∪L0 ∪U0 if l < 1Ty < u, dii = 0 for each i ∈ F(y)∪U0 if 1Ty = u,
and dii = 0 for each i ∈ F(y) ∪ L0 if 1Ty = l.

Proof. We use the notation introduced in the proof of Theorem 3.1. If y is
a local minimizer in (9), then the first-order conditions (34) hold automatically for
some scalar λ. Since y is a local minimizer in (1) with m = 1Ty, it follows from
Theorem 3.1 that (P2) and (P3) hold as well. If λ = 0 and e is a vector whose
components are all zero except that ei = 1 for some i ∈ Z, then the expansion (18)
yields

f(y + εe) = f(y)− ε2dii.(35)

It follows that the local optimality of y is violated unless dii = 0 in all the cases cited
in (P4).

Conversely, let us assume that (P1)–(P4) all hold. We wish to show that y is
a local minimizer in (9). Given a feasible point x for (9), define z = x − y. In
Theorem 3.1, 1Tz = 0 and consequently, the λ term in (18) disappeared. Now this
term needs to be included on the right side of (27) to obtain

f(y + z) ≥ f(y) + σ‖z‖Z′ − λ1Tz

−d
(∑
i∈Z

zi

)
−

∑
(i,j)6∈Z×Z

aijzizj −
∑
i∈Z′

diiz
2
i .(36)

In the proof of Theorem 3.1, we showed that the last two terms in (36) can be bounded
by c‖z‖‖z‖Z′ . Moreover, utilizing the identity∑

i∈Z
zi = 1Tz−

∑
i∈Z′

zi,

(36) yields

f(y + z) ≥ f(y) + (σ − c‖z‖)‖z‖Z′ − (d+ λ)1Tz.(37)

If l < 1Ty < u, then λ = 0 by (34) and d = 0 by (P4). It follows from (37) that y
is a local minimizer. If 1Ty = u, then 1Tz ≤ 0 when x = y + z is feasible in (9). If
λ = 0, then by (P4), we have

d =
∑
i∈L0

diizi ≥ 0

since zi ≥ 0 for each i ∈ L. Again, by (37) and the relation 1Tz ≤ 0, y is a local
minimizer. If λ > 0, then by choosing ‖z‖ small enough that d+ λ > 0, we see from
(37) that y is a local minimizer (since the last term in (37) is nonnegative). The case
1Ty = l is treated in an analogous fashion. This completes the proof.

4. An example. Theorem 2.1 and Corollary 2.2 require that the diagonal ele-
ments of D should be chosen large enough to satisfy (3) and (10), respectively. On
the other hand, as we now observe, choosing D too large can lead to a miserable
optimization problem. In the case that D = sI, the quadratic program (1) becomes

minimize (1− x)T(A + sI)x

subject to 0 ≤ x ≤ 1, 1Tx = m.
(38)

GRAPH PARTITIONING 513

4

5

6

7

8

9

10

15

16

19

1

2

3

11

12

13

14

17

18

20

Fig. 4.1. An example graph.

Dividing the cost function in (38) by s and taking the limit as s tends to infinity, we
obtain the problem

minimize (1− x)Tx

subject to 0 ≤ x ≤ 1, 1Tx = m,
(39)

The extreme points of the feasible set in either (1) or (38) or (39) is the set

X = {P1m : P ∈ P},

where P is the set of n × n permutation matrices. Since x = 0 or x = 1 is a strict
local minimizer of the function x(1−x), we conclude that any element of X is a strict
local minimizer in the problem (39). In fact, for s sufficiently large, any element of X
is a strict local minimizer in the problem

minimize (1− x)T(I + 1
sA)x

subject to 0 ≤ x ≤ 1, 1Tx = m.

Hence, as s tends to infinity in (38), every extreme point of the feasible set becomes a
local minimizer, and consequently, checking the local minimizers in order to determine
the global minimum involves checking every extreme point of the feasible set. As s
decreases, fewer of these extreme points become local minimizers in (38), and there
are fewer candidates for the global optimum.

As an illustration, let us consider the 20 node graph displayed in Figure 4.1 (see
[17, Table 3], [41]) and let A be the adjacency matrix of the graph. In other words,
the weight is 1 for each edge of the graph and 0 otherwise. For this choice of A, we

514 WILLIAM W. HAGER AND YAROSLAV KRYLYUK

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

s

Lo
ca

l M
in

im
iz

er
s

Fig. 4.2. Number of local minimizers for Figure 4.1 graph and optimization problem (38).

(1− x)TAx Minimizers
13 2
14 6
15 18
16 36
17 42
18 126
19 304

(1− x)TAx Minimizers
20 464
21 440
22 414
23 292
24 164
25 26

Fig. 4.3. The number of local minimizers in (1) for each value of the cost function.

should choose s ≥ 1 in (38) to ensure that (3) holds. Following [17], we take m = 10,
in which case the minimum number of edges separating the two sets of 10 nodes is
13 (the optimal partitioning is shown in Figure 4.1). For the example of Figure 4.1,
we computed all the local minimizers of (38) for each value of s ≥ 1. As s increases,
the number of local minimizers increases monotonically. The values of s, where there
is a change in the number, are always integers. Figure 4.2 shows the total number of
local minimizers as a function of s. The number of local minimizers ranges from 2334
when 1 < s < 2 up to 184756 for s ≥ 13. Hence, there are about 79 times as many
local minimizers for (38) when s ≥ 13 as compared to the number of local minimizers
when s is between 1 and 2.

For s between 1 and 2, the 2334 local minimizers of (38) yield the distribution of
values for the cost function of (1) shown in Figure 4.3. Hence, out of the 2334 local
minimizers of (1), only two of them are global minimizers. Note, however, that if we
compute any local minimizer of (38), the largest value it can have is 25. Moreover,
using 20 iterations of the gradient algorithm (optpack) described in [24], starting
from a point near x = (m/n)1, we converge to a local minimizer of (1) with value
(1 − x)TAx = 14. Hence, a simple gradient approach provides a partitioning of the
vertices that is very close to the optimal partitioning (1− x)TAx = 13.

GRAPH PARTITIONING 515

In contrast, if we take s = 21, 11, 6, 3, and 2 in (38) and use exactly the same
gradient algorithm and starting point, then we converge to locally minimizing values
of 29, 26, 17, 15, and 14, respectively. Thus the smaller values of s yield computed
minimizers whose values are closer to the global minimum 13.

The eigenvalues of the matrix −(A + I) are the following:

−7.0429, −4.1375, −3.1908, −2.7637, −2.4979, −2.2031, −1.8808,
−1.7844, −1.3706, −1.0552, −0.9066, −0.4584, 0.0901, 0.2508,

0.4315, 1.0217, 1.4759, 1.8608, 1.9740, 2.1869

Since there are both positive and negative eigenvalues, the choice D = I in the
quadratic program (1) has not changed the cost function to the extent that it became
concave.

5. Graph eigenvectors. In [40], Pothen, Simon, and Liou propose using an
eigenvector associated with the second largest eigenvalue of the Laplacian of a graph
in order to compute edge and vertex separators of small size. In this section, we relate
this eigenvector to a solution of the quadratic program (1). Let δi be the sum of the
weights of edges emanating from vertex i:

δi =
n∑
j=1

aij .

(Using the notation of section 3, δi = |Vi|.) The Laplacian L associated with G is
defined by

lij =

{
δi
−aij

if i = j,
otherwise.

Let g(x) = xTLx be the quadratic form associated with the Laplacian, and let f
be the cost function of the quadratic program (1). See [45] for the first part of the
following result.

Proposition 5.1. We have f(x) = g(x) for all x ∈ Ω, where

Ω = {x ∈ Rn : xi = 0 or 1, 1Tx = m}.
Hence,

min{f(x) : 0 ≤ x ≤ 1, 1Tx = m} = min{g(x) : x ∈ Ω}.
Proof. Observe that (1− x)TAx = δTx− xTAx and

xTLx =
n∑
i=1

δix
2
i − xTAx.

It follows that

f(x)− g(x) =

n∑
i=1

δi(xi − x2
i) = 0(40)

for every x ∈ Ω. Since the quadratic program (1) has a solution in Ω by Theorem 2.1,
the proof is complete.

516 WILLIAM W. HAGER AND YAROSLAV KRYLYUK

By Gerschgorin’s theorem (see [23, p. 341] or [25, p. 250]) L is positive semidef-
inite and clearly 1 is an eigenvector of L corresponding to the eigenvalue 0. Let
ei, i = 1, . . . , n, denote a linearly independent, normalized set of eigenvectors for L,
where e1 = 1/

√
n, and where the remaining eigenvectors are ordered so that for the

associated eigenvalues, we have

0 = λ1 ≤ λ2 ≤ · · · ≤ λn.
Since g(1) = 0, it follows that for any vector x, g(x) = g(Qx) where Q is the
projection of a vector onto the orthogonal complement of 1. It is easily checked that

Qx = x− 1Tx
n 1.

Hence, if x ∈ Ω, then

Qx = x− m
n 1 and ‖Qx‖2 =

√
m(n−m)

n ,(41)

where ‖ · ‖2 is the Euclidean norm. The function g(y), with y restricted to a sphere
in the orthogonal complement of 1, attains its minimum in the eigenspace associated
with the second smallest eigenvalue λ2. By the computation (41), all points of the
form Qx with x ∈ Ω lie on the sphere of radius R =

√
m(n−m)/n. Hence, the

problem of minimizing g(x) over x ∈ Ω is related to the problem of finding the x ∈ Ω
whose projection onto the orthogonal complement of 1 is closest to the eigenspace
associated with λ2.

In [40] the authors focus, in particular, on the case where the vertices are parti-
tioned into two sets of roughly equal size. This case corresponds to taking m = n/2
in our notation. Since the eigenvectors associated with the second smallest eigenvalue
are all orthogonal to 1, the average of the components for any of these eigenvectors is
zero. If all the components are of comparable size, then half the components should
be positive and the other half should be negative. The x ∈ Ω for which Qx is closest
to a vector of this form is given by xi = 1 for the positive components and xi = 0
for the negative components. These considerations provide an alternative rationale
for the methodology of [40] where the vertices are partitioned according to the sign
of the components of an eigenvector corresponding to the second smallest eigenvalue.

This connection, provided by Proposition 5.1 between the quadratics f and g,
leads to upper and lower bounds for f over Ω. In particular, since

λ2‖Qx‖22 ≤ g(Qx) ≤ λn‖Qx‖22,
it follows from (41), Proposition 5.1, and the identity g(x) = g(Qx) for x ∈ Ω that

λ2R
2 ≤ min

x∈Ω
f(x) ≤ max

x∈Ω
f(x) ≤ λnR2,(42)

where again R =
√
m(n−m)/n. The following lemma provides a small refinement

to these bounds using adjacent eigenvalues:
Lemma 5.2.

λ3R
2 − (λ3 − λ2)t2 ≤ min

x∈Ω
f(x) ≤ max

x∈Ω
f(x) ≤ λn−1R

2 + (λn − λn−1)tn,(43)

where

ti = max
x∈Ω

(eT
i x)2,

GRAPH PARTITIONING 517

with ei the normalized eigenvector associated with the ith eigenvalue.
Proof. We focus on the lower bound since exactly the same procedure can be

applied to the upper bound. Given x ∈ Ω, we let zi denote the coordinates of Qx
relative to the eigenvectors:

Qx =
n∑
i=2

ziei.

By (41), we have

n∑
i=2

z2
i = R2 and z2

2 = R2 −
n∑
i=3

z2
i .

By the definition of g, it follows that

g(Qx) =

n∑
i=2

λiz
2
i

= λ2R
2 +

n∑
i=3

(λi − λ2)z2
i

≥ λ2R
2 + (λ3 − λ2)

n∑
i=3

z2
i

= λ2R
2 + (λ3 − λ2)(R2 − z2

2)

= λ3R
2 − (λ3 − λ2)z2

2 .

Since z2 = eT
2 x, it follows that z2

2 ≤ t2. This completes the proof.
In (42) and (43), we give bounds for the minimum and maximum of f over Ω

relative to the eigenvalues of the graph Laplacian L. To the extent that the minimum
or maximum in (42) or (43) can be evaluated, these inequalities can be used to obtain
bounds on the eigenvalues themselves. For example, in the case m = 1, the minimum
of f over Ω is simply the minimum of δi, 1 ≤ i ≤ n, while the maximum of f over Ω
is the largest of δi, 1 ≤ i ≤ n. Letting δ and δ̄ denote the minimum and maximum of
the δi, we have the estimate (see [19])

λ2 ≤ n

(n− 1)
δ ≤ n

(n− 1)
δ̄ ≤ λn.

6. Multiset generalizations. In the previous sections, we studied problems
that were equivalent to partitioning the vertices of a graphG into two sets of given size,
while minimizing the sum of the weights of edges connecting the sets. In this section,
we consider the more general problem of partitioning the vertices into k distinct
sets S1,S2, . . . ,Sk, with a given number of vertices m1,m2, . . . ,mk in each set, while
minimizing the number of edges connecting different sets. Multiset partitions have
application in VLSI design (see [3]) and in block iterative techniques for sparse linear
systems, where rows and columns are permuted in order to minimize the number of
nonzero elements outside the given diagonal blocks.

Let X be an n× k matrix, and let us define

xij =

{
1 if i ∈ Sj ,
0 if i 6∈ Sj .

518 WILLIAM W. HAGER AND YAROSLAV KRYLYUK

If xj is the jth column of X, then the expression xT
j Axj equals the sum of the weights

of edges connecting vertices in Sj . The sum of the weights of edges connecting different
sets in the partition is minimized when the sum of the weights of edges connecting
vertices within the individual sets of the partition is maximized. Hence, the min-
cut multiset partitioning problem is equivalent to the following discrete quadratic
maximization problem:

maximize tr XTAX

subject to X1 = 1, XT1 = m, X ∈ Λ,
(44)

where tr denotes trace and

Λ = {X ∈ Rnk : xij = 0 or 1, 1 ≤ i ≤ n, 1 ≤ j ≤ k}.
The constraints X1 = 1 and X ∈ Λ are equivalent to saying that each vertex is
contained in precisely one of the sets Sj . The constraint XT1 = m is equivalent
to saying that there are mj vertices in set Sj for each j. This discrete quadratic
programming formulation of the multiset partitioning problem can be found in [7],
for example.

If X satisfies the constraints of (44), then

tr XTDX =
k∑
j=1

xT
j Dxj =

n∑
i=1

di.

Consequently, for any choice of the diagonal matrix D, the problem (44) is equivalent
to the following problem (since the cost functions differ by a constant, independent
of the X):

maximize tr XT(A + D)X

subject to X1 = 1, XT1 = m, X ∈ Λ.
(45)

Our goal in this section is to replace the discrete problem (44), where we impose
the constraint xij = 0 or 1, by a continuous problem as in section 2. For example,
in the special case k = 2, we seek to partition the vertices of the graph into two sets
to maximize the total number of edges in the sets. The constraint X1 = 1 in (44)
implies that x2 = 1− x1, and the cost function in (45) can be rewritten

tr XT(A + D)X = xT
1 (A + D)x1 + xT

2 (A + D)x2

= −2(1− x1)T(A + D)x1 + 1T(A + D)1.

Hence, after negation and after identifying the x of (1) with x1, we see that the cost
functions of (45) and of (1) differ only by a constant. Below, the notation X ≥ 0
means that every element of the matrix X is nonnegative.

Theorem 6.1. If D is chosen to satisfy (3), then the continuous problem

maximize tr XT(A + D)X

subject to X1 = 1, XT1 = m, X ≥ 0,
(46)

has a maximizer contained in Λ, and hence, this maximizer is a solution of the discrete
problem

maximize tr XT(A + D)X

subject to X1 = 1, XT1 = m, X ∈ Λ.
(47)

GRAPH PARTITIONING 519

Conversely, every solution to (47) is also a solution to (46). Moreover, if (4) holds,
then every local maximizer for (46) lies in Λ.

Proof. Let Y denote any solution to (46), and let F denote the cost function
defined by

F (X) = tr XT(A + D)X.

If an entry in Y lies on the open interval I = (0, 1), then we show that there exists
another matrix Ȳ with the following properties:

(a) Ȳ is feasible in (46),
(b) Ȳ has at least one fewer entries contained in I than Y, and
(c) F (X) = F (Y) for all X on the line segment connecting Y and Ȳ.

Using these properties in an inductive fashion, we obtain, as in the proof of Theo-
rem 2.1, a piecewise linear path taking us from Y to an optimal point Z for (46), and
the elements of Z are either 0 or 1.

Proceeding with the construction, if Y has at least one entry in I, then by inter-
changing rows and columns if necessary, we can assume, without loss of generality,
that y11 ∈ I. Since the column sums are integers, there is at least one more entry in
column 1 of Y in I. (No entry of Y is larger than one since the row sums are all one.)
Again, without loss of generality, we assume that y21 ∈ I. Since the row sums are
integers, there is at least one more entry in the second row Y in I. Again, without
loss of generality, we assume that y22 ∈ I.

Continuing this construction, we obtain the piecewise linear path depicted in
Figure 6.1, where each point on the path corresponds to an index pair (i, j) for which
yij ∈ I. Eventually, we reach an entry yij ∈ I with the property that either the
row index i or the column index j agrees with one of the predecessors. As depicted
in Figure 6.1, we focus on the case where the row index i agrees with one of the
predecessors; an analogous argument applies to the case where the column index
agrees with that of a preceding column.

We discard the part of the path in Figure 6.1 that precedes the (i, i) element.
Each entry of Y corresponding to an element of the path lies in I. Let V be the
matrix that is entirely zero except for entries associated with elements on the path.
We define vll = 1 for i ≤ l ≤ j, while the entries of V corresponding to the other
elements on the path are all −1. Since the row and column sums of V all vanish,
Y + εV satisfies the linear constraints of (46) for any choice of ε. Since the elements
of Y corresponding to points on the path in Figure 6.1 all lie in I, Y + εV ≥ 0 for ε
sufficiently close to 0.

Expanding in a Taylor series, we have

F (Y + εV) = F (Y) + ε2F (V),(48)

where the O(ε) term in the expansion vanishes since F (Y + εV) attains a local max-
imum at ε = 0. By the structure of V, we have

F (V) =

(
dii + djj − 2aij +

j−1∑
l=i

dll + dl+1,l+1 − 2al,l+1

)
.(49)

By assumption (3), F (V) ≥ 0. If F (V) > 0, then the optimality of Y is contradicted.
Hence, F (V) = 0, and we have F (Y + εV) = F (Y) for all choices of ε. If ε̄ is the first
value of ε for which a positive component of Y + εV becomes zero, then the matrix

520 WILLIAM W. HAGER AND YAROSLAV KRYLYUK

(1,1)

Fig. 6.1. Indices of entries in Y that lie on the open interval (0, 1).

Ȳ = Y + ε̄V has at least one more zero than Y. This completes the proof of (a)–(c)
above.

Now suppose that dii + djj > 2aij for all i 6= j and let Y be any local maximizer.
If Y has an element in I, then arguing as we did in the first part of the proof, we can
construct a matrix V with elements 0, 1, and −1, whose nonzero elements correspond
to elements of Y in I, and which satisfies (48) and (49). Since the right side of (49) is
positive, we contradict the local optimality of Y. Hence, each element of Y is either
0 or 1.

Theorem 6.1 can be generalized in the following ways:
• Inspecting the proof, we utilize only the fact that the right side of the con-

straint X1 = 1 is an integer; the fact that the integer is 1 is used only to
bound the components of X by 1. Hence, in (46) we can replace the right
side of the constraint X1 = 1 with a more general vector of positive integers
if we add the additional constraint X ≤ 1, where, in this matrix setting, 1 is
the matrix whose elements are all 1.
• The proof of Theorem 6.1 also works if the cost function of (46) is replaced

with

k∑
l=1

xT
l (Al + D)xl,

where xl denotes column l of X and each Al is symmetric matrix with zero di-
agonal that satisfies (3). (In circuit design, we may wish to associate different

GRAPH PARTITIONING 521

costs with the edges in different sets.)
• Since the proof of Theorem 6.1 utilizes a Taylor expansion of the quadratic

cost function, a linear term can be added to the cost function without chang-
ing either the expansions or the conclusions.
• For a nonsymmetric matrix A, we have

tr XTAX = 1
2 tr XTAX + 1

2 tr XTATX = tr XTSX,

where S = 1
2 (A + AT) is symmetric. Hence, Theorem 6.1 can be applied

to the symmetric matrix S if the elements satisfy the condition (3). After
making the substitution sij = (aij + aji)/2, we see that the condition (3) of
Theorem 6.1 is satisfied if

dii + djj ≥ aij + aji for all i and j.(50)

Collecting these observations, we have the following corollary.

Corollary 6.2. If Al, l = 1, 2, . . . , k, are n×n matrices, each of which satisfies
the condition (50), and Φ is a given k × n matrix, then the continuous problem

maximize tr ΦX +
k∑
l=1

xT
l (Al + D)xl

subject to X1 = r, XT1 = m, 0 ≤ X ≤ 1,

(51)

where r is a vector of positive integers, has a maximizer contained in Λ whenever
the feasible set is nonempty, and hence, this maximizer is a solution of the discrete
problem

maximize tr ΦX +
k∑
l=1

xT
l (Al + D)xl

subject to X1 = r, XT1 = m, X ∈ Λ.

(52)

If D also satisfies the strict inequality

dii + djj > alij + alji for all i 6= j, 1 ≤ l ≤ k,

where alij is the (i, j)-element of Al, then every local maximizer of (51) lies in Λ.

Since the problem (52) with r = 1 and m = 1 is a special case of the quadratic
assignment problem, Corollary 6.2 also provides an instance where the quadratic
assignment problem can be replaced by a continuous quadratic programming problem
whose Hessian is not necessarily positive definite. If Al = 0 for each l, then (51) is
a linear programming problem with transportation constraints [34, p. 15]. If Al = 0
for each l, X is a square matrix, and r = m = 1, then (51) is the linear assignment
problem [2, p. 215]. Hence, for these linear problems, Corollary 6.2 yields, as a special
case, the existence of a 0/1 solution. For comparison, the existence of integer solutions
in network flow problems can be found, for example, in [2, p. 245].

522 WILLIAM W. HAGER AND YAROSLAV KRYLYUK

REFERENCES

[1] A. A. Ageev and M. I. Sviridenko, Approximation algorithms for maximum coverage and
max cut with given sizes of parts, in Integer Programming and Combinatorial Optimization,
Lecture Notes in Comput. Sci. 1610, G. C. Cornuéjols, R. E. Burkard, and G. J. Woeginger,
eds., Springer, Berlin, 1999, pp. 17–30.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network flows, in Optimization, Handbooks
in Oper. Res. and Management Sci. 1, G. L. Nemhauser, A. H. G. Rinnooy Kan, and M.
J. Todd, eds., North–Holland, Amsterdam, 1989, pp. 211–369.

[3] C. J. Alpert and A. B. Kahng, Recent directions in netlist partition: A survey, Integration,
the VLSI Journal, 19 (1995), pp. 1–81.

[4] M. S. Bazaraa and H. D. Sherali, On the use of exact and heuristic cutting plane methods
for the quadratic assignment problem, J. Oper. Res. Soc., 33 (1982), pp. 991–1003.

[5] E. R. Barnes, An algorithm for partitioning the nodes of a graph, SIAM J. Alg. Discrete
Methods, 3 (1982), pp. 541–550.

[6] E. R. Barnes and A. J. Hoffman, Partitioning, spectra, and linear programming, in Progress
in Combinatorial Optimization, W. E. Pulleyblank, ed., Academic Press, New York, 1984,
pp. 13–25.

[7] E. R. Barnes, A. Vannelli, and J. Q. Walker, A new heuristic for partitioning the nodes
of a graph, SIAM J. Discrete Math., 1 (1988), pp. 299–305.

[8] I. M. Bomze, Block pivoting and shortcut strategies for detecting copositivity, Linear Algebra
Appl., 248 (1996), pp. 161–184.

[9] I. M. Bomze, Global escape strategies for maximizing quadratic forms over a simplex, J. Global
Optim., 11 (1997), pp. 325–338.

[10] I. M. Bomze and G. Danninger, A global optimization algorithm for concave quadratic pro-
gramming problems, SIAM J. Optim., 3 (1993), pp. 826–842.

[11] I. M. Bomze and G. Danninger, A finite algorithm for solving general quadratic problems, J.
Global Optim., 4 (1994), pp. 1–16.

[12] J. M. Borwein, Necessary and sufficient conditions for quadratic minimality, Numer. Funct.
Anal. Optim., 5 (1982), pp. 127–140.

[13] T. N. Bui and C. Jones, A heuristic for reducing fill-in in sparse matrix factorization, in
Proceedings of the 6th SIAM Conference on Parallel Processing for Scientific Computing,
Vol. I, Norfolk, VA, March 22–24, 1993, R. F. Sincovec, D. E. Keyes, M. R. Leuze, L. R.
Petzold, and D. A. Reed, eds., SIAM, Philadelphia, 1993, pp. 445–452.

[14] C.-K. Cheng and Y.-C. A. Wei, An improved two-way partitioning algorithm with stable
performance, IEEE Trans. Comput. Aided Design, 10 (1991), pp. 1502–1511.

[15] L. B. Contesse, Une caractérisation complète des minima locaux en programmation quadra-
tique, Numer. Math., 34 (1980), pp. 315–332.

[16] G. Danninger and I. M. Bomze, Using copositivity for global optimality criteria in concave
quadratic programming problems, Math. Programming, 62 (1993), pp. 575–580.

[17] W. E. Donath and A. J. Hoffman, Lower bounds for the partitioning of graphs, IBM J. Res.
Develop., 17 (1973), pp. 420–425.

[18] J. Falkner, F. Rendl, and H. Wolkowicz, A computational study of graph partitioning,
Math. Programming, 66 (1994), pp. 211–240.

[19] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J., 23 (1973), pp. 298–305.
[20] L. E. Gibbons, D. W. Hearn, P. M. Pardalos, and M. V. Ramana, Continuous character-

izations of the maximum clique problem, Math. Oper. Res., 22 (1997), pp. 754–768.
[21] J. R. Gilbert, G. L. Miller, and S.-H. Teng, Geometric mesh partitioning: Implementation

and experiments, SIAM J. Sci. Comput., 19 (1998), pp. 2091–2110.
[22] M. X. Goemans and D. P. Williamson, Improved approximation algorithms for maximum

cut and satisfiability problems using semidefinite programming, J. ACM, 42 (1995), pp.
1115–1145.

[23] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University
Press, Baltimore, MD, 1989.

[24] W. W. Hager, Analysis and implementation of a dual algorithm for constrained optimization,
J. Optim Theory Appl., 79 (1993), pp. 427–462.

[25] W. W. Hager, Applied Numerical Linear Algebra, Prentice-Hall, Englewood Cliffs, NJ, 1988.
[26] J. B. Hiriart-Urruty, Refinements of necessary optimality conditions in nondifferentiable

programming. I, Appl. Math. Optim., 5 (1979), pp. 63–82.
[27] J. B. Hiriart-Urruty, Refinements of necessary optimality conditions in nondifferentiable

programming. II. Optimality and stability in mathematical programming, Math. Program-
ming Stud., 19 (1982), pp. 120–139.

GRAPH PARTITIONING 523

[28] M. T. Heath and P. Raghavan, A Cartesian parallel nested dissection algorithm, SIAM J.
Matrix Anal. Appl., 16 (1995), pp. 235–253.

[29] B. Hendrickson and R. Leland, An improved spectral graph partitioning algorithm for map-
ping parallel computations, SIAM J. Sci. Comput., 16 (1995), pp. 452–469.

[30] B. Hendrickson and R. Leland, A Multilevel Algorithm for Partitioning Graphs, Technical
Report SAND93-1301, Sandia National Laboratories, Albuquerque, NM, 1993.

[31] B. W. Kernighan and S. Lin, An efficient heuristic procedure for partitioning graphs, Bell
System Tech. J., 49 (1970), pp. 291–307.

[32] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular
graphs, SIAM J. Sci. Comput., 20 (1998), pp. 359–392.

[33] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, John Wiley, Chichester,
1990.

[34] D. G. Luenberger, Linear and Nonlinear Programming, Addison-Wesley, Reading, MA, 1984.
[35] G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis, Automatic mesh partitioning,

in Graph Theory and Sparse Matrix Computations, J. Gilbert and J. Liu, eds., IMA Vol.
Math. Appl. 56, Springer-Verlag, New York, 1993, pp. 57–84.

[36] T. S. Motzkin and E. G. Strauss, Maxima for graphs and a new proof of a theorem of Turan,
Canad. J. Math., 17 (1965), pp. 533–540.

[37] K. G. Murty and S. N. Kabadi, Some NP-complete problems in quadratic and linear pro-
gramming, Math. Programming, 39 (1987), pp. 117–129.

[38] P. M. Pardalos and J. B. Rosen, Constrained Global Optimization: Algorithms and Appli-
cations, Springer-Verlag, Berlin, 1987.

[39] P. M. Pardalos and S. A. Vavasis, Quadratic programming with one negative eigenvalue is
NP-hard, J. Global Optim., 1 (1991), pp. 15–22.

[40] A. Pothen, H. D. Simon, and K.-P. Liou, Partitioning sparse matrices with eigenvectors of
graphs, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 430–452.

[41] F. Rendl and H. Wolkowicz, A projection technique for partitioning the nodes of a graph,
Ann. Oper. Res., 58 (1995), pp. 172–191.

[42] I. Rosenberg, 0− 1 optimization and nonlinear programming, Rev. Française Automat. Infor-
mat. Recherche Opérationelle, 6 (1972), pp. 95–97.

[43] F. Tardella, On the equivalence between some discrete and continuous optimization problems,
Ann. Oper. Res., 25 (1990), pp. 291–300.

[44] S.-H. Teng, Provably good partitioning and load balancing algorithms for parallel adaptive
N-body simulation, SIAM J. Sci. Comput., 19 (1998), pp. 635–656.

[45] H. Wolkowicz and Q. Zhao, Semidefinite programming relaxations for the graph partitioning
problem, Discrete Appl. Math., to appear.

ON THE SIZE OF MINIMUM SUPER ARROVIAN DOMAINS∗

SAMIT DASGUPTA†

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 4, pp. 524-534

Abstract. Arrow’s celebrated impossibility theorem states that a sufficiently diverse domain of
voter preference profiles cannot be mapped into social orders of the alternatives without violating
at least one of three appealing conditions. Following Fishburn and Kelly, we define a set of strict
preference profiles to be super Arrovian if Arrow’s impossibility theorem holds for this set and each
of its strict preference profile supersets. We write σ(m,n) for the size of the smallest super Arrovian
set for m alternatives and n voters. We show that σ(m, 2) = d 2m

m−2
e and σ(3, 3) = 19. We also show

that σ(m,n) is bounded by a constant for fixed n and bounded on both sides by a constant times
2n for fixed m. In particular, we find that limn→∞ σ(3, n)/2n = 3. Finally, we answer two questions
posed by Fishburn and Kelly on the structure of minimum and minimal super Arrovian sets.

Key words. Arrow’s impossibility theorem, voter preference profiles, minimum profile sets

AMS subject classifications. 05A05, 90A08

PII. S0895480198332521

1. Introduction. Arrow’s impossibility theorem [1] states that a sufficiently
diverse domain of voter preference profiles cannot be mapped into social orders of the
alternatives without violating at least one of three appealing conditions. Fishburn and
Kelly [2] consider the smallest domains of profiles of strict rankings for voters that
induce an Arrovian dictator and have the property that every superset domain also
induces an Arrovian dictator. In this paper, we continue their analysis and answer
some of the questions left open in their work.

We consider a finite set X of m ≥ 3 alternatives and a set of n ≥ 2 voters, labeled
i = 1, . . . , n. Let R denote the set of all weak orders (transitive and complete binary
relations that need not be asymmetric—that is, ties are allowed) on X, and let S be
the set of all linear orders (strict rankings) on X. A profile of voter preferences is an
n-tuple of strict rankings d = (S1, . . . , Sn) ∈ Sn. Here the linear order Si represents
the preferences of voter i in the profile. A domain is a set of profiles: D ⊆ Sn. A
social choice rule on D is a mapping f : D → R that assigns a weak order %d on X
to every d ∈ D. For S ∈ S, the notation xSy means that x is preferred to y in S,
and S = x1x2 . . . xm means that xj is preferred to xk whenever j < k. The strict part
of a weak order % in R is denoted by �, that is, x � y if x % y and y 6% x. Given
a subset of the alternatives Y ⊆ X, any weak order % in R induces a weak order
% |Y on Y. Similarly, any S ∈ S induces a linear order S|Y on Y . Given a profile
d = (S1, . . . , Sn), we write d|Y = (S1|Y , . . . Sn|Y) and say that d restricts to d|Y .

A domain D is called Arrovian if there is no social choice rule f satisfying the
following three conditions of Arrow [1], for all x, y ∈ X and d, e ∈ D:

(P) Pareto condition. If d = (S1, . . . , Sn) and xSiy for i = 1, . . . , n, then x �d y.
(IIA) Independence of irrelevant alternatives. For Y ⊆ X, if d|Y = e|Y then %d |Y

is equal to %e |Y .

∗Received by the editors January 12, 1998; accepted for publication January 8, 1999; published
electronically October 19, 1999. This research was supported by the National Science Foundation
(grant DMS 9531373-001) and the National Security Agency (grant MDA-904-96-1-0044).

http://www.siam.org/journals/sidma/12-4/33252.html
†Department of Mathematics, Harvard University, Cambridge, MA 02138. Current address: 1916

Autumn Ridge Circle, Silver Spring, MD 20906 (dasgupta@post.harvard.edu).

524

ON THE SIZE OF MINIMUM SUPER ARROVIAN DOMAINS 525

(ND) Nondictatorship. There is no i ∈ {1, . . . , n} such that �d equals Si for all
d = (S1, . . . , Sn) ∈ D.

If d = (S1, . . . , Sn) and the hypothesis of the Pareto condition xSiy for i = 1, . . . , n
holds, then we write x � y in d. We say that x and y are a Pareto pair and are
involved in a Pareto relationship. A mapping f that satisfies the first two conditions
is called a (P) + (IIA) function. If the function f is such that �d equals Si for each
d = (S1, . . . , Sn), then voter i is called a dictator for f. An Arrovian domain is one
for which every (P) + (IIA) function has a dictator. A domain D is called super
Arrovian if it is Arrovian and every superset domain D′ ⊃ D is also Arrovian. A
super Arrovian domain on m alternatives and n voters that has the smallest number
of profiles is called minimum, and this number of profiles is denoted σ(m,n). A super
Arrovian domain is called minimal if no proper subset is super Arrovian.

Fishburn and Kelly [2] proved that σ(3, 2) = 6 and showed σ(m,n) = o(4n)
for fixed m and σ(m,n) = o((logm)2+ε) for fixed n and ε > 0. They also proved
σ(m, 2) ≤ min{6 · 2m−3, (7 logm)2} and σ(m,n) > 2n − 2. In this paper, we find
improved lower and upper bounds and calculate the value of σ(m, 2) exactly.

Theorem 1. For m ≥ 3, we have

σ(m, 2) =

⌈
2m

m− 2

⌉
=

6 if m = 3,

4 if m = 4 or 5,

3 if m ≥ 6.

Theorem 2. For m,n ≥ 3, we have

m

m− 2
(2n − 2)< σ(m,n) ≤

⌈
2m

m− 2

⌉
(2n−1 − 1) +

⌈
2n − 2n− 2

bm/2c
⌉

+

⌈
n(n− 1)

2(m− 2)

⌉
+ 1.

For n ≥ 4, the upper bound can be decreased by 1.
In Section 2, we establish the lower bound for σ(m,n) given in Theorem 2. In

Section 3, we prove an upper bound for σ(m,n) in terms of σ(m, 2). In Section 4, we
find a general class of super Arrovian domains which yields a tighter upper bound
in the case m = 3. In Section 5 we evaluate σ(m, 2) explicitly, completing the proofs
of Theorems 1 and 2. In Section 6, we show that σ(3, 3) = 19 and answer two
questions posed in [2] by giving examples of minimal super Arrovian domains that
are not minimum, and by constructing distinct minimum super Arrovian domains for
the same m and n that are not related by a permutation of voters and alternatives.

2. Lower bounds on σ(m,n). A doubles profile is an n-tuple of linear orders
on a two element subset of X. Given a profile d ∈ Sn and a two-element subset of
the alternatives Y ⊂ X, the restriction d|Y is a doubles profile. This doubles profile
represents the preferences of the voters on the two alternatives of Y in the profile d.
A doubles profile is said to be nonunanimous if the n voters do not all agree on the
ordering of the two alternatives. Let P denote the set of all nonunanimous doubles
profiles. A domain D ⊆ Sn satisfies the near-free doubles condition if every nonunan-
imous doubles profile appears as the restriction of some profile d ∈ D. Fishburn and
Kelly found the following necessary and sufficient conditions for a domain to be super
Arrovian using the near-free doubles condition.

Theorem 3 ([2],Theorem 1). A domain D is super Arrovian if and only if it is
Arrovian and satisfies the near-free doubles condition.

We begin with a lemma generalizing the “only if” part of this result, motivated
by [2, Proof of Part 2 of Lemma 2]. If S ∈ S and xSy, then we say that x and y are

526 SAMIT DASGUPTA

nonadjacent if there is a w ∈ X such that xSw and wSy. Otherwise, x and y are said
to be adjacent.

Lemma 4. Given a super Arrovian domain D, a nonunanimous doubles profile
p, and a voter v, there is a profile d ∈ D restricting to p such that the two alternatives
of p are nonadjacent in d for voter v.

Proof. For concreteness, let v be voter 1, let p be a doubles profile on {x, y} ⊂ X,
and suppose that x is preferred to y in p for voter 1. Let C ⊂ D be the set of profiles
that restrict to p, and assume that each profile of C has x and y adjacent for voter
1. Then we can define a (P) + (IIA) function f : D → R by letting voter 1 be a
dictator on D−C and letting voter 1 be a dictator on C except for reversing the order
of x and y. In other words, f chooses the preferences of voter 1 on every doubles
profile other than p. Because D is super Arrovian, f must have a dictator. Since C
is nonempty by Theorem 3, voter 1 is not a dictator. Without loss of generality, let
voter 2 be a dictator. Then voters 1 and 2 agree on all elements of D − C, so that
no doubles profile of the form (yx, xy, . . .) appears as the restriction of a profile in D.
This contradicts Theorem 3 and proves the lemma.

Corollary 5. For m ≥ 3 and n ≥ 2, we have σ(m,n) ≥ m
m−2 (2n − 2).

Proof. Let D be super Arrovian, and let H be the set of all ordered pairs (p, d) ∈
P ×D such that d restricts to p, and the two alternatives of p are nonadjacent in d
for voter 1. By the lemma, |H| ≥ |P | =

(
m
2

)
(2n − 2). Yet by counting the greatest

possible contribution of each d ∈ D, we see that |H| ≤ (m−1
2

)|D|. Combining these
inequalities gives the desired result.

Lemma 6. For m,n ≥ 3, we have σ(m,n) > m
m−2 (2n − 2).

Proof. We need only eliminate the possibility that equality holds in the corollary
above. Assume that there exists a super Arrovian domain D of this size. The proof
of the corollary implies that for any profile d ∈ D, the alternatives in every Pareto
relationship must be adjacent for every voter (otherwise, the contribution of d to |H|
is less than

(
m−1

2

)
). We claim that this restriction makes it possible to define a (P) +

(IIA) function f : D → S ⊂ R by choosing, for every profile, the reverse of voter 1’s
preferences on every pair of alternatives except those involved in a Pareto relationship.
That is, for d = (S1, . . . , Sn) we let f(d) be the linear order �d defined by

x �d y if (x� y in d) or (yS1x but not y � x in d).

Suppose that there is some profile d = (S1, . . . , Sn) ∈ D for which this definition
of f(d) results in a relation that is not transitive. Then there are three alternatives
x, y, z ∈ X such that the rule defining f yields x �d y �d z �d x. First suppose that
none of xy, yz, or zx is a Pareto pair. Then we must have yS1x, zS1y, and xS1z,
contradicting the transitivity of S1. Hence we may assume without loss of generality
that zx is a Pareto pair and that the others are not. But then we have zS1y and yS1x,
and the alternatives of the Pareto relationship are nonadjacent. Since this contradicts
the assumption about D, we conclude that f(d) is indeed transitive for each profile
d ∈ D.

The map f is clearly a (P) + (IIA) function, and voter 1 is not a dictator for
f . If there is some other dictator i, then we can choose any other voter j and note
that D does not contain any doubles profiles for which 1 and i agree but j differs.
This contradicts the near-free doubles condition for D and concludes the proof of the
lemma.

3. An upper bound on σ(m,n). We begin by generalizing some notation
used by Fishburn and Kelly [2]. Given a subset A of the set {1, . . . , n} of all voters

ON THE SIZE OF MINIMUM SUPER ARROVIAN DOMAINS 527

and distinct x, y ∈ X, we write xyA for the doubles profile in which the preference
ranking of each voter in A is xy and the preference ranking for each voter not in A is
yx. Write A for {1, . . . , n}−A, and note that xyA = yxA. For a (P) + (IIA) function
f on a domain D, we write xAy if x �d y for each d ∈ D restricting to xyA. If xAy
for all ordered pairs of distinct alternatives x, y ∈ X, we write that A+ holds. For
example, the f constructed in the proof of Lemma 6 has A+ if and only if 1 6∈ A.
A domain D is super Arrovian if and only if the only (P) + (IIA) functions f on
any domain containing D are those defined by: “A+ holds whenever i ∈ A” for some
fixed i.

Lemma 7. For m ≥ 3 and n ≥ 4, we have

σ(m,n) ≤ σ(m, 2)(2n−1 − 1) + 2n +
n2 − 5n− 4

2
.

Proof. We shall construct a super Arrovian domain D of the required size.
Let {A,A} be a partition of {1, . . . , n}, where neither A nor A is empty. If

d′ = (S′1, S
′
2) is a profile on m alternatives and 2 voters, let g(d′) be the profile on m

alternatives and n voters (S1, . . . , Sn) where Si = S′1 if i ∈ A and Si = S′2 if i ∈ A.
Consider the σ(m, 2) profiles of the form g(d′) as d′ ranges through a minimum super
Arrovian domain on m alternatives and 2 voters. Any (P) + (IIA) function f on a
domain containing these profiles must have either A+ or A + . Let Z1 be the set of
all such profiles, for the 2n−1 − 1 possibilities for {A,A}. Note that Z1 satisfies the
near-free doubles condition.

Choose three distinct alternatives x, y, z ∈ X. For each pair i, j ∈ {1, . . . , n} with
i < j, consider any profile d in which voter i has preference ranking zxy, voter j has
preference ranking yzx, and all the other voters have preference ranking zyx. Let f be
a (P) + (IIA) function on a domain containing this profile. By the Pareto condition,
z �d x. Now {i}+ would imply x �d y, and {j}+ would imply y �d z. Since these
three orderings are incompatible, this profile shows that {i}+ and {j}+ cannot both
hold for f . Let Z2 be any domain containing such a profile d for every pair i, j. It is
clear that we can choose Z2 such that |Z2| ≤

(
n
2

)
.

Finally, for each subset A ⊂ {1, . . . , n} with 2 ≤ |A| ≤ n − 2, choose an element
i ∈ A, and write B = A− {i}. Consider any profile d in which voter i has preference
ranking xzy, the voters in B have preference ranking yxz, and all the other voters have
preference ranking zyx. If f is any (P) + (IIA) function on a domain containing this
profile, then {i}+, B+, and A+ cannot all hold for f , since otherwise y �d x, z �d y,
and x �d z. Let Z3 be any domain containing such a d for each set A. We can choose
Z3 so that |Z3| ≤ 2n − (2n+ 2).

Now let D = Z1∪Z2∪Z3. The domain D has the required number of profiles and
satisfies the near-free doubles condition; it remains to show that it is Arrovian. We
will refer to the profiles of each Zi as the “stage i profiles.” Let f be a (P) + (IIA)
function on D. By the stage one profiles, we have either {i}+ or {i}+ for each i. The
stage two profiles show that for no two distinct i and j can we have both {i}+ and
{j}+ .

Suppose first that {i}+ holds for all i. We show by induction that A+ holds for
all A ⊂ {1, . . . , n} with 1 ≤ |A| ≤ n − 2. For any A with 2 ≤ |A| ≤ n − 2, choose
the i ∈ A and B ⊂ A from the third stage of the construction. Note that {i}+ and
B+ hold by induction, so that A+ is impossible by the stage three profiles. Then by
the stage one profiles, A+ must hold, completing the induction. However, this is a
contradiction for any |A| with n/2 ≤ |A| ≤ n−2 since A+ and A+ are not compatible.

528 SAMIT DASGUPTA

Hence we must have {i}+ for exactly one voter i. We must show that this voter
is a dictator, that is, A+ holds for all subsets A containing i. The assumption about
voter i implies that this is true for |A| = 1 or |A| = n − 1. The inductive argument
in the preceding paragraph shows that A+ holds for each subset A not containing i
with 2 ≤ |A| ≤ n− 2. This is the desired result.

Note that the proof of Lemma 7 above works for n = 3 except for the paragraph
that precludes the possibility that {i}+ holds for all i, since now n/2 > n−2. Here one
extra profile is needed, namely any profile restricting to (xzy, yxz, zyx), to complete
the argument. Henceforth, we will refer to this as a stage three profile in the case
n = 3. We obtain σ(m, 3) ≤ 3σ(m, 2) + 4, which is the result of [2, Lemma 7].

The profiles of stages two and three are wasteful in the sense that we only draw
information from three of the alternatives in each profile. For example, given a stage
two profile, we can choose some other pair i′, j′ and alternative w and alter the position
of w so that the profile restricts to zxw for voter i′, wzx for voter j′, and zwx for the
other voters. This saves one profile from Z2. Continuing in this way, we can choose Z2

such that |Z2| ≤ d
(
n
2

)
/(m − 2)e. Similarly, for any stage three profile, we can choose

two unused alternatives u and v, another triple i′, B′, A′, and alter the profile so that
it restricts to uzv for voter i′, vuz for the voters in B′, and zvu for the other voters.
Using up all the alternatives efficiently in this manner allows us to choose Z3 such
that |Z3| ≤ d(2n − 2n− 2)/bm/2ce. We have proven:

Corollary 8. For m,n ≥ 3,

σ(m,n) ≤ σ(m, 2)(2n−1 − 1) +

⌈
n(n− 1)

2(m− 2)

⌉
+

⌈
2n − 2n− 2

bm/2c
⌉

+ 1.

For n ≥ 4, the bound can be decreased by 1.

4. An improved bound for three alternatives. We now present a separate
but similar construction of super Arrovian domains which will allow us to find a
stronger upper bound in the case m = 3. A domain D is a said to be basic if any (P)
+ (IIA) function f on any domain containing D satisfies {i}+ or {i}+ for every i,
and such that {i}+ and {j}+ cannot both hold for distinct i and j.

A domain D is said to be recursive for a subset A ⊂ {1, . . . , n} with 1 ≤ |A| ≤ n−2
if for every ordered pair of alternatives x, z ∈ X, there exists an alternative y ∈ X
and a profile d ∈ D such that d restricts to xyz for the voters in A, yzx for some
non-empty proper subset of the other voters, and zxy for the rest. If D is recursive
for every A with 1 ≤ |A| ≤ n − 2, we say that D is recursive. A domain D which is
both basic and recursive is called inductive. Note that any inductive domain satisfies
the near-free doubles condition.

Lemma 9. Any inductive domain D is super Arrovian.

Proof. Let D be inductive. Since D is basic, any (P) + (IIA) function f on D
must have {i}+ or {i}+ for each i. Also, there can be no two distinct i and j such
that both {i}+ and {j}+ hold. First suppose that {i}+ holds for all i. We shall show
by induction on |A| that A+ holds for each A with 1 ≤ |A| ≤ n − 1. The base case,
when |A| = 1, follows from our assumption. For larger |A|, let x, z ∈ X; we need to
show that xAz holds. Consider the profile d ∈ D which restricts to xyz for the voters
in A, yzx for the voters in B, and zxy for the voters in C, where B ∪ C = A and B
and C are nonempty. By the induction, we have xBy and yCz, from which it follows
that x �d y �d z. Hence we conclude that xAz holds, and the induction is complete.
Now, the assertions A+ and A+ are contradictory for any A, so we must have {i}+

ON THE SIZE OF MINIMUM SUPER ARROVIAN DOMAINS 529

for exactly one i. Repeating the induction above shows that A+ holds for each A not
containing i, so that i is a dictator. Hence D is super Arrovian.

Theorem 10. For n ≥ 2, we have σ(3, n) ≤ 3(2n − 2) + 6
(

n
b(n+1)/2c

)
+
(
n
2

)
.

Proof. We construct an inductive domain D of the required size. We begin by
letting Y1 consist of the stage two profiles from the proof of Lemma 7 and the n·σ(3, 2)
stage one profiles corresponding to {A,A} = {{i}, {i}}, for i = 1, . . . , n. Y1 is basic,
with |Y1| = 6n+

(
n
2

)
.

For any subset B ⊂ {1, . . . , n} with 2 ≤ |B| ≤ n− 1 and any i ∈ B, consider the
6 profiles which have the following form, as a, b, and c range over the permutations of
the alternatives x, y, and z: the voters in B − {i} have preference ranking abc, voter
i has preference ranking bca, and the rest of the voters have preference ranking cab.
Any domain containing these profiles will be recursive for B − {i} and B. Hence if
there is a way to choose, for each subset B with 2 ≤ |B| ≤ bn+1

2 c, an element i ∈ B
such that the sets B−{i} range over all possible subsets of size between 1 and bn−1

2 c,
then we can create a recursive domain Y2 containing the corresponding

6

b(n+1)/2c∑
i=2

(
n

i

)
=

{
3(2n +

(
n
n/2

)− 2n− 2) if n is even

3(2n + 2
(

n
(n+1)/2

)− 2n− 2) if n is odd

profiles. Then D = Y1∪Y2 will be inductive of the required size. We now demonstrate
the existence of such a choice.

Let j < n/2. Consider the bipartite graph whose vertices consist of the subsets
of {1, . . . , n} of size j (partite class X) and j + 1 (partite class Y), where A ∈ X
is connected to B ∈ Y if A ⊂ B. We want to show the existence of a matching of
X into Y , and we will do so using the Hall Matching Condition. Given any subset
of the first partite class Z ⊂ X, write N(Z) for the set of neighbors of vertices in
Z. We need to show that |N(Z)| ≥ |Z| for every Z ⊂ X. Note that each vertex in
Z is connected to n − j vertices of Y . This gives (n − j)|Z| edges between vertices
in Z and vertices in Y . Since each vertex in Y has degree exactly j + 1, we have
|N(Z)| ≥ (n − j)|Z|/(j + 1) ≥ |Z|. Hence the Hall Matching Condition is satisfied,
and a matching exists.

Corollary 11. We have limn→∞
σ(3,n)

2n = 3.

5. Two voters. In this section we show that the lower bound of Corollary 5 is
an equality for n = 2. Fishburn and Kelly [2, Lemma 2] do this for (m,n) = (3, 2).
For notational purposes, we will use X = {1, . . . ,m}, and we will label the two voters
I and J , with the preferences of voter I written first in each profile. We simply write
xIy for x{I}y. Also, xIY for Y ⊂ X means xIy for all y ∈ Y. Finally, as an abuse of
notation, we write xIX for xI(X − {x}). We begin by recalling the construction for
m = 3 in [2].

Lemma 12 ([2], Lemma 2). We have σ(3, 2) = 6.
Proof. Let D3 be composed of the six profiles in the table below.

Profile Pareto Conclusion
p1 (321, 213) 2� 1 3I1 or 2J3
p2 (231, 123) 2� 3 2I1 or 1J3
p3 (213, 132) 1� 3 2I3 or 1J2
p4 (123, 312) 1� 2 1I3 or 3J2
p5 (132, 321) 3� 2 1I2 or 3J1
p6 (312, 231) 3� 1 3I2 or 2J1

530 SAMIT DASGUPTA

Note that the near-free doubles condition is satisfied. Let f be a (P) + (IIA)
function on D3. The condition 2� 1 in the first profile implies 3I1 or 2J3. Suppose
that the first of these holds for f. The condition 2 � 3 in the second profile implies
that 2I1 or 1J3. But 3I1 contradicts 1J3, so 2I1 must hold for f. Continuing in this
way for each profile, we find that xIy for all distinct x, y ∈ X, so that voter I is
a dictator on f. Had we assumed that 2J3 held in the first profile, we would have
similarly found that voter J was a dictator. Hence D3 is super Arrovian.

Lemma 13. We have σ(4, 2) = σ(5, 2) = 4.
Proof. For m = 4, let D4 be the domain below.

Profile Pareto Conclusion
p1 (1234, 3412) 3� 4 1I4 or 3J1
p2 (2413, 1324) 2� 4 2I1 or 1J4
p3 (3142, 4231) 4� 2 1I2 or 4J1
p4 (4321, 2143) 4� 3 4I1 or 1J3

Note that the near-free doubles condition is satisfied.
Restricting to the three alternatives {1, 2, 3}, we obtain four of the six profiles of

the minimal super Arrovian domain D3 above. The only information used to show
that D3 is super Arrovian supplied by the two missing profiles is that if f is any (P) +
(IIA) function, then 2I1 or 1J3 holds and 1I2 or 3J1 holds for f . Yet we can conclude
this from our domain D4 using alternative 4. For example, the Pareto relationship
3 � 4 in p1 implies that 1I4 or 3J1 holds. Similarly, from the other profiles we can
conclude that 2I1 or 1J4 holds, that 1I2 or 4J1 holds, and that 4I1 or 1J3 holds.
These four conclusions combine to supply the “missing” information above. Hence we
can conclude that any (P) + (IIA) function f is dictatorial on the three alternatives
{1, 2, 3}.

Suppose that voter I is dictatorial on {1, 2, 3}. We can conclude from 4� 3 in p4

that 4I2 and 4I1 hold. Then in p2 we have 4 �p2
1 �p2

3 so that 4I3 holds. Similarly,
3 � 4 in p1 implies that 1I4 and 2I4 hold. Then from p3, we have 3I4. Therefore,
voter I is a dictator on all four alternatives. Now suppose that voter J is dictatorial
on {1, 2, 3}. We can conclude from 4 � 2 in p3 that 4J1 and 4J3 hold. Hence from
p1, we see 4J2 holds. Similarly, 2 � 4 in p2 implies that 1J4 and 3J4 hold. Then
from p4, we have 2J4. Therefore, voter J is a dictator on all four alternatives. Since
either voter I or J is a dictator and the near-free doubles condition is satisfied, D4 is
super Arrovian.

For m = 5, let D5 be the domain below.

q1 (15234, 35412)
q2 (24135, 51324)
q3 (53142, 42315)
q4 (43251, 21453)

Note that the restriction of D5 to {1, 2, 3, 4} is the super Arrovian domain D4

above. Hence there is a dictator on these four alternatives. Suppose that this dictator
is voter I. From 5� 2 in q1, we can conclude 5I3. Then from q3, we have 5I{1, 2, 4}.
Similarly, the condition 2 � 5 in q4 shows that 3I5, which implies that {1, 2, 4}I5
from q2. Hence voter I is dictatorial on all five alternatives. Now suppose that voter
J is dictatorial on {1, 2, 3, 4}. From 5 � 4 in q1, we can conclude 5J1. Then from
q2, we have 5J{2, 3, 4}. Similarly, the condition 4 � 5 in q4 shows that 1J5, which
implies that {2, 3, 4}J5 from q3. Hence voter J is dictatorial on all five alternatives.
Therefore, D5 is super Arrovian.

ON THE SIZE OF MINIMUM SUPER ARROVIAN DOMAINS 531

Note that since σ(m,n) = m
m−2 (2n − 2) for (m,n) = (4, 2), the proof of Corol-

lary 5 uniquely determines the preferences of each voter, up to permutations of the
alternatives, in a minimal super Arrovian domain. The same is true for m = 6, and
one finds that the super Arrovian domains for m = 4 and m = 6 are unique up to
permutations of the alternatives.

Lemma 14. We have σ(6, 2) = σ(7, 2) = 3.
Proof. For m = 6, let D6 be the profile below.

p1 (123456, 563412) (id, τ)
p2 (536142, 426153) (π, πτ)
p3 (462513, 132546) (π2, π2τ)

If we define permutations π = (154)(236) and τ = (15)(26), then the profiles have
the form given in the table above, with π3 = τ2 = id . The permutation τ switches the
voters, and the permutation π rotates the profiles. This symmetry will be important
in proving that D6 is Arrovian.

Let f be a (P) + (IIA) map on D6. The profile p1 has the three Pareto pairs
1 � 2, 3 � 4 and 5 � 6. Hence, the first alternative in %p1

is 1, 3, or 5, or some
combination of these in a tie. Suppose that 3 is in the first position, with or without
a tie. Then 3I6 holds, implying that the order �p2 restricts to 5361 on those alterna-
tives. Hence 5I1 holds, so that the order �p3

restricts to 2513 on those alternatives.
Thus 2I3 holds, contradicting the fact that 3 appears first in %p1

.
Now suppose that 1 appears first in %p1

, possibly tied with 5. Then 1I4 holds.
By the symmetry of the profiles, 5 or 4 appears first in %p2

, but 4 cannot appear
first because we have 1I4. Hence 5 appears alone in first in %p2 , so we conclude that
5I{1, 2, 4, 6}. Then we have 5 �p3 1 �p3 3, so 5I3 as well, and hence 5IX.

In summary, by assuming that 1 appears first in %p1
, we are able to show that 5

appears alone in first in %p2
and that 5IX holds. Then by symmetry, we also have

that 4 appears alone in first in %p3
and that 4IX holds, and that 1 appears alone in

first in %p1
and that 1IX holds. Now 4I5 implies 3I{5, 6} from p1, so that 3IX holds

from p2. Similarly, we conclude that 2IX and 6IX hold, and voter I is a dictator
for f.

It follows by symmetry that if we had assumed that 5 appeared first in p1, then
we would have found that voter J was a dictator. Hence D is Arrovian, and since it
satisfies the near-free doubles condition, it is super Arrovian.

This domain can be extended to a super Arrovian domain D7 for m = 7 by
inserting alternative 7 as the middle preference of each voter in all three profiles (e.g.
between the 3 and 4 for both voters in p1). The domain D7 is clearly Arrovian since
there is a dictator on {1, . . . , 6} and the place of alternative 7 is uniquely determined
by the Pareto relationships with the alternatives directly before and after it. Since
the near-free doubles condition is satisfied, D7 is super Arrovian.

This method of inserting alternatives into super Arrovian domains is the funda-
mental technique used in showing σ(m, 2) = 3 for m ≥ 8. We state without proof a few
more base cases whose verifications are nearly identical to the “insertion” arguments
used already.

Lemma 15. The domain D below, and its restrictions to {1, . . . , 7} ∪ K for
K ⊆ {8, 9, α, β, δ, γ}, are all super Arrovian:

D = {(β1δ2387α45γ69, 95α63γ7δ4182β),

(α5936δ7γ14β28, 84γ26β7915δ3α),

(γ486297β51α3δ, δ1β32α785496γ)}.

532 SAMIT DASGUPTA

A super Arrovian domain D of size 3 for n = 2 is called extremely expandable if
an alternative can be inserted to yield a super Arrovian domain such that for some
profile, the new alternative is in first place for voter I and in last place for voter J . Let
T be the set of m for which there exists an extremely expandable D for m alternatives.
The lemma above implies that {7, 8, 9, 10, 11, 12} ⊆ T. If U = {m : σ(m, 2) = 3}, then
T ∪ (T + 1) ⊆ U.

Lemma 16. If m ∈ T , then {m+ 8,m+ 9,m+ 10} ⊂ T.
Proof. Let D = {(l1, l2), (l3, l4), (l5, l6)} be super Arrovian for m alternatives,

where an alternative A can be inserted to yield the super Arrovian domain D′ =
{(n1, n2), (n3, n4), (n5, n6)} with n5 = Al5 and n6 = l6A. Then consider the domain
with m+ 8 alternatives:

D′′ = {(1n1237456, 5637n2412),

(536n37142, 426715n43),

(462751A3l5, l61A327546)}.

We first show that D′′ is Arrovian. Let f be a (P) + (IIA) function on D′′, and let B
be any alternative of D. The previous lemma shows that there is a dictator for f on
{1, . . . , 7, B}, say voter I. Restricting to the alternatives of D′, there is also a dictator
since D′ is super Arrovian. But in the third profile, A � 3 and 3 � B, so A � B,
and this second dictator must also be voter I. Also, the conditions 1� A� 3 in the
third profile uniquely determine the position of A for this profile. Since this argument
holds for every B, we see that voter I is in fact a dictator on all the alternatives.
Similarly, if we had assumed that voter J was a dictator on {1, . . . , 7, B}, then we
would have found that voter J was a dictator on all the alternatives.

Except for possibly the doubles (3A,A3) and (1A,A1), the near-free doubles
condition holds for D′′ because it holds on D′ and the restriction of D′′ to {1, . . . , 7, B}
for every B. Since these two doubles do appear in the second profile, D′′ is super-
Arrovian. D′′ is extremely expandable because an alternative can be inserted in
the position of γ in the previous lemma to yield a super Arrovian domain. Hence
m+ 8 ∈ T. To show that m+ 9,m+ 10 ∈ T , one inserts alternatives 8 and 9 into D′′

as indicated by the previous lemma.
Corollary 17. For m ≥ 8, we have σ(m, 2) = 3.
Proof. The previous lemma and the base cases {7, . . . , 12} ⊂ T imply that {m ≥

7 : m 6= 13, 14} ⊆ T. Hence {m ≥ 6 : m 6= 14} ⊆ U. For m = 14, the standard
insertion argument shows that

D = {(βω1δ2387α45γ69, 95α63γ7δ418ω2β),

(α5936δ7ωγ14β28, 84δ26β791ω5δ3α),

(γ486297β51α3δω, ωδ1β32α785496γ)}

is super Arrovian, so U = {m ≥ 6}.
Corollary 8, Lemmas 6, 12, 13, and 14, and Corollary 17 combine to prove Theo-

rems 1 and 2.

6. Miscellaneous results and conclusion. In this section we answer some
questions asked by Fishburn and Kelly [2].

Proposition 18. σ(3, 3) = 19.
Proof. Theorem 2 shows that σ(3, 3) ≥ 19. We create a super Arrovian set of size

19 by starting with the construction of Corollary 8 and eliminating three unnecessary

ON THE SIZE OF MINIMUM SUPER ARROVIAN DOMAINS 533

stage one profiles. Let

D = {(zyx, yxz, yxz), (yxz, zyx, yxz), (yxz, yxz, zyx), (yzx, zyx, zxy),
(yzx, xyz, xyz), (xzy, yxz, xzy), (xyz, xyz, yzx), (yxz, yzx, xyz),
(yxz, xzy, xzy), (zxy, xzy, zyx), (xzy, xzy, yxz), (xyz, zxy, xzy),
(xzy, zyx, zyx), (zyx, xzy, zyx), (zxy, zxy, xyz), (xyz, yzx, zxy),
(zxy, yzx, yzx), (yzx, zxy, yzx), (zyx, zyx, xzy)}.

The first three columns are stage one profiles for the three partitions {{1}, {2, 3}},
{{2}, {1, 3}}, and {{3}, {1, 2}}, respectively. There are three stage one profiles miss-
ing from D: (xyz, zxy, zxy), (xyz, yzx, xyz) and (zyx, zyx, xzy). The fourth column
contains the profiles from stages two and three, with some permutation of the alter-
natives applied for each profile. Note that permuting the alternatives in the profiles
for stages two and three does not affect the proof of Corollary 8.

The information provided by (xyz, zxy, zxy) is that any (P)+(IIA) function on
a domain containing this profile has x1z or z{2, 3}y. However, we can conclude this
directly from the profiles in D. Suppose that z{2, 3}y does not hold. Then in the
first profile of the fourth column, we have y % z � x, so that y{1, 2}x holds. Hence
x3y does not hold, and using the argument of Lemma 12 on the profiles in the third
column, we find y{1, 2}z. Similarly, the third profile of the fourth column and the
profiles of the second column show x{1, 3}y. Then in the last profile of the fourth
column, we have x � y � z, so that x1z holds. Therefore, the information provided by
(xyz, zxy, zxy) is already provided by the profiles in D, and this profile is unnecessary.
A similar argument works for the other two missing profiles. Since the near-free
doubles condition is satisfied, D is super Arrovian.

Proposition 19. There exists an infinite family of minimal super Arrovian
domains that are not minimum.

Proof. Fix n = 2, and let m ≥ 4. Let x and y be the greatest even and odd
integers less than or equal to m, respectively. Define E to be the string of alternatives
567 · · ·m, let F = 68 · · ·x, and let G = 579 · · · y. For L = E,F, or G, we let L be the
string of alternatives of L in reverse order. Finally, define

D = {(E1234, 3412E),

(3142E,E4231),

(2F41G3, 1G32F3),

(4G32F1, 2F14G3)}.
For m = 4, we have D = D4 from Lemma 13, so D is super Arrovian. The standard
insertion argument shows that D is super Arrovian for larger m as well.

For m ≥ 6, removing the first profile causes D not to be super Arrovian because
Lemma 4 is not satisfied with p = (m(m − 2), (m − 2)m) on either voter. Similarly,
removing the second profile violates Lemma 4 with p = ((m − 2)m,m(m − 2)). Re-
moving the third profile violates the lemma with p = (m(m − 1), (m − 1)m) for m
even and with p = ((m − 1)m,m(m − 1)) for m odd. The same is true with the
cases reversed for the fourth profile. Hence D is minimal. By Theorem 1, D is not
minimum for m ≥ 6, and the proof is complete.

Proposition 20. Minimum super Arrovian domains need not be unique up to
permutations of the voters and alternatives.

Proof. Let D′ be the restriction of the domain D in Lemma 15 to the alternatives
{1, . . . , 9}, and let D′′ be the restriction of D to the alternatives {1, . . . , 8, α}. No

534 SAMIT DASGUPTA

matter which permutation of alternatives or voters is applied to D′, no profile will
have the first choice of each voter in the last place for the other voter. Since D′′ does
contain such a profile, the two minimum super Arrovian domains are not related by
permutations.

Theorems 1 and 2 along with these propositions essentially answer all of the
open questions posed in [2]. The exact value of σ(m, 2) is calculated for all m, as
well as bounds which show that σ(m,n) is Θ(1) for fixed n and Θ(2n) for fixed m.
Open questions suggested by Theorem 1 are whether σ(m,n) is always decreasing in
m for fixed n and whether σ(m,n) always reaches 2n−1 for m large enough. Another
topic for further study is the behavior of σ(m,n)/2n for fixed m as n grows large. We
have also left open the question of precisely which pairs (m,n) have the property that
there is a unique minimum super Arrovian set on m alternatives and n voters, up to
permutations of the alternatives and voters.

Acknowledgments. This work was done under the supervision of Joseph Gal-
lian at the University of Minnesota, Duluth. The author wishes to thank Joseph
Gallian, Daniel Biss, and David Witte for their suggestions and encouragement.

REFERENCES

[1] K. J. Arrow, Social Choice and Individual Value, 2nd ed., Wiley, New York, 1963.
[2] P. C. Fishburn and J. S. Kelly, Super Arrovian domains with strict preferences, SIAM J. Disc.

Math., 11 (1997), pp. 83-95.

	SJDMEC_V12_i1_p0001
	SJDMEC_V12_i1_p0006
	SJDMEC_V12_i1_p0027
	SJDMEC_V12_i1_p0035
	SJDMEC_V12_i1_p0048
	SJDMEC_V12_i1_p0064
	SJDMEC_V12_i1_p0078
	SJDMEC_V12_i1_p0091
	SJDMEC_V12_i1_p0111
	SJDMEC_V12_i1_p0119
	SJDMEC_V12_i1_p0136
	SJDMEC_V12_i2_p0155
	SJDMEC_V12_i2_p0160
	SJDMEC_V12_i2_p0208
	SJDMEC_V12_i2_p0217
	SJDMEC_V12_i2_p0229
	SJDMEC_V12_i2_p0243
	SJDMEC_V12_i2_p0252
	SJDMEC_V12_i2_p0262
	SJDMEC_V12_i2_p0276
	SJDMEC_V12_i3_p0289
	SJDMEC_V12_i3_p0298
	SJDMEC_V12_i3_p0307
	SJDMEC_V12_i3_p0317
	SJDMEC_V12_i3_p0326
	SJDMEC_V12_i3_p0337
	SJDMEC_V12_i3_p0342
	SJDMEC_V12_i3_p0360
	SJDMEC_V12_i3_p0374
	SJDMEC_V12_i3_p0385
	SJDMEC_V12_i3_p0412
	SJDMEC_V12_i4_p0413
	SJDMEC_V12_i4_p0425
	SJDMEC_V12_i4_p0434
	SJDMEC_V12_i4_p0459
	SJDMEC_V12_i4_p0474
	SJDMEC_V12_i4_p0491
	SJDMEC_V12_i4_p0500
	SJDMEC_V12_i4_p0524

